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ABSTRACT

In this paper, analytical methods for finding moments of
random Vandermonde matrices are developed. Vandermonde
Matrices play an important role in signal processing and
communication applications such as direction of arrival es-
timation, sampling theory or precoding. Within this frame-
work, we extend classical freeness results on random ma-
trices with i.i.d entries and show that Vandermonde struc-
tured matrices can be treated in the same vein with different
tools. We focus on various types of Vandermonde matrices,
namely Vandermonde matrices with or without uniformly
distributed phases. In each case, we provide explicit ex-
pressions of the moments of the associated Gram matrix, as
well as more advanced models involving the Vandermonde
matrix. Comparisons with classical i.i.d. random matrix
theory are provided and free deconvolution results are also
discussed.

1. INTRODUCTION

We will consider Vandermonde matrices V of dimension
N × L of the form

V =
1√
N




1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(N−1)ω1 · · · e−j(N−1)ωL


 (1)

where ω1,...,ωL are independent and identically distributed
(phases) taking values on [0, 2π). Such matrices occur fre-
quently in many applications, such as finance [1], signal ar-
ray processing [2, 3, 4, 5, 6], ARMA processes [7], cogni-
tive radio [8], security [9], wireless communications [10]
and biology [11] and have been much studied. The main
results are related to the distribution of the determinant of
(1) [12]. The large majority of known results on the eigen-
values of the associated Gram matrix concern Gaussian ma-
trices [13] or matrices with independent entries. None have
dealt with the Vandermonde case. For the Vandermonde
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case, the results depend heavily on the distribution of the en-
tries, and do not give any hint on the asymptotic behaviour
as the matrices become large. In the realm of wireless chan-
nel modelling, [14] has provided some insight on the be-
haviour of the eigenvalues of random Vandermonde matri-
ces for a specific case, without any formal proof. We prove
here that the case is in fact more involved than what was
claimed.

In many applications, N and L are quite large, and we
may be interested in studying the case where both go to∞ at
a given ratio, with L

N → c. Results in the literature say very
little on the asymptotic behaviour of (1) under this growth
condition. The results, however, are well known for other
models. The factor 1√

N
, as well as the assumption that the

Vandermonde entries e−jωi lie on the unit circle, are in-
cluded in (1) to ensure that our analysis will give limiting
asymptotic behaviour. Without this assumption, the prob-
lem at hand is more involved, since the rows of the Van-
dermonde matrix with the highest powers would dominate
in the calculations of the moments when the matrices grow
large, and also grow faster to infinity than the 1√

N
factor in

(1), making asymptotic analysis difficult. In general, often
the moments, not the moments of the determinants, are the
quantities we seek. Results in the literature also say very
little on the moments of Vandermonde matrices. The litera-
ture says very little on the mixed moments of Vandermonde
matrices and matrices independent from them. This is in
contrast to Gaussian matrices, where exact expressions [15]
and their asymptotic behaviour [16] are known using the
concept of freeness [16] which is central for describing the
mixed moments.

The derivation of the moments are a useful basis for per-
forming deconvolution. For Gaussian matrices, deconvolu-
tion has been handled in the literature [17, 18, 15, 19]. Sim-
ilar flavored results will here be proved for Vandermonde
matrices. Concerning the moments, it will be the asymptotic
moments of random matrices of the form VHV which will
be studied, where (.)H denotes hermitian transpose. We will
also consider mixed moments of the form DVHV, where
D is a square diagonal matrix independent from V. While
we provide the full computation of lower order moments,
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we also describe how the higher order moments can be com-
puted. Tedious evaluation of many integrals is needed for
this, but numerical methods can also be applied. Surpris-
ingly, it turns out that the first three limit moments can be
expressed in terms of the Marc̆henko Pastur law [16, 20].
For higher order moments this is not the case, although we
state an interesting inequality involving the Vandermonde
limit moments and the moments of the classical Poisson dis-
tribution and the Marc̆henko Pastur law, also known as the
free Poisson distribution [16].

