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Abstract—Evolutionary games have been developed in biologi-
cal sciences in the aim of studying the evolution and equilibrium
behavior (called Evolutionary Stable Strategies – ESS) of large
populations. While rich theoretical foundations of evolutionary
games allow biologist to explain past and present evolution and
predict future evolution, it can be further used in Engineering to
architect evolution. In this paper, we apply evolutionary games to
non-cooperative networks containing large number of individual
non-cooperative terminals or sensors. We study the evolution of
congestion control protocols, and show how the evolution and the
ESS are influenced by the characteristics of the wireless channel.
We then consider the challenge of architecting the evolution: we
propose some guidelines for designing a framework that supports
evolution of protocols.

I. INTRODUCTION

The evolutionary games formalism is a central mathematical
tools developed by biologists for predicting population dynam-
ics in the context of interactions between populations. This
formalism identifies and studies two concepts: the ESS (for
Evolutionary Stable Strategy), and the Replicator Dynamics.

The ESS, defined in 1972 by the biologist Maynard Smith
[14], is characterized by a property of robustness against in-
vaders (mutations). More specifically, (i) if an ESS is reached,
then the proportions of each population do not change in time.
(ii) at ESS, the populations are immune from being invaded
by other small populations. This notion is stronger than Nash
equilibrium in which it is only requested that a single user
would not benefit by a change (mutation) of its behavior.
Although ESS has been defined in the context of biological
systems, it is highly relevant to engineering as well (see [23]).
In the biological context, the replicator dynamics is a model for
the change of the size of the population(s) as biologist observe,
where as in engineering, we can go beyond characterizing and
modeling existing evolution. The evolution of protocols can be
engineered by providing guidelines or regulations for the way
to upgrade existing ones and in determining parameters related
to deployment of new protocols and services. In doing so we
may wish to achieve adaptability to changing environments
(growth of traffic in networks, increase of speeds or of
congestion) and yet to avoid instabilities that could otherwise
prevent the system to reach an ESS.

Our first objective is to provide a framework to describe
and predict evolution of protocols in a context of competition
between two types of behaviors: aggressive and peaceful(see
Section III). We use evolutionary games for computing the

ESS for congestion protocols of different degree of aggressive-
ness. We identify cases in which at ESS, only one population
prevails (ESS in pure strategies) and others, in which an
equilibrium between several population types is obtained. To
study this, we map the problems, whenever possible, into the
Hawk and Dove Game. We then study the convergence of the
replicator dynamics to it.

The second objective of the paper is to provide a framework
for controlling evolutionary dynamics (changing or upgrading
protocols) through the choice of a gain parameter governing
the replicator dynamics. We address the following two design
issues concerning this choice:

(i) the tradeoff between fast convergence and stability. We
identify a simple threshold on the gain parameter in the
replicator dynamics such that the stability is only determined
by whether we exceed or not the threshold.

(ii) the stability as a function of delays. We derive new
stability conditions for the replicator dynamics in the Hawk
and Dove game with non-symmetric delays and apply it to the
evolution of the MAC and transport layer protocols.

The paper is structured as follows. We first provide in the
next section the needed background on evolutionary games.
We then study the ESS for congestion control protocols
(section III). After that, we investigate the impact of the choice
of some parameters in the replicator dynamics on the stability
of the system in Section IV. Finally we give some numerical
investigations and we conclude with concluding remarks.

II. ESS AND REPLICATOR DYNAMICS

Consider a large population of players. Each individual
needs occasionally to take some action (such as power control
decisions, or forwarding decision). We focus on some (arbi-
trary) tagged individual. Occasionally, the action of some M
(possibly random number of) other individuals [18] interact
with the action of that individual (e.g. other neighboring nodes
transmit at the same time). In order to make use of the wealth
of tools and theory developed in the biology literature, we
shall often restrict, as they do, to interactions that are limited
to pairwise, i.e. to M = 1. This will correspond to networks
operating at light loads, such as sensor networks that need to
track some rare events such as the arrival at the vicinity of a
sensor of some tagged animal.

