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Abstract-In this paper, we propose a new approach to 
find a static solution for a multicast network problem.  Our 
work relates the existence of a static network code to 
minimal subtree graphs of a given network.  For a given 
multicast network there are different solutions.  Sometimes 
some links of a network may be removed and then we will 
be encountered with link failure in the network.  Therefore, 
to choose a specific satisfactory network code solution 
among different options, we must see how much the 
network code adds the network robustness against link 
failures.  In this paper we extend the definition of the 
minimal subtree graph and replace it with a new definition 
of minimal subgraph and show that the static network code 
that is robust against all of solvable link failure patterns is 
a code that comes from solving all minimal subgraphs of a 
given network simultaneously. 

Index Terms-Network coding, multicast, robustness, 
minimal subtree graph, link failure 
 

I. INTRODUCTION 

Network coding first proposed by Ahlswede, et. al. [1] 
has been improved to be an effective way to achieve the 
maximum flow in multicast networks, when one source 
node wants to transmit information to multiple sink 
nodes. An algebraic framework for network coding was 
developed by Koetter and Medard in [2] who translated 
the network code design to an algebraic problem. 

 In [3] Fragouli and Soljanin defined the minimal 
subtree graph on the basis of information flow 
decomposition which makes the analysis of network 
coding problem easier.  Their approach is partitioning the 
network graph into subgraphs through which the same 
information flows.  Processing, i.e., combining different 
flows, happens only at the border of these subgraphs, and 
the structure of the inside part of subgraphs does not play 
any role, and it is sufficient to know how subgraphs are 
connected and which receivers observe the information 
flow in each subgraph.  Thus, it is possible to consider 
each subgraph as a new node and retain only the links 
connected to it.  They showed that each subgraph is a tree  
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 with a source node or a coding point in its root.  
Therefore, they named the resulted graph as a subtree 
graph.  Also they deleted some unnecessary parts of the 
subtree graph and retain the minimal subtree graph in the 
sense that the multicast property is hold.  In this paper we 
first extend their work and then use it for finding a static 
network code which is robust [4] against all solvable link 
failure patterns. 

For a given multicast network [5], [6] there are 
different coding solutions.  Sometimes some links of a 
network may be removed by failure and then we will be 
encountered with link failure in the network.  Therefore, 
one of the objectives of selecting a specific network code 
solution among different options is to maximize the 
robustness provided by this solution.  We are interested 
in knowing the situation of every links of the network 
graph, however in the definition proposed for minimal 
subtree graph, lots of links and nodes of network may 
become invisible because we put them in a new node and 
there will not be any access to them.  So we define 
minimal subgraph, which is an extension of minimal 
subtree graph [3].  This enables us to reduce the 
dimensionality of a network inspite of having enough 
knowledge about each network link situation from the 
failure point of view.  Thus, we can see all of the links of 
the network graph associated to the desired multicast 
process, even the links in one subtree with the same 
information flow.  This allows us to know which of the 
network links may fail without loosing the multicast 
property [3] and the network coding problem is still 
solvable; by comparing the network which has 
encountered link failure with minimal subgraphs of the 
network.  

 In this work we propose a new minimal subgraph, and 
show that the static network code which is robust against 
all of solvable link failure patterns is a code obtained 
through solving all minimal subgraphs of a given 
network, simultaneously.  
 

II. PROBLEM FORMULATION 
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A network may be represented mathematically by a 
directed graph G= (V, E).  Our work is restricted to the 
multicast network problem in which a source node s is 
connected to h nodes s1, s2 ,…, sh with h links with unit 
capacity so that it seems that the network has h unit rate 
information sources s1, s2,…, sh .  In the rest of this paper 
instead of the source node s, we denote these h secondary 
sources as the h unit rate information sources of the 
network unless it is specified.  We assume that all of the 
network links have unit capacity.  Also the network has N 
receivers R1, R2,…, RN ; and the number of links of the 
min-cut between the sources and each receiver node is h 
[7].  The h sources multicast information simultaneously 
to all N receivers at rate h.  Our work is restricted to 
acyclic delay-free networks.  As we are concerned with 
the multicast problem there are lots of options for 
choosing a set of h-link-disjoint paths between the h 
source nodes and each receiver Rj.  This variety of 
options affects the complexity of the network code.  Our 
interest is arbitrary choosing subgraph G’  of G 
consisting hN paths (Si ,Rj) ,1≤i≤h , 1≤j≤N ; so that the 
other parts of the network graph G which don’t involve 
in the subgraph G’ don’t play any role in solving the 
problem.  