This paper is organized as follows: Section 2 contains a
general result for the mixed moments of Vandermonde ma-
trices and matrices independent from them. We will differ
between the case where the phase ω in (1) are uniformly dis-
tributed on [0.2π), and the more general cases. The case of
uniformly distributed phases is handled in section 3. In this
case it turns out that one can have very nice expressions, for
both the asymptotic moments, as well as for the lower order
moments. Section 4 considers the more general case when
ω has a continous density, and shows how the asymptotics
can be described in terms of the case when ω is uniformly
distributed. Section 5 discusses our results and puts them in
a general deconvolution perspective, comparing with other
deconvolution results, such as those for Gaussian deconvo-
lution.

In the following, upper (lower boldface) symbols will
be used for matrices (column vectors) whereas lower sym-
bols will represent scalar values, (.)T will denote transpose
operator, (.)? conjugation and (.)H =

(
(.)T

)? hermitian
transpose. In will represent the n × n identity matrix. We
let trn be the normalized trace for matrices of order n× n,
and Tr the non-normalized trace. V will be used only to de-
note Vandermonde matrices with a given phase distribution.
The dimensions of the Vandermonde matrices will always
be N × L unless otherwise stated, and the phase distribu-
tion of the Vandermonde matrices will always be denoted
by ω.

2. A GENERAL RESULT FOR THE MIXED
MOMENTS OF VANDERMONDE MATRICES

We first state a general theorem applicable to Vandermonde
matrices with any phase distribution. The proof for this the-
orem, as well as for theorems succeeding it, are based on
calculations where partitions are highly involved. We de-
note by P(n) the set of all partitions of {1, ..., n}, and we
will use ρ as notation for a partition in P(n). The set of
partitions will be equipped with the refinement order ≤, i.e.
ρ1 ≤ ρ2 if and only if any block of ρ1 is contained within a
block of ρ2. Also, we will write ρ = {ρ1, ..., ρk}, where ρj

are the blocks of ρ, and let |ρ| denote the number of blocks
in ρ. We denote by 0n the partition with n blocks, and by
1n the partition with 1 block.

In the following Dr(N), 1 ≤ r ≤ n are diagonal L×L
matrices, and V is of the form (1). We will attempt to find

Mn = limN→∞E[trL( D1(N)VHVD2(N)VHV
· · · ×Dn(N)VHV)]

(2)
for many types of Vandermonde matrices, under the assump-
tion that L

N → c, and under the assumption that the Dr(N)
have a joint limit distribution as N → ∞ in the following
sense:

Definition 1 We will say that the {Dr(N)}1≤r≤n have a
joint limit distribution as N →∞ if the limit

Di1,...,is = lim
N→∞

trL (Di1(N) · · ·Dis(N)) (3)

exists for all choices of i1, ..., is. For ρ = {ρ1, ..., ρk}, with
ρi = {ρi1, ..., ρi|ρi|}, we also define Dρi = Diρi1 ,...,iρi|ρi|

,

and Dρ =
∏k

i=1 Dρi .

Had we replaced Vandermonde matrices with Gaussian
matrices, free deconvolution results [19] could help us com-
pute the quantities Di1,...,is from Mn. For this, the cumu-
lants of the Gaussian matrices are needed, which asymptoti-
cally have a very nice form. For Vandermonde matrices, the
role of cumulants is taken by the following quantites

Definition 2 Define

Kρ,ω,N = 1
Nn+1−|ρ|×∫
(0,2π)|ρ|

∏n
k=1

1−e
jN(ωb(k−1)−ωb(k))

1−e
j(ωb(k−1)−ωb(k))

,

dω1 · · · dω|ρ|,

(4)

where ωρ1 , ..., ωρ|ρ| are i.i.d. (indexed by the blocks of ρ),
all with the same distribution as ω, and where b(k) is the
block of ρ which contains k (where notation is cyclic, i.e.
b(−1) = b(n)). If the limit

Kρ,ω = lim
N→∞

Kρ,ω,N

exists, then Kρ,ω is called a Vandermonde mixed moment
expansion coefficient.