We define by J(p, q) the expected payoff for our tagged in-
dividual if it uses a strategy p when meeting another individual
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who adopts the strategy q. This payoff is called “fitness” and
strategies with larger fitness are expected to propagate faster
in a population. Note that J is linear in p and q.

We assume that there are N pure strategies. A strategy of
an individual is a probability distribution over the pure strate-
gies. An equivalent interpretation of strategies is obtained by
assuming that individuals choose pure strategies and then the
probability distribution represents the fraction of individuals
in the population that choose each strategy.

A. Evolutionary Stable Strategies

Suppose that the whole population uses a strategy q and that
a small fraction ǫ (called “mutations”) adopts another strategy
p. Evolutionary forces are expected to select q against p if

J(q, ǫp + (1 − ǫ)q) > J(p, ǫp + (1 − ǫ)q) (1)

A strategy q is said to be ESS if for every p 6= q there exists
some ǫ̂y > 0 such that (1) holds for all ǫ ∈ (0, ǫ̂y).

In fact, we expect that if for all p 6= q,

J(q, q) > J(p, q) (2)

then the mutations fraction in the population will tend to
decrease (as it has a lower reward, meaning a lower growth
rate). The strategy q is then immune to mutations. If it does
not but if still the following holds,

J(q, q) = J(p, q) and J(q, p) > J(p, p) ∀p 6= q (3)

then a population using q are “weakly” immune against a
mutation using p since if the mutant’s population grows, then
we shall frequently have individuals with strategy q competing
with mutants; in such cases, the condition J(q, p) > J(p, p)
ensures that the growth rate of the original population exceeds
that of the mutants. A strategy is ESS if and only if it satisfies
(2) or (3), see [24, Proposition 2.1].

The conditions to be an ESS can be related to and inter-
preted in terms of Nash equilibrium in a matrix game. The
situation in which an individual, say player 1, is faced with a
member of a population in which a fraction p chooses strategy
A is then translated to playing the matrix game against a
second player who uses mixed strategies (randomizes) with
probabilities p and 1 − p, resp. The central model that we
shall use to investigate protocol evolution is introduced in the
next subsection along with its matrix game representation.

B. The Hawk and Dove (HD) Game

Consider a large population of animals. Occasionally two
animals find themselves in competition on the same piece of
food. An animal can adopt an aggressive behavior (Hawk) or a
peaceful one (Dove). The matrix in Fig. 1 presents the fitness
of player I (some arbitrary player) associated with the possible
outcomes of the game as a function of the actions taken by
each one of the two players. We assume a symmetric game
so the utilities of any animal (in particular of player 2) as
function of its actions and those of a potential adversary (in
particular of player 1), are the same as those player 1 depicted
in Figure 1. The utilities (i.e. fitness) represent the following:

An encounter D–D results in a peaceful, equal-sharing of
the food which translates to a fitness of 0.5 to each player.

An encounter H–H results in a fight in which with equal
chances, one or the other player obtains the food but also
in which there is a positive probability for each one of the
animals to be wounded. Then the fitness of each player is
0.5-d, where the 0.5 term is as in the D–D encounter and the
−d term represents the expected loss of fitness due to being
injured.

An encounter H–D or D–H results in zero fitness to the
D and in one unit of utility for the H that gets all the food
without fight.

0.5 − d 

0 0.5 

H

D

DH

Player II

Pl. I

          

     1     

Fig. 1. H–D game in matrix form
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Fig. 2. Generalized H-D game

A more general description of H–D games is available
in [21].

One can indeed think of
other scenarios that are not
covered in the original H–
D game, such as the possi-
bility of a Hawk to find the
Dove, in a H–D encounter,
more delicious than the food
they compete over.

The generalized version [21] of the HD game given in
Figure 2 is characterized by A11 < A22 < A12 and
A21 < A22. In that case,

1) if A11 > A21 then the pure strategy H is the unique
ESS,

2) If A11 < A21 then there is a unique ESS p = (pL, pH),
it is a mixed strategy given by pH = u/(u + v) where
Aij = J(i, j), i, j ∈ {H, D}, u = A12 − A22, v =
A21 − A11.

