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Abstract— In this work we consider a relay assisted CDMA
network with a large number of sources and half duplex relays
and a unique destination. We propose two relaying protocols
called direct relaying (DR) and full relaying (FR). By dividing
the relays in groups and adopting different forwarding delays
for each group both protocols introduce diversity which depends
on the number of groups and on the protocol. In DR mode, the
relays forward only signals received directly from the sources. In
FR mode, relays forward both signals received by the sources and
the other relay groups by applying network coding at the physical
layer. This implies a different level of diversity at the destination
for the two schemes. Then, we propose an analytical framework
for the analysis of the achievable rates in such a network, as the
number of nodes and relays become asymptotically large.

I. INTRODUCTION

In contrast to communications over one wireless point-to-
point link, system design for a wireless network is vastly
different due to that the number of users involved is large and
that users can cooperate with each other to increase efficiency.
For its complexity, there are various approaches to system
design for wireless network communications, depending on
different network abstraction models.

The simplest approach treats a wireless network as a col-
lection of independent wireless point-to-point links connecting
all the nodes [1]. Despite its simplicity, abstracting a wireless
network into a set of independent links does not allow a
sophisticated level of cooperation among users which may
leads to potential increase in throughput. The simplest example
is the use of relays (which can be acted by any network
users) to assist communications between two users. A seminal
groundbreaking work in relaying networks is by Cover and
El Gamal [2] in which it considered a single relay scenario.
The capacity of a degraded relay channel is obtained and
is shown achievable by decode-and-forward scheme. For the
general case, compress-and-forward (or quantize-and-forward)
strategy was also proposed. A detailed discussion on various
relaying strategies and their performances can be found in
[3], [4]. While in the relay network, each node has a specific
role – either a sender, a receiver or a relay. In cooperative
communications, we take one step further by realizing that a
node can assume all the three roles at the same time [5], [6],
[7]. The fundamental question to be answered is what will the
maximal throughput (i.e., communication rate per user) can
be achieved subject to a specified total amount of network
resources.

The performance analysis of such networks is very complex
even when the number of nodes is small. It looks unaffordable
for networks with an asymptotically large number of nodes,
shortly referred to as large networks throughout this work.
Nevertheless, some theories developed in physics resulted
very effective in the analysis of large networks. Perculation
theory, developed to analyze the flow of liquids through a
porous body, enabled an insightful analysis of the information
flows through extended or dense ad hoc networks (e.g. [17]).
Random matrix theory, originally developed to investigate the
levels of energies of electrons in atoms, resulted very effective
in the analysis of large networks. In the seminal works [8],
[9], random matrix theory is applied to investigate the spectral
efficiency of large CDMA multiple access networks in case
of additive white Gaussian noise and flat fading channels, re-
spectively. Many works steamed from [8], [9]. As an example,
random matrix theory is applied to analyze complex multicell
CDMA networks, in [10].

In this paper, we aim at studying how relaying can increase
network throughput when the number of senders and relaying
nodes are large. For simplicity, we consider only the spe-
cial case where communications are “unidirectional” – from
senders to a common destination (e.g., a base station in a
cellular network). Instead of deriving the ultimate capacity
per user, we focus on simple strategies and evaluate their
performance. Specifically, we consider two relaying strategies
- the Direct Relaying (DR) strategy and the Full Relaying (FR)
strategy. In the direct relaying strategies, relays decode and
retransmit codewords if received directly from the sources. In
contrast, in the full relaying strategies, relays forward also
codewords received from other relays. We assume that all
nodes share the same channel or band and the sources transmit
continuously. The relays are half duplex and transmit only half
of the time alternating the listening to the channel with the
subsequent transmission of a codeword through a common
channel. The relays are divided in 2L groups and each
group forward codewords with a different delay compared
to the original transmission of the sources. Thanks to these
different forwarding delays the destination receives L+1 and
2L + 1 independent replicas of the same codeword for DR
and FR mode, respectively. In the FR mode, the simultaneous
retransmissions of codewords received directly from sources
or decoded thanks to the forwarding of other groups of relays
is performed by combining of the spread CDMA signals at
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the transmitting relays. This technique is also referred to as
network coding at the physical layer (e.g. [13]) and have been
proposed in [11], [12], [13].

