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Abstract—Code Division Multiple Access (CDMA) in which the
signature code assignment to users contains a random element
has recently become a cornerstone of CDMA research. The
random element in the construction is particularly attractive in
that it provides robustness and flexibility in application, whilst
not making significant sacrifices in terms of multiuser efficiency.
We present results for sparse random codes of two types, with and
without modulation. Simple microscopic consideration on system
samples would suggest large differences in the phase space of the
two models, but we demonstrate that the thermodynamic results
and metastable states are equivalent. This may have consequences
for developing algorithmic methods to escape metastable states,
thus improving decoding performance.

I. INTRODUCTION

The area of multiuser communications is one of great inter-
est from both theoretical and engineering perspectives [Ver98].
Code Division Multiple Access (CDMA) is a particular
method for allowing multiple users to access channel resources
in an efficient and robust manner, and plays an important role
in the current standards for allocating channel resources in
wireless communications. CDMA utilises channel resources
highly efficiently by allowing many users to transmit on much
of the bandwidth simultaneously, each transmission being
encoded with a user specific signature code. Disentangling the
information in the channel is possible by using the properties
of these codes and much of the focus in CDMA research is
on developing efficient codes and decoding methods.

A typical CDMA paradigm is that bandwidth is broken
into N discrete Time-Frequency blocks (chips) with each
of K users being assigned a user code (~sk) known by the
base station, the set of all user codes being s (the code).
The user code gives the amplitude and phase by which to
modulate transmission of the scalar symbol on each chip. The
signal (~y) received on N chips by the base station is then
an interfering (additive) combination of the users’ modulated
symbols corrupted during transmission by a fading factor Fkµ

and some signal noise (νµ). Assuming perfect synchronisation
of the chips the symbols received on each chip are independent
and given by

yµ = νµ +

K
∑

k=1

bkFkµskµ . (1)

We focus on a standard channel type (BIAWGN): the Additive
White Gaussian Noise channel (AWGN), employing Binary
Phase Shift Keying (BPSK). The following parameterisations
are assumed: the scalar symbol sent by user k is a bit bk = ±1
with probability Pbk

(b) = 1
2 ; the noise is Gaussian with zero

mean and variance σ2
0 for all chips; prefect power control

applies so that the fading factor Fkµ = 1; each code element
sµk = ±A, where A is the amplitude of the transmission
by user k on chip µ. Generalisations of the model most
often consider the requirement for perfect synchronisation and
power control. Real CDMA applications also have to deal with
idiosynchracies in hardware and environmental conditions not
easy to treat in a generalised analysis, this has not prevented
its updake in some modern wireless communication standards.

This paper follows previous theoretical analyses (e.g.
[Tan02], [YT06], [MPT06], [RS07]) in studying codes which
are randomly generated for each system from some ensemble.
The canonical random CDMA ensemble is the dense one in
which all chips are transmitted upon [Ver98]. In the sparse
ensemble we consider here (2) only a small number of chips
O(C) are accessed by each user, a less studied system. How-
ever there are a number of reasons why the sparse ensemble
first examined in [YT06] may be more practical, based on
its closer similarity to FH/TH-CDMA and the ability to apply
fast message passing algorithms in decoding. In addition, one
can converge towards the properties of the dense ensemble
by increasing the mean user connectivity C only moderately.
It has been shown, for a sparse connectivity model in which
the mean user connectivity is large but much smaller than K,
that the properties become indistinguishable from the dense
channel in cases where BP converges [GW07].

The sparse codes consist of a sparse connectivity matrix and
a modulation part sampled according to

Ps(x) ∝
∏

k

∏

µ

[(

1 − L

K

)

δxµk
+

L

K
φ(xµk)

]

(2)

φ(x) =
1

2
(δx,A + δx,−A) . (3)

The modulation of non-zero elements in the codes is described
by φ which can be BPSK (as shown) or unmodulated φ(x) =
δx,A, with the amplitude of transmission (A = 1/

√
L) chosen

for normalisation purposes so that the Power Spectral density
Q, a representative measure of signal to noise ratio, may be
taken as 1/(2σ2

0). The mean chip and user connectivities are
L and C, respectively, such that the load α=L/C =K/N .