These coefficients will for Vandermonde matrices play
the same role as the cumulants do for large Gaussian matri-
ces. We will not call them cumulants, however, since they
don’t share the same multiplicative properties (embodied in
what is called the moment cumulant formula).

The following is the main result of the paper. Different
versions of it adapted to different Vandermonde matrices
will be stated in the succeeding sections.

Theorem 1 Assume that the {Dr(N)}1≤r≤n have a joint
limit distribution as N → ∞. Assume also that all Van-
dermonde mixed moment expansion coefficients Kρ,ω exist.



Then the limit

Mn = limN→∞E[trL( D1(N)VHVD2(N)VHV
· · · ×Dn(N)VHV)]

(5)
also exists when L

N → c, and equals
∑

ρ∈P(n)

Kρ,ωc|ρ|−1Dρ. (6)

The proof of theorem 1 can be found in [21]. Although
the limit of Kρ,ω,N as N → ∞ may not exist, it will be
clear from section 4 that it exists when the density of ω is
continous. Theorem 1 explains how convolution with Van-
dermonde matrices can be performed, and also provides us
an extension of the concept of free convolution to Vander-
monde matrices. Note that when D1(N) = · · · = Dn(N) =
IL, we have that

Mn = lim
N→∞

E
[
trL

((
VHV

)n
)]

,

so that our our results also include the limit moments of the
Vandermonde matrices themselves. Mn corresponds also to
the limit moments of the empirical eigenvalue distribution
FN

VHV defined by

FN
VHV(λ) =

#{i|λi ≤ λ}
N

,

(where λi are the (random) eigenvalues of VHV), i.e.

Mn = lim
N→∞

E

[∫
λndFN (λ)

]
.

(6) will also be useful on the scaled form

cMn =
∑

ρ∈P(n)

Kρ,ω(cD)ρ. (7)

When D1(N) = D2(N) = · · · = Dn(N), we denote
their common value D(N), and define the sequence D =
(D1, D2, ...) with Dn = limN→∞ trL ((D(N))n). In this
case Dρ does only depend on the block cardinalities |ρj |, so
that we can group together the Kρ,ω for ρ with equal block
cardinalities. If we group the blocks of ρ so that their cardi-
nalities are in descending order, and set

P(n)r1,r2,...,rk
= {ρ = {ρ1, ..., ρk} ∈ P(n)||ρi| = ri∀i},

where r1 ≥ r2 ≥ · · · ≥ rk, and also write

Kr1,r2,...,rk
=

∑

ρ∈P(n)r1,r2,...,rk

Kρ,ω, (8)

then, after performing the substitutions

mn = (cM)n = c limN→∞E
[
trL

((
D(N)VHV

)n)]
,

dn = (cD)n = c limN→∞ trL (Dn(N)) ,
(9)

(7) can be written

mn =
∑

r1,...,rk
r1+···+rk=n

Kr1,r2,...,rk

k∏

j=1

drj . (10)

For the first 5 moments this becomes

m1 = K1d1

m2 = K2d2 + K1,1d
2
1

m3 = K3d3 + K2,1d2d
2
1 + K1,1,1d

3
1

m4 = K4d4 + K3,1d3d1 + K2,2d
2
2 + K2,1,1d2d

2
1+

K1,1,1,1d
4
1

m5 = K5d5 + K4,1d4d1 + +K3,2d3d2+
K3,1,1d3d

2
1 + K2,2,1d

2
2d1 + K2,1,1,1d2d

3
1+

K1,1,1,1,1d
5
1

...
...

(11)
Thus, the algorithm for computing the asymptotic mixed
moments of Vandermonde matrices with matrices indepen-
dent from them can be split in two:

• (9), which scales with the matrix aspect ratio c, and

• (11), which performs computations independent of
the matrix aspect ratio c.