By using random matrix theory, we provide a framework
for the performance analysis of the system in terms of the
achievable rate per user subject to (1) the system is large, i.e.,
both the number of source nodes Ns and the number of relays
Nr are asymptotically large, (2) all sources and relays do not
have complete channel state information, and (3) the spreading
factor N grows with Ns and Nr such that Ns

N → β < ∞
and Nr

Ns
→ γ < ∞. This theoretical framework provides the

achievable rates for the networks adopting the DR and FR
schemes as a function of the noise variance, β, γ, and the
limit distributions of the received powers at the relays and
at the destination. We provide for each node an achievable
rate constrained to the assumption of attainability of such a
rate in all the other nodes. Then, the achievable rate per user
in the network is the minimum among the above mentioned
constrained rates achievable at the relays and the destination.

Additionally, we present a network model as case study to
apply the proposed analytical framework.

II. SYSTEM MODEL

Consider a synchronous mesh network where a large num-
ber of source nodes need to transmit to an access point and
are supported by half duplex relay nodes in their transmission.
Both source and relay nodes transmit synchronously using
code division multiple access (CDMA) scheme with random
spreading as multiple access protocol. Each relay decodes
a subset of the received information and retransmits them
using CDMA with a delay multiple of a codeword duration.
Throughout this work we assume that the channels among all
nodes (source-relay nodes, source-destination nodes and relay-
destination) are flat fading and the signal at each receiving
node (relays or destination) is impaired by white additive
Gaussian noise.

We assume that there are Ns sources, namely Sk, k =
1, . . . Ns transmitting to a destination node D. In addition to
these sources, there are 2L groups of Nr half-duplex relays,
namely Rij for i = 1, . . . , 2L and j = 1, . . . , Nr. Each source
or relay is equipped with a single antenna.

We use t as a time slot index. Source nodes transmit for
all time slot t while a relay Rij will transmit at time slot t
only when t − i is even. The codeword transmitted by Sk at
t is denoted as ck(t). The mth symbol in ck(t) is denoted
as ckm(t). The transmitted symbols ckm(t) are assumed to be
zero mean and unit variance random variables independent and
identically distributed (i.i.d.) for all k, m and t. Each symbol
ckm(t) will further be spreaded into a chip-level sequence.
Specifically, the transmitted chip level sequence ukm(t) for
the symbol ckm(t) by Sk is

ukm(t) =
√

Pksk(t)ckm(t) (1)

where Pk is the transmitted power by user k and sk(t) is a
N × 1 spreading chip sequence vector used by Sk at time t.

In this paper, we will consider three protocols - (i) the
baseline model, (ii) the direct relaying (DR) model and (iii)

the full relaying (FR) model. The differences among the three
schemes are mainly on how relays assist transmission from
the sources.

In the baseline model, relays did not transmit at all. In the
DR protocol, relays decode and retransmit only codewords
received directly from the sources, while in the FR protocol,
relays also decode and forward codewords received from other
relays. To precisely describe the three protocols, we first need
to make a few definitions.

Let Uij be the set of source codewords that the relay Rij

will decode and retransmit. We assume that Uij is determined
on the fly. Further details on how Uij is determined will be
given by the end of the section.

Recall that a relay Rij can listen to source transmission
while it is not transmitting (i.e., when t− i is odd). Suppose
that i is odd. Then the relay Rij listens when t is even. In
particular, it can decode ck(t′) when t′ is even. Similarly, when
i is even, the relay Rij can listen to the source transmission
of ck(t′) when t′ is odd.

In the DR protocol, the relay will only retransmit codewords
that it hears from the source directly. Specifically, for a relay
Rij where t− i is even, it will retransmit the codeword ck(t−
i−δ(i)) using a spreading chip sequence s

(0)
ik (t) where δ(i) =

1 if i is even and equals zero otherwise. Note that the spreading
chip sequence used by Rij depends only on i. Therefore, the
chip-level sequence u

(0)
ijm(t) transmitted by Rij for the mth

symbol is

u
(0)
ijm(t) =

∑

k∈Uij

√
P

(0)
ijks

(0)
ik (t)ckm(t− i− δ(i)) (2)

where P
(0)
ijk is the power used by Rij to retransmit codewords

received from Sk.
On the other hand in the FR model, a relay Rij will not

only retransmit ck(t− i− δ(i)) but also ck(t− i− δ(i)− 1)
which is obtained by listening to other relays’ transmission.
Let

u
(1)
ijm(t) =

∑

k∈Uij

√
P

(1)
ijks

(1)
ik (t)ckm(t− i− δ(i)− 1) (3)

where P
(1)
ijk is the power used by Rij to retransmit the

codeword ck(t− i− δ(i)− 1) and s
(1)
ik (t) is a spreading chip

sequence used by a relay at group i for codewords from Sk.
The chip-level sequence transmitted by the relay in the FR

mode for the mth symbol is

uijm(t) = u
(0)
ijm(t) + u

(1)
ijm(t). (4)

when t− i is even and is equal to zero otherwise.
To simplify notations, we use two parameters p and q to

identify the three schemes. In the baseline model (i.e., no
cooperation from relays), we let q = 0. In the DR model,
we define q = 1 and p = 0 while both p and q are 1 in the
FR mode.