This approach to network coding has advantages such 
as reduction of dimensionality of the network code 
design problem, bounding the network code alphabet size 
[2], [8]; and finding the coding nodes in which the 
network coding operation is necessary [3], [9], [10]; that 
makes the analysis of dense and complicated networks 
easier.  

Our work represents a new application of minimal 
subgraph and also opens a new window for obtaining 
robust network code.  A practical challenge which 
sometimes happens is that links in a network may fail.  
Then we encounter to the following questions: 

1) Under which failure patterns a network coding 
problem is still solvable? 

2) Is there any network coding solution which resists 
against all of the solvable failure patterns? 

3) How can we find that solution? 
Question 1 will be answered by a definition and the 

second is answered by Koetter and Medard [2].  For the 
3rd question, we propose a new way for finding the 
desired solution, which is more rapid and less 
complicated than that proposed in [2].  

 
III. ROBUST NETWORK CODE VIA SIMULTANEOUS 

SOLVING OF MINIMAL SUBGRAPHS 
We extend the definition of minimal subtree graph [3] 

to minimal subgraph in order to study the network 
robustness.  Here we represent the algorithm IV.1 
proposed in [3] but with extending the result to minimal 
subgraph. 

Algorithm 1 
Minimal subgraph ( (Si ,Rj) , 1 ≤ i ≤ h , 1 ≤ j ≤ N) ) 
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return γ . 
 
   Denoted by {(Si , Rj)  , 1 ≤ i ≤ h} a set of h-link-disjoint 
paths from the sources to the receiver Rj.  Since, for a 
network code, we have eventually to describe which 
operations each node in G’ has to perform on its inputs, it 
is more clear to work with the graph γ = U

Nj
hi

ji RSL

≤≤
≤≤

1
1

),( , 

where, L(Si ,Rj ) denotes the line graph of the path         
(Si , Rj).  That is, L(Si ,Rj ) is the graph with vertex set 
E(Si ,Rj ) in which two vertices are joined if and only if 
they are adjacent as links in (Si , Rj).  Also we assume 
that the line graph contains a node corresponding to each 
of the h sources.  We refer to these nodes as source 
nodes.  Each node with a single input link merely 
forwards its input symbol to its output links.  Each node 
with two or more input links performs a coding operation 
i.e. linear combining of its input symbols, and forwards 
the result to its output links.  Such nodes are named as 
coding points.  

A link failure pattern can be identified with a binary 
vector ƒ of length |E| such that each position in ƒ is 
associated with one link in G.  If a link fails we assume 
that the corresponding value in ƒ equals one, otherwise 
the entry in ƒ corresponding to the link equals zero.  
Given a network G and a link failure pattern ƒ it is 
straightforward to consider the network Gf obtained by 
deleting the failed links.  We call the link failure pattern 
ƒ solvable if the network Gf is still solvable.  We are 
interested in static solutions, where the network is 
oblivious to the particular failure pattern.  As described 
in [2] we can formulate our linear network model by a 
transfer matrix M = [ ji,λ ] describing the relationship 
between the input and the output vectors of the network 
whose coefficients ji,λ  are elements of a finite field; i.e. 
M is the system transfer  matrix of the linear network 
coding problem.  

We say that a network solution is static under a set F of 
link failure patterns if there exist solutions for the 



network under any link failure pattern ƒ∈F, with the 
same elements ji,λ .  

Lemma 1 
1) For a minimal subgraph Gminimal-i of the graph G, 

there exists a set Fi of failure patterns, so that the 
obtained network code by solving Gminimal-i , is a static 
code for all graphs Gf ( ƒ∈Fi ).  