Two problems with the basic sparse ensemble (2) at low
connectivity is significant asymmetry in bandwidth access for
users, with a fraction of users being entirely disconnected.
Analogously the utilisation of chips will not be uniform, with
some chips unutilised. These problems can be overcome by
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enforcing regularity of the following forms:

Ps(x) ∝
∏

k

[

δ

(

N
∑

µ

(1 − δxµk
) − C

)]

, (4)

∝
∏

k

[..]
∏

µ

[

δ

(

K
∑

k

(1 − δxµk
) − L

)]

, (5)

in addition to modulation though φ. It turns out that con-
straining users to access exactly C chips (4) is very important
in attaining near optimal performance for high Q, whereas
enforcing, in addition, chip regular access (5) produces only
marginally improved performance [RS07] and may be difficult
to implement in practice. In this paper we consider ensembles
with both chip and user regular constraints (5) throughout
since it makes certain aspects of the analysis simpler; we
anticipate results to be qualitatively similar with only the user-
regular constraint (4).

The theoretical information capacity, and theory of Bayes
optimal decoding requires knowledge of the likelihood of
transmitted bits

P
~y|~b(~τ) ∝

∫

∏

µ

[

δ

(

yµ −
∑

k

sµkτk + ωµ

)]

P̂~ν(~ω)d~ω (6)

where P̂~ν is the assumed chip noise distribution to be
marginalised over. If one considers a Gaussian channel noise
model, of variance (σ0)

2/β (i.e assumption possibly incorrect
by a factor β), then the righthand side is simplified

P~b|~y(~τ) ∝
∏

µ

exp







−βQ
(

yµ −
∑

k

sµkτk

)2






. (7)

Statistical physics provides a concise framework to analyse
this quantity. First we define a Hamiltonian by connection with
the likelihood

H(~τ) = −Q
∑

µ

(

νµ +
∑

k

sµk(bk − τk)

)2

, (8)

where yµ is written in terms of its constituent components (1)
and τk is a candidate value of the sent bit. From this one can
construct the self-averaging free energy.

f =

〈

− 1

βN
log
∑

~τ

exp{−βH(~τ)}
〉

. (9)

The average 〈〉 denotes throughout the paper an average over
~y and codes s sampled according to the appropriate ensemble.
The motivation for studying the self-averaged free energy that
this is a generating function for many interesting statistics
attainable by decoders, averaged over samples of the system.
It can be observed that for CDMA the performance measures,
such as bit error rate and spectral efficiency, are self-averaging
– rapidly converging to some fixed values as the number
of users increase. The bit error rate is mean overlap of the
sent and decoded bits 1

K
〈(~b.~τ)〉, the spectral efficiency is the

mutual information between the sent bits and the received

Νyµy1y

τKτkτ1

Fig. 1. The inference problem can be represented by a graphical model: a
Tanner (or factor) graph. Each factor (square) represents an interaction and
each bit (circle) denotes a dynamical variable τk which is to be optimised
given the topology and observable values. The observables in this case are
the signal yµ associated to each node, and the code s–(dashed/solid lines
can be used to indicate modulation by ±A in components sµk). Above is a
representation for a small sparse regular graph (5,4) with L=4 C =3.
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Fig. 2. The fixed points of the self consistent equations are in quantities h and
u which have an interpretation in terms of messages passed on (sub)graphs
of the graphical model (1). If one knows the log likelihood ratio uµk of
bit bk given only one of its neighbours µ, then assuming these likelihoods
to be independent (as is valid on a tree), one can construct the conditional
likelihood of bk given all its neighbours excluding ν (or log likelihood ratio
hkν ). One can then use hkν to construct log likelihoods (uνi) for subsequent
variables in the tree. By such a process, the distribution of {h} and {u} may
converge at sufficient depth in the tree to values independent of the inputs –
such a solution is a viable solution to a population dynamics algorithm. The
convergence properties and stability of solutions is closely related to standard
decoding algorithms: the sum product algorithm or belief propagation.

signal I(~b, ~y) and is affine to the free energy. By taking the
limit K → ∞ we are able to attain an exact description
for these fixed points, thereby providing a good indication
of performance. We assume throughout this proceedings that
β = 1, analysis of the free energy thereby corresponds to the
performance of a detector which minimises the bit error rate.