Similar splitting of the algorithm for computing the asymp-
totic mixed moments of Wishart matrices and matrices in-
dependent from them was derived in [19]. Although the
matrices Di(N) are assumed to be determinstic matrices
throughout the paper, all formulas extend naturally to the
case when Di(N) are random matrices independent from
V. The only difference when the Di(N) are random is
that certain quantities are replaced with fluctuations. D1D2

should for instance be replaced with

lim
N→∞

E
[
trL (D(N)) trL

(
(D(N))2

)]

when Di(N) is random.
In the next sections, we will derive and analyze the Van-

dermonde mixed moment expansion coefficients Kρ,ω for
various cases, which is essential for the the algorithm (11).

3. UNIFORMLY DISTRIBUTED ω

We will let u denote the uniform distribution on [0, 2π). We
can write

Kρ,u,N = 1
(2π)|ρ|Nn+1−|ρ|×∫
(0,2π)|ρ|

∏n
k=1

1−e
jN(xb(k−1)−xb(k))

1−e
j(xb(k−1)−xb(k))

dx1 · · · dx|ρ|,

(12)

where integration is w.r.t. Lebesgue measure. In this case
one particular class of partitions will be useful to us, the
noncrossing partitions:



Definition 3 A partition is said to be noncrossing if, when-
ever i < j < k < l, i and k are in the same block, and
also j and l are in the same block, then all i, j, k, l are in
the same block. The set of noncrossing partitions is denoted
by NC(n).

The noncrossing partitions have already shown their use-
fulness in expressing the freeness relation in a particularly
nice way [22]. Their appearance here is somewhat different
than in the case for the relation to freeness:

Theorem 2 Assume that the {Dr(N)}1≤r≤n have a joint
limit distribution as N →∞, Then the Vandermonde mixed
moment expansion coefficient

Kρ,u = lim
N→∞

Kρ,u,N

exists for all ρ. Moreover, 0 < Kρ,u ≤ 1, the Kρ,u are
rational numbers for all ρ, and Kρ,u = 1 if and only if ρ is
noncrossing.

The proof of theorem 2 can be found in [21]. Due to
theorem 1, theorem 2 guarantees that the asymptotic mixed
moments (5) exist when L

N → c for uniform phase distri-
bution, and are given by (6). The values Kρ,u are in gen-
eral hard to compute for higher order ρ with crossings. We
have performed some of these computations. It turns out
that the following computations suffice to obtain the 7 first
moments.

Lemma 1 The following holds:

K{{1,3},{2,4}},u =
2
3

K{{1,4},{2,5},{3,6}},u =
1
2

K{{1,4},{2,6},{3,5}},u =
1
2

K{{1,3,5},{2,4,6}},u =
11
20

K{{1,5},{3,7},{2,4,6}},u =
9
20

K{{1,6},{2,4},{3,5,7}},u =
9
20

.

The proof of lemma 1 is given in [21]. Combining the-
orem 2 and lemma 1 into this form, we will prove the fol-
lowing:

Theorem 3 Assume D1(N) = D2(N) = · · · = Dn(N).

When ω = u, (11) takes the form

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 +
8
3
d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 +
25
3

d3d2 + 10d3d
2
1 +

40
3

d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 12d4d2 + 15d4d
2
1 +

151
20

d2
3 + 50d3d2d1 + 20d3d

3
1 +

11d3
2 + 40d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 +
49
3

d5d2 + 21d5d
2
1 +

497
20

d4d3 + 84d4d2d1 + 35d4d
3
1 +

1057
20

d2
3d1 +

693
10

d3d
2
2 + 175d3d2d

2
1 +

35d3d
4
1 + 77d3

2d1 +
280
3

d2
2d

3
1 +

21d2d
5
1 + d7

1.

Theorem 2 and lemma 1 reduces the proof of theorem 3 to a
simple count of partitions. Theorem 3 is proved in [21]. To
compute higher moments mk, Kρ,u must be computed for
partitions of higher order.