Using the convention, the signal transmitted by relays are
as follows:

uijm(t) = qu
(0)
ijm(t) + qpu

(1)
ijm(t) (5)



The transmission at the relays is illustrated in Figure 1 for
both DR and FR mode. There we focus on the transmission
of a user k and the forwarding of its information by relays
for L = 2, i.e. four groups of relays in DR and FR mode. In
particular, for each group we consider a relay Rij such that
k ∈ Uij and we show the forwarded information from user k
in each frame.

Let rm(t) be the received chip-level sequence at the sink
D for the mth symbol at t. Then

rm(t) =
∑

k

akukm(t) +
∑

ij

aijuijm(t) + wm(t). (6)

where ak and aij are respectively channel gains from Sk and
Rij to the sink, and wm(t) is the Gaussian noise.

Similarly, let ruv
m (t) be the received sequence for the mth

symbol by the relay Ruv at time t. Then,

ruv
m (t) =

∑

k

auv
k ukm(t) +

∑

ij

auv
ij uijm(t) + w(uv)

m (t), (7)

where auv
k and auv

ij are respectively the channel gains from

source Sk and the relay Rij to Ruv and w
(uv)
m (t) is the

Gaussian noise.
Let S0(t) = (s1(t), s2(t). . . . sNs(t)) be the N×Ns source

spreading matrix whose k-th column is sk(t). Similarly, for
s = 1, 2, let S

(s)
i (t) be (s(s)

i1 (t), s(s)
i2 (t) . . . s

(s)
iNs

(t)) be N ×
Ns relay spreading matrix for group i whose k-th column is
s
(s)
ik (t).
By rearranging terms, (6) can be rewritten as

rm(t) =
2L∑

i=1
i+t even

qS
(0)
i (t)H(0)

i c∗m(t− i− δ(i))

+
2L∑

i=1
i+t even

pqS
(1)
i (t)H(1)

i c∗,m(t− i− δ(i)− 1)

+ S0(t)H0c∗m(t) + wm(t). (8)

where c∗m(t) , [c1m(t), · · · , cNsm(t)]>, and H0, H
(0)
i and

H
(1)
i are Ns×Ns diagonal matrices whose respective diagonal

entries h0k, h
(0)
ik and h

(1)
ik are defined by

h0k =
√

Pkak (9)

h
(s)
ik =

Nr∑

j=1
Sk∈Uij

√
P

(s)
ijkaij . (10)

Similarly, (7) can be rewritten as

ruv
m (t) = q

2L∑

i=1
i+t even

S
(0)
i (t)H(0,uv)

i c∗m(t− i− δ(i))

+ pq
2L∑

i=1
i+t even

S
(1)
i (t)H(1,uv)

i c∗,m(t−i−δ(i)−1)

+ S0(t)Huv
0 c∗m(t) + w(uv)

m (t) (11)

where Huv
0 , H

(0,uv)
i and H

(1,uv)
i are Ns × Ns diagonal

matrices whose respective diagonal entries huv
0k , h

(0,uv)
ik and

h
(1,uv)
ik are defined by

h
(uv)
0k =

√
Pkauv

k (12)

h
(s,uv)
ik =

Nr∑

j=1
Sk∈Uij

√
P

(s)
ijkauv

ij . (13)

III. LARGE SYSTEM ANALYSIS

In this section we investigate the network performance as
the system size grows large. More specifically, we assume that
the spreading factor N, the number of users and relays Ns and
Nr tend to infinity with asymptotic constant ratios, i.e. Ns

N →
β and Nr

Ns
→ γ. For this asymptotic analysis we assume that

the transmitted symbols ckm(t) are Gaussian i.i.d. distributed
with zero mean and unit variance. The spreading sequences
are independent over all sources, relays, and codewords with
zero mean elements of variance 1/N.