A. Overview of results for BPSK

For sparse ensembles with BPSK the equilibrium and
dynamical properties are similar to the dense case [Tan02],
becoming more so as L increases [GW07]. If one calculates
the free energy of the sparse ensemble by the cavity or replica
method [MPV87] one attains under assumptions of a single
pure state a site factorised expression for the free energy,
determined by the solution to a set of self consistent field
and bias distributions (saddlepoint equations) [RS07]. These
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Fig. 3. The figures show the spectral efficiency (affine to the free energy) and
bit error rate for a number of cases of α as indicated by K:N . The solid curves
represent locally stable solutions of the population dynamics procedure for a
sparse ensemble, dashed curves show the exact results for the Q-equivalent
densely spread CDMA system – the curves are qualitatively similar in both
quantities, except in the existence of one additional (unstable) solution in the
dense case (middle curve). The similarity extends to the metastable ranges,
we consider the sparse ensemble results in detail. The sparse ensemble is
fully regular with C = 3 and L = 2, .., 6 in agreement with the ratio α.
For small loads α a unique solution is found in both cases, which is the
valid thermodynamic (information theoretic) solution. For the sparse case at
sufficiently large α (case 6:3) the solution becomes multivalued. Lower figure:
The thermodynamic solution is the curve of lowest spectral efficiency, the
other being metastable; there is a second order transition between the two
solution with increasing Q. The inset shows in detail the region in which
the dense and sparse codes undergo thermodynamic second order transitions
with α = 2. Upper figure: This demonstrates the bit error rate for comparable
parameterisations. This figure indicates a large performance gap between the
two locally stable solutions in the metastable regime: a bad and good solution
exist in terms of decoding. The vertical dashed line indicates the smallest Q
at which metastability occurs in the sparse code for the 6:3 case: beyond
this point in the metastable regime the bad solution performance is typically
attained by belief propagation even if this is only a metastable solution.

results are presented for later comparison (12)

W (h) ∝
∫ C−1
∏

c=1

[

ducŴ (uc)
]

δ

(

h −
C−1
∑

c=1

uc

)

Ŵ (u) ∝
∫ L−1
∏

l=1

[W (hl)dhl]

L
∏

l=1

[φ(xl)dxl]Pν(ω)dω

× δ

(

u −
∑

τL

τL log(Z(τL))

)

(10)

Z(τL) =
∑

~τ

exp







−Q
(

ω +

L
∑

l=1

xl(1 − τl)

)2

+
∑

l

hlτl







where Pν is the true chip noise probability distribution. The
distributions are over a set of cavity biases u and cavity

fields h. These variables may be interpreted within a graphical
framework of the inference problem (Fig. 1), as log-likelihood
(of correct decoding) ratios in two types of sub-graphs (Fig. 2).
From these distributions one can calculate the free energy,
bit error rate and other properties. The equations may be
solved numerically by population dynamics [RS07], which is
implemented as a late propagation (decoding) algorithm on
a tree. This processes allows a numerical determination of
the free energy and tests of ergodicity breaking. We find a
unique thermodynamic solution at all Q, but also a significant
metastable solution for a range of parameters (Fig. 3).

We may distinguish the metastable states in this range
of parameters as bad and good (higher or lower bit error
rate). The population dynamics algorithm tends to find the
bad solution from most initial conditions, only those initial
conditions which are of very low bit error rate (a set of
cavity biases strongly correlated with ~b) appear to converge
towards the good solution. It appears the bad solution is easy
to reach by implementation of population dynamics regardless
of whether it is the thermodynamically dominant state. This is
interesting since population dynamics appears to mirror the
behaviour of many decoding algorithms on even relatively
small systems, which struggle to achieve good bit error rates
in this region. In the real decoding problem one does not begin
the decoding already with a good estimate of~b, and so one may
be stuck with a suboptimal estimate even where a much better
estimate may be found (in principle) for almost all decodings.

In both the dense and sparse cases there is a unique
thermodynamically stable state. One can hope to achieve the
information capacity of the thermodynamic state by clever
algorihms based on some global insight. The problem is that
local search based optimisation appears insufficient. In the case
of no metastability, local search methods attain the optimal so-
lution [GW07], [RS07] with various principled modifications
suggested [Kab03]. In the case of metastability one might
apply a principle of guesswork combined with BP to allow
efficient searching of the space. Such a method [MMU05] has
been demonstrated for certain types of channel, unfortunately
not so far the BIAWGN we consider. In the following sections
we consider how the similarity between the phenomena in
dense and sparse systems, combined with a consideration of
marginal interaction distributions, might characterise the bad
metastable solution and how such insight might be used to
supplement local search methods.

B. A sparse model without modulation

As a way to further understand the microscopic basis of
metastability we propose the following model to investigate the
sparse ensemble for the case of no modulation, φ(x) = δx,A.
Unlike the dense model, the disorder in the connectivity
structure is sufficient to recover information even without
modulation. Given that the graphical structure is identical to
the modulated sparse ensemble, decoding may be achieved by
similar methods (belief propagation based local search).