Remark 2.1: (i) Note that there are no settings of parame-
ters for which the pure strategy D is an ESS in the H–D game



(or in its generalized version).
(ii) In case 2 above, the strategies (H, D) and (D, H) are
pure Nash equilibria in the matrix game. Being asymmetric,
they are not candidates for being an ESS according to our
definition. There are however contexts in which one obtains
non-symmetric ESS, in which case they turn out to be ESS.

C. Evolution: replicator dynamics

We introduce here the replicator dynamics [17] which de-
scribes the evolution in the population of the various strategies.
In the replicator dynamics, the share of a strategy in the
population grows at a rate equal to the difference between
the payoff of that strategy and the average payoff of the
population. More precisely, consider N strategies. Let x be the
N dimensional vector whose ith element xi is the population
share of strategy i. Thus we have

∑

i xi = 1 and xi ≥ 0.
Below we denote by J(i, k) the expected payoff (or the
fitness) for a player using strategy i when it encounters a
player with strategy k. With some abuse of notation we
define J(i,x) =

∑

j J(i, j)xj . Then the replicator dynamics
is defined as

ẋi(t) = xi(t)K
(

J(i,x(t)) −
∑

j

xj(t)J(j,x(t))
)

(4)

= xi(t)K
(

∑

j

xj(t)J(i, j) −
∑

j

∑

k

xj(t)J(j, k)xk(t)
)

where K is a positive constant and ẋi(t) := dxi(t)/dt. Note
that the right hand side vanishes when summing over i. This
is compatible with the fact that we study here the share of
each strategy rather than the size of the population that uses
each one of the strategies.

D. Replicator dynamics with delay

In Equation (4), the fitness of strategy i at time t has an
instantaneous impact on the rate of growth of the population
size that uses it. An alternative more realistic model for repli-
cator dynamic would have some delay: the fitness acquired at
time t will impact the rate of growth τ time later. We then
have

ẋi(t) = xi(t)K





∑

j

xj(t − τ)J(i, j) −

∑

j,k

xj(t)J(j, k)xk(t − τ)



 (5)

where K is some positive constant. The delay τ represents
a time scale much slower than the physical (propagation and
queueing) delays, it is related to the time scale of (i) switching
from the use of one protocol to another (ii) upgrading proto-
cols. More general description of delayed evolutionary game
dynamics can be found in [19], [20].

III. CONGESTION CONTROL PROTOCOLS

A. Background

When transferring data between nodes, flow control pro-
tocols are needed to regulate the transmission rates so as to
adapt to the available resources. A connection that looses data
units has to retransmit them later. In the absence of adaptation
to the congestion, the on going transmissions along with the

retransmissions can cause increased congestion in the network
resulting in losses and further retransmissions by this and/or
by other connections. This type of phenomenon, that leads to
several ’congestion collapses’ [8], motivated the evolution of
the Internet transport protocol, TCP, to a protocol that reduces
dramatically its throughput upon congestion detection.

There are various versions of the TCP protocol among
which the mostly used one is New-Reno. The degree of
’aggressiveness’ varies from version to version. The behavior
of New-Reno is approximately AIMD (Additive Increase
Multiplicative Decrease): it adapts to the available capacity by
increasing the window size in a linear way by α packets every
round trip time and when it detects congestion it decreases the
window size to β times its value. The constants α and β are
1 and 1/2, respectively, in New Reno.

In last years, more aggressive TCP versions have appeared,
such as HSTCP (High Speed TCP) [15] and Scalable TCP
[9]. HSTCP can be modeled by an AIMD behavior where α
and β are not constant anymore : α and β have minimum
values of 1 and of 1/2, resp. and both increase in the window
size. Scalable TCP is an MIMD (Multiplicative Increase Multi-
plicative Decrease) protocol, where the window size increases
exponentially instead of linearly and is thus more aggressive.
Versions of TCP which are less aggressive than the New-Reno
[13] also exist, such as Vegas [5].