2) Suppose that there exist L minimal subgraphs for a 
given network graph G.  Corresponding to each minimal 
subgraph Gminimal-i , there exists a set Fi of failure patterns 
so that the obtained network code through solving 
Gminimal-i is a static code for all graphs Gf (ƒ∈Fi ).  Thus 
we have sets F1, F2,…, FL .  

Proof: 
1) Let Mƒ and Mminimal-i be the system transfer matrix of 

the network graphs Gf  and Gminimal-i , respectively, and 
the set Fi consists of all solvable link failure patterns, 
such that Gminimal-i is a subgraph of every Gf .  Therefore 
owing to the existence of a solution for Gminimal-i , there 
will exist a solution for Gf which involves Gminimal-i plus 
some other links of the network graph G.  That is why we 
can choose the entries of Mƒ belonging  to those links 
which are common in both Gf  and Gminimal-i equal to the 
entries of  Mminimal-i and the entries belonging to those 
other links in matrix Mƒ, equal to zero (This is the same 
as choosing local encoding kernels of those other links, 
equal to zero [5] ).  Therefore the network code solution 
for Gminimal-i would be a network code solution for Gƒ.  

2) Follows from 1.  

Theorem 1 
If F is a set consisting of all solvable link failure 

patterns ƒ; for every solvable network Gf , where ƒ∈F, 
there will exist at least a minimal subgraph such that the 
solution for that minimal subgraph is also a solution for 
Gf.  

Proof: 
Gf  is a graph which is obtained by deleting the failing 

links correspond to the failure pattern ƒ, and is still 
solvable.  Therefore, it has the multicast property.  Thus, 
we encounter one of the two situations: 

1) Gf  is exactly one of those L minimal subgraphs and 
then it would be solvable and the theorem is proved.  

2) At least one of those L minimal subgraphs, is a 
subgraph of Gf .  Since the graph Gf  is obtained by 
deleting some links from graph G and has still the 
multicast property; therefore by deleting some other links 
of it (until removing any more link would violate the 
multicast property), we obtain a minimal subgraph.  
Therefore, if at least one of those L minimal subgraph say 
Gminimal-i is a subgraph of Gf , owing to the existence of a 
solution for Gminimal-i , there will exist a solution for Gf 
which involves Gminimal-i plus some other links of the 
network graph G.  That is why we can choose the entries 

of Mƒ belonging  to those links which are common in 
both Gf  and Gminimal-i equal to the entries of  Mminimal-i and 
the entries belonging to those other links in matrix Mƒ, 
equal to zero (This is the same as choosing local 
encoding kernels of those other links, equal to zero [5] ).  

A direct consequence of the above theorem is given in 
the following corollary.  

Corollary 
    Let network G be given and have L minimal 
subgraphs.  For every minimal subgraph Gminimal-i , there 
exists a set Fi consisting some link failure patterns ƒ, 

such that FF
L

i
i =

=
U

1

.  In other words for every link failure 

pattern ƒ (ƒ∈F) there exists a set Fi corresponds to 
Gminimal-i , where ƒ∈ Fi .  

Proof: 
    We have shown in theorem 1 that, for every link 
failure pattern ƒ (ƒ∈F), there exists a minimal subgraph 
Gminimal-i (where the solution of Gminimal-i is also a solution 
for Gf ); and have shown in lemma 1 that, corresponding 
to every minimal subgraph, there exists a set Fi of some 
failure patterns.  Therefore for every solvable link failure 
pattern ƒ, there exists a set Fi , such that ƒ∈ Fi .  For this 

reason it is obvious that FF
L

i
i =

=
U

1

.   

Lemma 2 ( [2] ) 
Let ₣[ X1, X2,…, Xn ] be the ring of polynomials over 

an infinite field ₣ in variables X1, X2,…, Xn.  For any 
nonzero element f∈₣[ X1, X2,…, Xn ] there exists an 
infinite set of n-tuples  (x1, x2,…, xn) ∈₣n such that f(x1, 
x2, …, xn) ≠ 0 .  

Theorem 2 
    Let a linear network code and a set F of all solvable 
link failure patterns be given.  There exists a common, 
static solution to the network problem Gf  for all ƒ∈F 
obtained by solving equation 0)( ≠λg , where 

∏∏
= =

=
N

j

L

i
jfi

gg
1 1

, )()( λλ ; and ƒi is a solvable link failure 

pattern such that 
ifG = Gminimal-i .  