Working with either the cavity or replica methods one can
attain a site factorised set of functional relations analogous to



(10). In the former case we had two distributions containing
information on the probabilty of correct bit reconstruction (on
two types of subgraph). In the unmodulated case we replace
each of these distributions by two, because the probability of
correct bit recovery is dependent on the candidate bit at the
given site, τk = a. Assuming no ergodicity breaking one can
attain the variational part of the free energy density ((9) in the
large N limit) as

f =
∑

a

∫

dhduW (a, h)Ŵ (a, u) log(1+tanh(u) tanh(h))

+ α
∑

a

Pb(a)

{

C

∫

duW (a, u) log(coshu)

+

∫ C
∏

c=1

[ducW (a, uc)] log

(

cosh

(

C
∑

c=1

uc

))}

(11)

+

∫ L
∏

l=1

[

dxldφ(xl)
∑

al

dhlW (al, hl)

]

dωPν(ω) logZI

ZI =
∑

~τ

L
∏

l=1

[

exp(hlτl)

2cosh(hl)

]

exp







Q
(

ω+
L
∑

l=1

xlal(1−τl)

)2






.

Here Pb is the true prior on transmitted bits, which we will
assume to be uniform. We also assume the sparse ensemble
with chip and user regularity for brevity. The distributions must
be chosen to minimise the free energy, it is a near identical
minimisation which gives rise to (10). The pairs of field and
bias distributions Ŵ ,W , in this case obey the saddlepoint
equations

W (a, h) ∝
∫ C−1
∏

c=1

[

ducŴ (a, uc)
]

δ

(

h −
C−1
∑

c=1

uc

)

Ŵ (aL, u) ∝
∫ L−1
∏

l=1

[

φ(xl)dxl

∑

al

W (al, hl)dhl

]

Pν(ω)dω

× δ

(

u −
∑

τL

τL log(Z(τL))

)

(12)

Where Z is the same quantity as (10) upto the substitution
of xl by al. In this new case we have a modified set of
equations on distributions, as the dependence on the root site
cannot be factorised. Since we are considering maximal rate
both in the prior for sent message and inference model we
can argue by symmetry that W (b, h) equals W (−b, h). This
represents the intuitive statement that the probability of correct
reconstruction is independent of whether the sent bit is ±1,
however this is an ansatz rather than a result of the calcula-
tion. The assumption can be tested by allowing convergence
restricted to the symmetric combination and testing small
perturbations in the antisymmetric part. A stronger test of the
ansatz is to allow the population dynamics to run with fully
independent distributions. To within numerical accuracy the
restricted solutions and those found in this larger space appear
to be consistent and the modulated and unmodulated sparse
ensembles become equivalent. At maximal rate the solution

for the unmodulated ensemble is information theoretically
equivalent to the unmodulated ensemble.

II. NATURE OF THE METASTABLE SOLUTIONS

The exact results and numerical solutions (as indicated by
example in Fig. 3) indicate several features of the metastable
state for both the sparse and dense systems. We investigate
these points and present some simplified analysis of the energy
landscape in this section. The results of the previous section
provide insight into the probable nature of the state, and the
fact that the sparse and dense systems are so similar qualita-
tively means that topology must play a relatively small role.
The dynamical properties of the decoding algorithms reported
for both cases appear to be an important common feature,
while the sizes of solutions (as indicated by entropy) and bit
error rates reduce the space of solutions to be considered.

One can gain further insight by examining the interaction
structure as a source of information, making analogies be-
tween other well studied disordered systems [MPV87]. The
Hamiltonian may be re-written (upto constants) as

H(~τ) = −





∑

k 6=k′

Jkk′τkτk′ +
∑

k

hkτk



 (13)

which is a standard formulation in physics, where the set of
couplings Jij and fields hi describe the problem

Jk,k′ = Q
∑

µ

sµksµk′ (14)

hk = 2Q
∑

µ

yµsµk = 2Q
[

∑

µ

s2
µk

]

bk

+ 2Q











∑

µ

sµk

∑

k′(6=k)

sµk′bk′}







+

{

∑

µ

νµsµk}
}





Since the coupling term has no dependence on the sent bits ~b
the states induced by the couplings alone must be uncorrelated
with the true solution. By contrast, the field term encodes a
bias towards the sent vector combined with a pair of fields
with no alignment along the correct solution (in expectation),
but with some dependence thereof.