Following the proof of theorem 2, we can also obtain
formulas for the fluctuations of mixed moments of Vander-
monde matrices. We will not go into details on this, but only
state the following equations without proof:

limN→∞E
[
trL

((
D(N)VHV

)n) (
trL

(
D(N)VHV

))m]
= E

[
trL

((
D(N)VHV

)n)]
Dm

1

c limN→∞E
[
Tr

((
D(N)VHV

)2
)

trL

((
D(N)VHV

)2
)]

= 4
3d2

2 + 4d2d
2
1 + 4d3d1 + d4.

(13)

Following the proof of theorem 2 again, we can also ob-
tain exact expressions for moments of lower order random
Vandermonde matrices with uniformly distributed phases,
not only the limit. We state these only for the first four mo-
ments.

Theorem 4 Assume D1(N) = D2(N) = · · · = Dn(N).



When ω = u, (11) takes the exact form

m1 = d1

m2 =
(
1−N−1

)
d2 + d2

1

m3 =
(
1− 3N−1 + 2N−2

)
d3

+3
(
1−N−1

)
d1d2 + d3

1

m4 =
(

1− 20
3

N−1 + 11N−2 − 37
6

N−3

)
d4

+
(
4− 12N−1 + 8N−2

)
d3d1

+
(

8
3
− 5N−1 +

19
6

N−2

)
d2
2

+6
(
1−N−1

)
d2d

2
1 + d4

1.

Theorem 4 is proved in [21]. Exact formulas for the
higher order moments also exist, but they become increas-
ingly complex, as entries for higher order terms L−k also
enter the picture. These formulas are also harder to prove
for higher order moments. In many cases, exact expressions
are not what we need: First order approximations (i.e. ex-
pressions where only the L−1-terms are included) can suf-
fice for many purposes. In [21], we explain how the simpler
case of these first order approximations can be computed. It
seems much harder to prove a similar result when the phases
are not uniformly distributed.

4. ω WITH CONTINOUS DENSITY

The following result tells us that the limit Kρ,ω exists for
many ω, and also gives a useful expression for them in terms
of the density of ω, and Kρ,u.

Theorem 5 The Vandermonde mixed moment expansion co-
efficients Kρ,ω = limN→∞Kρ,ω,N exist whenever the den-
sity pω of ω is continous on [0, 2π). If this is fulfilled, then

Kρ,ω = Kρ,u(2π)|ρ|−1

(∫ 2π

0

pω(x)|ρ|dx

)
. (14)

The proof is given in [21].
Besides providing us with a deconvolution method for

finding the mixed moments of the {Dr(N)}1≤r≤n, theo-
rem 5 also provides us with a way of inspecting the phase
distribution ω, by first finding the moments of the density,
i.e.

∫ 2π

0
pω(x)kdx. However, note that we can not expect to

find the density of ω itself, only the density of the density of
ω. To see this, define

Qω(x) = µ ({x|pω ≤ x})

for 0 ≤ x ≤ ∞, where µ is uniform measure on the unit
circle. Write also qω(x) as the corresponding density, so

that qω(x) is the density of the density of ω. Then it is clear
that ∫ 2π

0

pω(x)|ρ|dx =
∫ ∞

0

xnqω(x)dx. (15)

These quantities correspond to the moments of the measure
with density qω, which can help us obtain the density qω

itself (i.e. the density of the density of ω). However, the
density pω can not be obtained, since we see that any reor-
ganization of its values which do not change its density qω

will provide the same values in (15).
Note also that theorem 5 gives a very special role to the

uniform phase distribution, in the sense that it minimizes the
moments of the Vandermonde matrices VHV. This follows
from (14), since

∫ 2π

0

pu(x)|ρ|dx ≤
∫ 2π

0

pω(x)|ρ|dx

for any density pω . In [23], several examples are provided
where the integrals (14) are computed.

5. DISCUSSION

We have already explained that one can perform deconvo-
lution with Vandermonde matrices in a similar way to how
one can perform deconvolution for Gaussian matrices. We
have, however, also seen that there are many differences.