The achievable rate for the baseline system model in as-
ymptotic conditions is in [9]. In order to derive the achievable
rates for the DR and FR systems we use the results in [15] and
[16] to derive the asymptotic SINR at the output of the MMSE
detector. The fundamental results on the relation between
MMSE and mutual information in a Gaussian vector channel
provided in [14] are then applied to derive an achievable sum
rate at the relays and the destination.

At the relay Ruv, only codewords transmitted by the subset
of sources Uuv, with cardinality |Uuv| = ϕNs, is decoded. We
assume that the receiver ignores the interference structure due
to codewords which are not decoded and considers it as an
additional component of the additive Gaussian noise. This is
equivalent to consider the following system

ruv
m (t) =

2L∑

i=1
i+t even

pqS
(0)

i (t)H
(0,uv)

i c∗m(t− i− δ(i))

+
2L∑

i=1
i+t even

pqS
(1)

i (t)H
(1,uv)

i c∗m(t− i− δ(i))

+ S0(t)H
uv

0 c∗m(t) + w(uv)
m (t) (14)

where S
(0)

i (t), H
(0,uv)

i and c∗m are obtained by suppress-
ing columns, rows and columns and elements from S

(0)
i (t),

H
(0,uv)
i , and c∗m, respectively. The vector w(uv)

m (t) is the
white Gaussian noise with variance σ2 equal to the sum of
the interference variance and the noise variance.

The following theorem provides the SINR for the estimate
of a symbol ckm(`) at the output of a MMSE filter as
N, Ns, Nr → +∞ with constant ratios. We assume that the
relay has an observation window unlimited in the past and
limited to the frame t ≤ `.

Theorem 1 Let Ruv be a relay and u be odd. Let the
received powers at the destination |h0k|2, and |h(s)

ik |2, for
i = 1, . . . 2L, s = 0, 1 converge to deterministic marginal
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Fig. 1. Transmitted information at the relays in the DR and FR modes for L = 2 and t even.

and joint distribution functions F0(λ0), F
(s)
i (λ(s)

i ), and F (λ)
respectively, when |Uuv| = ϕNs → ∞. Then, given the
received powers |h(uv)

0k |2, |h(s,uv)
2i,k |2, i = 1, . . . L and s = 0, 1

for ckm(`), and the variance of the white noise σ2, the SINR
of ckm(`) at the output of a MMSE filter for a system in (14)
and t ≥ ` converges in probability as N, Ns, Nr → ∞ with
Ns

N → β to a deterministic limit

lim
Ns,N,Nr→∞

Ns
N →β, Nr

Ns
→γ

SINRk(`) =





p
∑L

i=1 |h(1,uv)
2i,k |2ψ(`− 2i)

+|h(uv)
k |2ψ(`) ` even,

p
∑L

i=1 |h(0,uv)
2i,k |2ψ−1(`−2i+1)

` odd.

where p = 0 for DR systems and p = 1 for FR systems, and
ψ(u) is obtained as positive solution of the infinite system of

fixed point equations1

ψ−1(q) = σ2+ϕβ

∫
λ

(uv)
0 dF (λ)

1+λ
(uv)
0 ψ(q)+p

∑L
i=1λ

(1,uv)
2i ψ(q + 2i)

+ ϕβp
L∑

i=1

(A(0)
i + A

(1)
i ) (15)

where q is an integer in −∞ < q ≤ t,

A
(0)
i =

∫
λ

(0,uv)
2i d F (λ)

1 +
∑L

j=1 λ
(0,uv)
2j ψ(q + 2(i− j))

and

A
(1)
i =

∫
λ

(1,uv)
2i dF (λ)

1+λ
(uv)
0 ψ(q + 2i)+

∑L
j=1λ

(1,uv)
2j ψ(q + 2(i− j))

.

1Note that for the DR protocol the infinite system of equations reduces (15)
to a single fixed point equation as the multiple access channel.