The couplings and fields are strongly correlated through
the code s. In the case of a dense code where L → K both
marginal distributions over couplings and fields may be taken
as Gaussian distributed through application of the central limit
theorem with N =K/α large; the dense case gives

P (Jk,k′) = N
(

0,
Q2

αN

)

, (15)

P (hk) = N
(

2Qbk

α
,
(2Q)2

α
+

2Q
α

)

. (16)

where N signifies the normal distribution. The first term of
the field variance is negligable for the large system.

For the sparse code with BPSK one can instead note that the
couplings are non-zero with probability

(

L
2

)

/
(

K
L

)

reflecting the
enforced topology (2),(4),(5), and in the non-zero cases take



values ±Q/L with equal probability. In the field part one has
a net positive field combined with two terms, the first term
containing no noisy part gives a variance dependent on the
site values and number of nearest neighbours (users connected
through chips to user k), whereas the second is the sum of
Gaussian random variables associated to each neighbouring
chip. We approximate the distribution by a mean and variance
to abbreviate this information, ignoring for convenience higher
order moments as

P (hk) = N
(

(2Q)bk

α
,
(L − 1)(2Q)2

αL
+

2Q
α

)

. (17)

The L−1 prefactor is the average excess degree of the factor
node in the chip regular ensemble (5), for the random graph
ensemble (2) the value is L (also with user regularity (4)).
Using a non-regular code appears to impact upon the variance
of the field but not the mean.

When one does not include the BPSK, the first two moments
of the sparse distribution of local fields (17) are unchanged
but the couplings are entirely ferromagnetic +Q/L, again
conforming to the underlying topology. At least for β = 1
we have determined that the information theoretical quantities,
and the population dynamics algorithm are equivalent for the
two sparse ensembles considered. Therefore we expect only
features common to the two models to be responsible for
the metastability and other non-trivial properties in the large
system limit.

We can now consider common features in the distributions.
In so far as a marginalised distribution might provide insight, it
appears fairly clear that there is a competition between a mean
dominated field producing good reconstruction and a variance
dominated field leading to only marginal bias in favour of
correct reconstruction. The field presumably projects into one
of a number of local minima. When Q is small the variance
dominates and there is a weak net alignment with ~b. As one
increases Q the mean grows more quickly than the spread, so
that in the large Q limit the state is very orderly. By contrast
as one increases α the mean is suppressed by comparison with
the spread in the field (and in the couplings), so that one might
expect the state to be variance dominated.

The couplings are very different in the modulated models
(sparse and dense) by comparison the unmodulated model. In
the modulated model one has a random coupling, which one
might expect would induce behaviour comparable to a random
spin glass or the Hopfield model [MPV87], with a highly non-
trivial distribution of local solutions (when ignoring the field).
However, by investigation of the unmodulated model we see
the space determined entirely by the couplings is a trivial one,
corresponding to the sparse ferromagnet and uncorrelated in
magnitude (or topology for the regular ensemble) to the fields.
We must however consider the strong couplings between fields
on neighbouring sites – if we consider these as uncoupled then
the model becomes simpler, gauging the dynamic variables to
the orientation ~b, we have a sparse Mattis model [MPV87] in
a random field. Although plausable we have not been able to
establish if such a model is capable of the metastability of the

type investigated; alternatively, the couplings between fields
might form an interesting percolating process responsible for
long range order, hence being very different from a Mattis
model. An understanding at this level might form the basis
for principled global search methods guaranteed to avoid
metastable regimes, which might then be generalised to the
coupled models.

III. CONCLUSION

A comparison of the marginal distributions in the two sparse
cases indicates a substantial difference in the coupling. This
adds credence to the notion that it is a competition in the
field terms which is primarily responsible for the emergence
of metastability (as might have been guessed from only the
modulated models). In one case the couplings are similar to
those of a sparse spin glass, in the other the couplings are
uniform. For the unmodulated code we might hope to make
use of the fact that we know the equilibrium state of such a
model is attracted to a ferromagnetic state, due to the uniform
coupling s. By suppressing the emergence of these two states
in local search algorithms, either by static factors or dynamical
global constraints during the local search, the algorithm may
well be improved. Whether or not the high bit error rate
metastable state is sufficiently correlated with one of the two
ferromagnetic states, and appreciably more so than the low
bit error rate solution, would determine whether this may be
enough to escape metastable suboptimal solutions. Certainly
long range correlations must play a role in the dynamical
relaxation process and the simplicity of the couplings in the
unmodulated system ought to offer some insight. It would
also be interesting to see what similarities remain between the
modulated and unmodulated sparse codes in a wider range
of optimal detectors (varying β) and with respect to heuristic
methods.
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