Several researchers have analyzed the performance of net-
works in which various transport protocols coexist, see [1],
[3], [4], [10], [16]. In all these papers, the population size
using each type of protocol is fixed.

Some papers have already considered competition between
aggressive and well behaved congestion control mechanisms
within a game theoretic approach. Their conclusions in a
wireline context was that if connections can choose selfishly
between a well behaved cooperative behavior and an aggres-
sive one then the Nash equilibrium is obtained by all users
being aggressive and thus in a congestion collapse [6], [11].

Our approach yields qualitative results, stronger than those
obtained through the traditional Nash equilibrium concept
adopted in these references. It allows in particular to study
the evolution to the equilibrium, and to obtain a sharper
characterization of the equilibrium as being robust not only
against a single user deviation but also against deviations of a
whole (small) fraction of the population.

By casting the problem in our framework of the Hawk and
Dove evolutionary game, we shall be able to predict whether
a given version of TCP is expected to dominate others (ESS
in pure strategies, which means that some versions of TCP
would disappear) or whether several versions would co-exist.
This would depends also on the network context: an aggressive
version of TCP that may dominate in a wireline context
may loose its dominance in a wireless network. Indeed, an
aggressive TCP may generate higher packet loss rate than other
less aggressive versions. These are evaluated more severely in
a wireless environment since they represent energy inefficiency
which is costly in that environment.



During the last few years, many researchers have been
studying TCP performances in terms of energy consumption
and average goodput within wireless networks [13], [25]. Via
simulation, the authors show that the TCP New-Reno can be
considered as well performing within wireless environment
among all other TCP variants and allows for greater energy
savings. Indeed, a less aggressive TCP, as TCP New-Reno,
may generate lower packet loss than other aggressive TCP.
By using the HD game, we show the same behavior of TCP
variants.

The model. We consider two populations of connections,
all of which use AIMD TCP. A connection of population i is
characterized with a linear increase rate αi and a multiplicative
decrease factor βi. Let xi(t) be the transmission rate of
connection i at time t. We consider the following simple model
for competition.

(i) The RTT (round trip times) are the same for all connec-
tions.

(ii) There is light traffic in the system in the sense that a
connection either has all the resources its needs or it shares
the resources with one other connection. (If files are large then
this is a light regime in terms of number of connections but
not in terms of workload).

(iii) Losses occur whenever the sum of rates reaches the
capacity C: x1(t) + x2(t) = C.

(iv) Losses are synchronized: when the combined rates
attain C, both connections suffer from a loss. This synchro-
nization has been observed in simulations for connections with
RTTs close to each other [2]. The rate of connection i is
reduced by the factor βi < 1.

(v) As long as there are no losses, the rate of connection i
increases linearly by a factor αi.

We say that a TCP connection i is more aggressive than a
connection j if αi ≥ αj and βi ≥ βj . Let βi := 1 − βi. Let
xn and yn be the transmission rates of connection i and j,
respectively, just before a loss occurs. We have xn + yn = C.
Just after the loss, the rates are β1xn and β2yn. The time it
takes to reach again C is

Tn =
C − β1xn − β2yn

α1 + α2

which yields the difference equation:

xn+1 = β1xn + α1Tn = qxn +
α1Cβ2

α1 + α2

where q = α1β2+α2β1

α1+α2

. The solution is given by

xn = qnx0 +

(

α1Cβ2

α1 + α2

)

1 − qn

1 − q
.

B. HD game: throughput-loss tradeoff

In wireline, the utility related to file transfers is usually
taken to be the throughput, or a function of the throughput
(e.g. the delay). It does not explicitly depend on the loss rate.
This is not the case in wireless context. Indeed, since TCP

retransmits lost packets, losses present energy inefficiency.
Since energy is a costly resource in wireless, the loss rate
is included explicitly in the utility of a user through the term
representing energy cost. We thus consider fitness of the form
Ji = Thpi−λR for connection i; it is the difference between
the throughput Thpi and the loss rate R weighted by the
so called tradeoff parameter, λ, that allows us to model the
tradeoff between the valuation of losses and throughput in the
fitness. We now proceed to show that our competition model
between aggressive and non-aggressive TCP connections can
be formulated as a HD game. We study how the fraction of
aggressive TCP in the population at (the mixed) ESS depends
on the tradeoff parameter λ.