5.1. Convergence rates

In [15], almost sure convergence of Gaussian matrices was
shown by proving exact formulas for the distribution of lower
order Gaussian matrices. These deviated from their lim-
its by terms of the form 1/L2. In theorem 4, we see that
terms of the form 1/L are involved, which indicates that we
can not hope for almost sure convergence of Vandermonde
matrices. There is no reason why Vandermonde matrices
should have the almost sure convergence property, due to
their very different degree of randomness when compared
to Gaussian matrices. Figures 1, 2 show the speed of con-
vergence of the moments of Vandermonde matrices (with
uniformly distributed phases) towards the asymptotic mo-
ments as the matrix dimensions grow, and as the number of
samples grow. The differences between the asymptotic mo-
ments and the exact moments are also shown. To be more
precise, the MSE of figures 1 and 2 is computed as follows:

1. K samples Vi are independently generated using (1).

2. The 4 first sample moments m̂ji = 1
L trn

((
VH

i Vi

)j
)

(1 ≤ j ≤ 4) are computed from the samples.

3. The 4 first estimated moments M̂j are computed as
the mean of the sample moments, i.e. M̂j = 1

K

∑K
i=1 m̂ji.
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Fig. 1. MSE of the first 4 estimated moments from the exact
moments for 80 samples for varying matrix sizes, with N =
L. Matrices are on the form VHV with V a Vandermonde
matrix with uniformly distributed phases. The MSE of the
first 4 exact moments from the asymptotic moments is also
shown.

4. The 4 first exact moments Ej are computed using the-
orem 4.

5. The 4 first asymptotic moments Aj are computed us-
ing theorem 3.

6. The mean squared error (MSE) of the first 4 esti-
mated moments from the exact moments is computed

as
∑4

j=1

(
M̂j − Ej

)2

.

7. The MSE of the first 4 exact moments from the asymp-
totic moments is computed as

∑4
j=1 (Ej −Aj)

2.

Figures 1 and 2 are in sharp contrast with Gaussian matrices,
as shown in figure 3. First of all, it is seen that the asymp-
totic moments can be used just as well instead of the exact
moments (for which expressions can be found in [24]), due
to the O(1/N2) convergence of the moments. Secondly, it
is seen that only 5 samples were needed to get a reliable
estimate for the moments.

5.2. Inequalities between moments of Vandermonde ma-
trices and moments of known distributions

We will state an inequality involving the moments of Van-
dermonde matrices, and the moments of known distribu-
tions from probability theory. The classical Poisson distri-
bution with rate λ and jump size α is defined as the limit
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MSE between estimated and exact moments

Fig. 2. MSE of the first 4 moments from the actual moments
for 320 samples for varying matrix sizes, with N = L. Ma-
trices are on the form VHV with V a Vandermonde matrix
with uniformly distributed phases. The MSE of the mo-
ments and the asymptotic moments is also shown.
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Fig. 3. MSE of the first 4 moments from the actual mo-
ments for 5 samples for varying matrix sizes, with N = L.
Matrices are on the form 1

N XXH with X a complex stan-
dard Gaussian matrix. The MSE of the moments and the
asymptotic moments is also shown.



of ((
1− λ

n

)
δ0 +

λ

n
δα

)∗N

as n → ∞ [22]. For our analysis, we will only need the
classical Poisson distribution with rate c and jump size 1.
We will denote this quantity by νc. The free Poisson distri-
bution with rate λ and jump size α is defined similarly as
the limit of

((
1− λ

n

)
δ0 +

λ

n
δα

)¢N

as n → ∞, where ¢ is the free probability counterpart of
classical additive convolution [22, 16]. For our analysis, we
will only need the free Poisson distribution with rate 1

c and
jump size c. We will denote this quantity by µc. µc is the
same as the better known Marc̆henko Pastur law, i.e. it has
the density [16]

fµc(x) = (1− 1
c
)+δ0(x) +

√
(x− a)+(b− x)+

2πcx
, (16)

where (z)+ = max(0, z), a = (1 − √c)2, b = (1 +
√

c)2.
Since the classical (free) cumulants of the classical (free)
Poisson distribution are λαn [22], we see that the (classi-
cal) cumulants of νc are c, c, c, c, ..., and that the (free) cu-
mulants of µc are 1, c, c2, c3, .... In other words, if a1 has
the distribution µc, then