Proof:  
    Let G has L minimal subgraph Gminimal-i and i=1, 2,…, 
L .  For every Gminimal-i there exist a set Fi of some link 
failure patterns, such that the solution of Gminimal-i  is so 
accepted for Gf ( ƒ∈ Fi ).  Let )(, λjfi

g  be determinant of 
transfer matrix representing the connection between 
source node s and receiver node Rj , after that the failure 



S1 S2 

A 

H 

C 

G 

I 

E D 

B 

F R1 

R2 

Fig. 1. Network with two unit rate 
sources and three receivers. 
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pattern ƒi is employed to network graph G.  we consider 

the product ∏∏
= =

=
N

j

L

i
jfi

gg
1 1

, )()( λλ .  By lemma 2, we can 

find an assignment of numbers to λ such that )(λg and 
hence every single determinant )(, λjfi

g  evaluate to a 
nonzero value simultaneously.  It follows that regardless 
of error pattern in F the basic multicast requirements are 
satisfied.  Therefore this solution is a static solution for 
all solvable link failure patterns.                  

Inspiring the above theorem, here we bring an 
algorithm for finding a static network code.  Let a 
network G, with source node s and receiver nodes R1, 
R2,…, RN ; and a set F of all solvable link failure patterns 
be given.  

Algorithm 2: A static network code 
Step 1) Find all L minimal subgraphs corresponding to 

the given network G.  
Step 2) each minimal subgraph Gminimal-i corresponds to 

a link failure pattern ƒi such that Gminimal-i = 
ifG .  find ƒi 

where i=1, 2, …, L .  

    Step 3) Perform the product ∏∏
= =

=
N

j

L

i
jfi

gg
1 1

, )()( λλ , 

where )(, λjfi
g is the determinant of transfer matrix 

representing the connection between source node s and 
receiver node Rj , after the failure pattern ƒi is employed 
to G.  

Step 4) Solve the equation 0)( ≠λg .  The obtained 
coefficients ji,λ  perform the desired static network code 
solution for the network graph G, which is robust against 
all solvable link failure patterns.  
   Using algorithm 2 for finding a static network code 
solution is faster and less complicated than the way 
proposed by Koetter and Medard [2].  They used the 

product ∏∏
= =

=
N

j

F

i
jfi

gg
1

||

1
, )()( λλ at equation 0)( ≠λg , to 

obtain the static network code solution. But as we 
mentioned before, we use the product 

∏∏
= =

=
N

j

L

i
jfi

gg
1 1

, )()( λλ at equation 0)( ≠λg .             

   By comparing   these two different )(λg  it is easy to see 
that we reduced the number of multiplication operations 
from |F| to L which is less than |F|. Hence we reduced the 
number of multiplication operations by the ratio L / |F| . 

Based on this reason, our algorithm needs finite fields 
with smaller size than Koetter and Medard’s.  Because 
the coefficients vector λ which comes from 
solving 0)( ≠λg , must satisfy every equation 0)(, ≠λjfi

g  

for different i’s and j’s simultaneously, where, the 
number of equations in our algorithm is less than Koetter 
and Medard’s. Hence for finding convenient 
coefficients ji,λ , we must search a finite field with 
smaller size than the Koetter and Medard's finite fields. 

In addition, due to the reduction of the multiplications 
number, the coefficients ji,λ  which are chosen from such 
a field must satisfy less equations )(, λjfi

g  for all i’s and 
j’s simultaneously, which leads to a faster method than 
the way proposed in [2]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To illustrate the above issue, we consider the example 

of a network with two sources and three receivers in 
Fig.1. For this network graph there is nine solvable link 
failure patterns, i.e. |F|=9. But the number of minimal 
subgraphs is three.     

 
IV. CONCLUSION 

In this paper, we introduced a faster method with lower 
complexity for finding a static network code resistant 
against all solvable link failure patterns of a network.  
We have shown that the static network code solution can 
be obtained by solving all minimal subgraphs of a given 
network, simultaneously.  
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