Since |q| < 1, we get the following limit x of xn when
n → ∞:

x =
α1Cβ

2

α1 + α2

·

1

1 − q
=

α1β2
C

α1β2
+ α2β1

.

It is easily seen that the share of the bandwidth (just before
losses) of a user is increasing in its aggressiveness. Hence the
average throughput of connection 1 is

Thp1 =
1 + β1

2
×

α1β2

α1β2
+ α2β1

× C.

The average loss rate of connection 1 is the same as that of
connection 2 and is given by

R =
1

T
=

(

α1

β1

+
α2

β2

)

1

C
where T =

β1β2C

α1β2 + α2β1

with T being the limit as n → ∞ of Tn.
Let H corresponds to (αH , βH) and D to (αD, βD) such that

αH ≥ αD and βH ≥ βD. Then, for i = 1, 2, Thpi(H, H) =
Thpi(D, D). Since the loss rate for any user is increasing
in α1, α2, β1, β2 it then follows that J(H, H) < J(D, D),
and J(D, H) < J(D, D). We conclude that the utility that
describes a tradeoff between average throughput and the loss
rate leads to the HD structure.

The mixed ESS is given by the following probability of
using H:

x
∗(λ) =

η1 − η2λ

η3

where

η1 =

(

µ
1 + β1

2
−

1 + β2

4

)

C, η2 =
1

C

(

α1

β
1

−

α2

β
2

)

,

η3 = C(
1

2
− µ)

β1 − β2

2
, µ =

α2(β1
)

α2(β1
) + α1(β2

)
.

where µ := 1 − µ. Note that η2 and η3 are positive. Hence,
the equilibrium point x∗ decrease linearly on λ. We conclude
that applications that are more sensitive to losses would be
less aggressive at ESS.
Tradeoff between transient and steady-state behavior

When the available bandwidth along the route of a con-
nection changes due to new cross-traffic or due to failures,
an aggressive connection could take much longer to adapt to



the available bandwidth than other connections. It would thus
suffer from more losses and during a longer period than if it
were less aggressive. This would mean more retransmissions
and longer times needed to send files in the case of transient
decrease of available bandwidth. In wireless networks, this
would also mean larger energy consumption. We may thus
expect aggressive versions of transport protocols to have
lower fitness in wireless networks than in wireline ones. We
sketch some steps that can be followed in modeling the above
scenario.

Assume that there is a single connection such that, at time
0, it has the full available throughput Cmax. Assume that the
available bandwidth decreases to γCmax for some γ < 1.
Define Tn = n × RTT and assume that for each integer n,
the transmission rate decreases at Tn by a factor of β if there
have been one or more losses during the interval [Tn−1, Tn)
(This feature is inspired by the behavior of the New Reno
version of TCP). Then it can be shown that the time it takes the
protocol to reach the transmission rate of γCmax is m×RTT ,

where m is given (approximately) by m = log(γ)
log(β) . Till time

m×RTT , the goodput cannot exceed γCmax so the loss rate
λt at t ∈ [0, m× RTT ] is at least the difference between the
transmission rate and γCmax. The number of losses during

that period is then
∫ m×RTT

0 λtdt.

IV. ARCHITECTING EVOLUTION

We study the choice of two parameters in the replicator
dynamics that impact the stability of the evolution process of
protocols: the gain parameter K and the delay τ appearing in
Equation (5). The standard replicator dynamics (4) appearing
in the evolutionary game literature is defined with K = 1.
K’s other than one can be interpreted as if the utilities J
are multiplied by a constant. Alternatively, it can be seen as
scaling time. The parameter K can thus be used to accelerate
the rate of convergence in (4).