By convention, ψ(q) = 0 for q > t.
Furthermore,

lim
`→+∞

Ns,N,Nr→∞
Ns
N →β, Nr

Ns
→γ

SINRk(−2`− 1) = p
L∑

i=1

|h(0,uv)
2i,k |2ψ

and

lim
`→+∞

Ns,N,Nr→∞
Ns
N →β, Nr

Ns
→γ

SINRk(−2`) =

(
|h(uv)

0k |2 + p
L∑

i=1

|h(1,uv)
2i,k |2

)
ψ

where ψ is the unique nonnegative solution of the fixed point
equation

ψ−1 = σ2 + ϕβ

∫
λ

(uv)
0 + p

∑L
i=1 λ

(1,uv)
2i dF (λ)

1 +
(
λ

(uv)
0 + p

∑L
j=1 λ

(1,uv)
2j

)
ψ

+ pϕβ

∫ ∑L
i=1 λ

(0,uv)
2i dF (λ)

1 +
∑L

i=1 λ
(0,uv)
2i ψ

. (16)

For the system in (7) with finite number of user and finite
observation window (−n, t), the mutual information per chip
can be obtained from the results on the vector channel in [14]
as

I(uv)(t) =
t∑

`=n

φNs∑

k=1

∫ σ−2

0

SINRuv
k (`, ρ)d ρ

ρ(1 + SINRuv
k (`, ρ))

(17)

where SINRuv
k (`, ρ) is the SINR of symbol ck,` at the output

of the MMSE detector as a function of ρ = σ−2, being σ2 the
noise variance in the system.

The mutual information per chip and per channel use is
given by

I(uv)
c (t) =

I(uv)(t)
(t + n + 1)N

(18)

and

I(uv)
u (t) =





2I(uv)(t)
ϕNs(t + n + 1)

for DR,

I(uv)(t)
ϕNs(t + n + 1)

for FR
(19)

respectively2.
The following corollary provides the the mutual information

in the asymptotic limit when the system size grow large and
the observation window is unlimited in the past, i.e. n → +∞.

Corollary 1 Assume that the conditions in Theorem 1 are
satisfied. When the observation window (−n, t) is unlimited
in the left, i.e. n → +∞, and N, Ns, Nr tend to infinity
with asymptotically constant ratio, i.e. Ns

N → β > 0, and

2The factor 2 in the expression of the capacity per chip takes into account
the fact that the channel is used only half of the time. The factor 2 in the
expression of the capacity per channel use in the DR case takes into account
the fact that only half of the codewords are decoded.

Nr

Ns
→ γ > 0, then the mutual information per chip of the

channel (7) is given by

I(uv)
c (p) = lim

n,N,Ns,Nr→+∞
Ns
N →β, Nr

Ns
→γ

Ic(t)

=
ϕβ

2

∫ σ−2

0

dρ

ρ

∫ 1∑
s=0

SINR(s)(λ, ρ)d F (λ)

1 + SINR(s)(λ, ρ)
(20)

where SINR(0)(λ, ρ) = p(
∑L

i=1 λ
(0,uv)
2i )ψ(ρ),

SINR(1)(λ, ρ) = (λ0 + p
∑L

i=1 λ
(1,uv)
2i )ψ(ρ), and ψ(ρ)

is solution to the fixed point equation (16) for a noise
variance ρ−1, p = 0 in DR mode and p = 1 in FR mode. The
asymptotic mutual information per channel use I

(uv)
u follows

from the relation

I(uv)
u =





2
ϕβ

I
(uv)
c (0) for DR,

1
ϕβ

I
(uv)
c (1) for FR.

(21)

Similar equations hold when the relay Ruv belongs to an even
group.

Now we consider the performance of the whole system
at the destination. In this case we can assume an unlimited
observation window in both directions of the time axis. This
simplify considerably the analysis of the system performance
in terms of the SINR provided in the following theorem.

Theorem 2 Consider the system in (6) with t ∈ (−∞, +∞).
Let the received powers at the destination |h0k|2, and |h(s)

ik |2,
for i = 1, . . . 2L, s = 0, 1 converge to deterministic mar-
ginal and joint distribution functions F0(λ0), F

(s)
i (λ(s)

i ), and
F (λ) respectively, when Ns, Nr → ∞. Furthermore, let
µ

(s)
d =

∑L
i=1 λs

2i−d, s, d = 0, 1 be random variables with

probability distribution functions FM (µ(s)
d ). Denote by FM (µ)

the joint distribution of the multivariate random variable µ =
(λ0, µ

(0)
0 , µ

(1)
0 , µ

(0)
1 , µ

(1)
1 ). Then, given the received powers

|h0k|2, and |h(s)
ik |2 for user k and the variance σ2 of the

Gaussian white noise at the receiver, the SINR of ckm(`) at
the output of a MMSE filter converges to a deterministic limit
as N,Ns, Nr → +∞ with Ns