A. The impact of K and τ on the stability

We consider below the case of two players and two actions.
Define

δ1 = J(B, A) − J(A, A), δ2 = J(A, B) − J(B, B),

δ = δ1 + δ2, θ =
δπ

2δ1δ2

Guidelines for an evolution framework. For K = 1, it has
been shown in [21] that if the delay τ in (5) satisfies τ < θ
then the mixed ESS (given in section II-B) is asymptotically
stable, and if τ increases beyond θ then the ESS becomes
unstable.

We make the observation that Equation (5) with K is
equivalent to Equation (4) with all elements J(i, m) multiply
by K . Thus we can use the result of [21] to conclude that the
stability condition for general K is given simply by

τK < θ. (6)

This provides us with an important guideline for designing
evolutionary protocols. In order for such a protocol to be
scalable to any delay, the product of the adaptation speed
parameter K and delay τ should be O(1). Thus the larger
the delay is, the slower we should react to the fitness of a
strategy being used.

We note that this type of scaling is quite familiar in other
networking contexts: the internet transport protocol TCP has a
throughput that scales according to 1/RTT (where RTT is the
round trip delay). This scaling is obtained by a self clocking
mechanism based on ACKs that trigger new transmissions.

B. Numerical investigation

Impact of gain parameter Our first numerical experiment
studies the behavior of the replicator dynamics for the case
of one delay unit as a function of K: we check the speed of
convergence and the stability of the replicator dynamics as a
function of the gain parameter K . We consider the following
fixed parameters: we took τ = 1, δ = 2/3, and let K vary
between 0.16 and 15. A unique mixed ESS exists for these
parameters, for which the fraction of the population using H
is 3/4.

The resulting trajectories of the population ratio using the
first strategy, H , as a function of time, is given in Fig. 3 Top.
For K = 0.16, we have stability but the convergence speed
is slow. The other extreme is illustrated for K = 15 which is
seen to be unstable: it oscillates rapidly and the amplitude is
seen to grow slowly.

Impact of delay We now keep K constant and evaluate
the stability varying the delay between 0.016 and 15 time
units. When τ = 0.016 the system is stable but the rate
of convergence to the interior equilibrium is not fast. For
τ = 15 the system is unstable, the solution oscillates around
the equilibrium x∗ = 3/4.

Oscillating Solution and dependence on the initial state.
In Figure 3 (Bottom) we display an oscillatory behavior of the
population ratios as function of time for two different initial
values of x(0) = 0.03 and x(0) = 0.97 with K = 15 and
τ = 1. It corresponds to an unstable regime in which the
ESS is not attained. The trajectories are seen to converge to
periodic ones. The limit trajectories look the same and do not
depend on the initial state except for a dependence through
the phase. In this unstable regime, more than one protocol co-
exist and the ratio of population sizes using the protocols has
oscillations with large amplitude.

Validation of stability conditions. In both Top and Mid-
dle parts of Figure 3, we observe that we have stability
when τK < 4π ≃ 12.56. Indeed, in top part of figure
3, the parameter τ = 1, hence the condition of stability
(6) becomes K < 12.56. This actually confirm that using
K = 0.16, 1, 1.56, 12, the system is stable and using K = 15,
the system is unstable. We observe the same behavior when
keeping K constant and varying the delay τ.
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V. CONCLUDING REMARKS

In this paper, we have studied evolutionary aspects of
protocols in wireless communications using the biological
paradigm of evolutionary games. Wireless networking has
yet other aspects in common with biology, both behavioral,
such as the distributed nature of (possibly non-cooperative)
decision making, as well as physical, such as the crucial
dependence on energy resources and hence the need for
energy conservation policies [12]. We plan to further follow
biologists [7] in studying the combination of these issues
within a dynamic evolutionary framework. We shall study the
advantages and disadvantages for protocols to behave more
(or less) aggressively when there is little energy remaining,
so as to predict the type of protocols that would prevail in
an evolutionary competitive environment. In the full version
of this paper, we give some remarks on cooperation and non-
cooperative behaviors.
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