N → β and Nr

Ns
→ γ

lim
N,Ns,Nr→+∞
Ns
N →β, Nr

Ns
→γ

SINRk(`) =





(|hk|2 + qp
∑L

i=1 |h(1)
2i,k|2)ψ

+q
∑L

i=1 |h(0)
2i−1,k|2θ ` even,

(|hk|2 + qp
∑L

i=1 |h(1)
2i−1,k|2)θ

+q
∑L

i=1 |h(0)
2i−1,k|2ψ ` odd,

(22)
where ψ and θ are the unique positive solutions to the system



of two fixed point equations

ψ−1 = σ2 + β

∫
(λ0 + pµ

(1)
0 )dF (µ)

1 + (λ0 + pµ
(1)
0 )ψ + µ

(0)
1 θ

+ β

∫
µ

(0)
0 dF (µ)

1 + (λ0 + pµ
(1)
1 )θ + µ

(0)
0 ψ

θ−1 = σ2 + β

∫
(λ0 + pµ

(1)
1 )dF (µ)

1 + (λ0 + pµ
(1)
1 )θ + µ

(0)
0 ψ

+ β

∫
µ

(0)
1 dF (µ)

1 + (λ0 + pµ
(1)
0 )ψ + µ

(0)
1 θ

(23)

If
FM (µs

1) = FM (µs
0) s = 0, 1 (24)

then the limit (22) reduces to

lim
N,Ns,Nr→+∞
Ns
N →β, Nr

Ns
→γ

SINRk(`) =





ψ
(∑L

i=1q(p|h(1)
2i,k|2+|h(0)

2i−1,k|2)
+|h0k|2

)
` even,

ψ
(∑L

i=1q(p|h(1)
2i−1,k|2+|h(0)

2i−1,k|2)
+|h0k|2

)
` odd,

(25)
with ψ solution of the fixed point equation

ψ−1 = σ2 + 2β

∫
(λ0 + µ

(0)
d + pµ

(1)
d )dF (µ)

1 + (λ0 + µ
(0)
d + pµ

(1)
d )ψ

(26)

If condition (24) is satisfied, the system at the destination is
equivalent to a multiple access channel with distribution of
the received powers equal to the distribution of the sum of the
received powers from the source and the different groups of
relays.

As for the relays, the results in [14] are applied to derive
the mutual information at the destination of this relay assisted
network.

Corollary 2 Assume that the conditions of Theorem 2 are
satisfied. Then, the mutual information per chip of the channel
(6) as N, Ns, Nr →∞ with Ns

N → β and Nr

Ns
→ γ is

Ic(p) =
β

2

∫ ρ

0

1
ρ

∫
((λ0 + qpµ

(1)
0 )ψ(ρ) + qµ

(0)
1 θ(ρ))dF (µ)

1 + ((λ0 + qpµ
(1)
0 )ψ(ρ) + qµ

(0)
1 θ(ρ))

+
β

2

∫ ρ

0

1
ρ

∫
((λ0 + qpµ

(1)
1 )θ(ρ) + qµ

(0)
0 θ(ρ))dF (µ)

1 + ((λ0 + qpµ
(1)
1 )θ(ρ) + qµ

(0)
0 ψ(ρ))

(27)

with θ(ρ) and ψ(ρ) solutions of the system (23) for a noise
level σ2 = ρ−1, q = 0 for the multiple access channel and
q = 1 otherwise. Finally, p = 0 or p = 1 in DR mode or FD
mode respectively.

If condition (24) is satisfied the mutual information per chip
is given by

Ic = β

∫ ρ

0

1
ρ

∫
(λ0 + qpµ

(1)
d + qµ

(0)
d )ψ(ρ)dF (µ)

1 + (λ0 + qpµ
(1)
d + qµ

(0)
d )ψ(ρ)

(28)

where ψ(ρ) is the solution to the fixed point equation (26) for
a noise level σ2 = ρ−1.

Finally, the mutual information per channel use is

Iu(p) = β−1Ic(p)

both for DR and FR relaying schemes.

Then, the achievable rate per channel use of the network is
given by the minimum between the corresponding achievable
rate at the destination and at all the relays.
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Flat Fading on the Spectral Efficiency of CDMA,” IEEE Trans. Inf.
Theory, vol. 47, no. 4, pp. 1302–1327, Mar 2001.

[10] B. M. Zaidel and S. Shamai and S. Verdú, “Multicell Uplink Spectral Ef-
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