φ(an
1 ) =

∑
ρ∈NC(n) cn−|ρ| =

∑
ρ∈NC(n) c|K(ρ)|−1

=
∑

ρ∈NC(n) c|ρ|−1.

(17)
Here we have used the Kreweras complementation map,
which is an order-reversing isomorphism of NC(n) which
satisfies |ρ| + |K(ρ)| = n + 1 (here φ is the expectation in
a non-commutative probability space). Also, if a2 has the
distribution νc, then

E(an
2 ) =

∑

ρ∈P(n)

c|ρ|. (18)

We immediately recognize the c|ρ|−1-entry of theorem 1 in
(17) and (18) (except for an additional power of c in (18)).
Combining theorem 2 with D1(N) = · · · = Dn(N) =
IN , (17), and (18), we thus get the following corollary to
theorem 2:

Corollary 1 Assume that V has uniformly distributed phases.
Then the limit moment

Mn = lim
N→∞

E
[
trL

((
VHV

)n
)]

satsifies the inequality

φ(an
1 ) ≤ Mn ≤ 1

c
E(an

2 ),

where a1 has the distribution µc of the Marc̆henko Pastur
law, and a2 has the Poisson distribution νc. In particular,
equality occurs for m = 1, 2, 3 and c = 1 (since all parti-
tions are noncrossing for m = 1, 2, 3).

Corollary 1 thus states that the moments of Vandermonde
matrices with uniformly distributed phases are bounded above
and below by the moments of the classical and free Poisson
distributions, respectively. The different Poisson distribu-
tions enter here because their (free and classical) cumulants
resemble the c|ρ|−1-entry in theorem 1, where we also can
use that Kρ,u = 1 if and only if ρ is noncrossing to get
a connection with the Marc̆henko Pastur law. To see how
close the asymptotic Vandermonde moments are to these
upper and lower bounds, the following corollary to theo-
rem 3 contains the first moments:

Corollary 2 When c = 1, the limit moments

Mn = lim
N→∞

E
[
trL

((
VHV

)n
)]

,

the moments fpn of the Marc̆henko Pastur law µ1, and the
moments pn of the Poisson distribution ν1 satisfy

fp4 = 14 ≤ M4 = 44
3 ≈ 14.67 ≤ p4 = 15

fp5 = 42 ≤ M5 = 146
3 ≈ 48.67 ≤ p5 = 52

fp6 = 132 ≤ M6 = 3571
20 ≈ 178.55 ≤ p6 = 203

fp7 = 429 ≤ M7 = 2141
3 ≈ 713.67 ≤ p7 = 877.

The first three moments coincide for the three distributions,
and are 1, 2, and 5, respectively.

The numbers fpn and pn are simply the number of parti-
tions in NC(n) and P(n), respectively. The number of par-
titions in NC(n) equals the Catalan number Cn = 1

n+1

(
2n
n

)
[22],

so they are easily computed. The number of partitions of
P(n) are also known as the Bell numbers Bn [22]. They
can easily be computed from the recurrence relation

Bn+1 =
n∑

k=0

Bk

(
n

k

)
.

It is not known whether the limiting distribution of our Van-
dermonde matrices has compact support. Corollary 2 does
not help us in this respect, since the Marc̆henko Pastur law
has compact support, and the classical Poisson distribution
has not. In figure 4, the mean eigenvalue distribution of 640
samples of a 1600 × 1600 Vandermonde matrix with uni-
formly distributed phases is shown. While the Poisson dis-
tribution ν1 is purely atomic and has masses at 0, 1, 2, and 3
which are e−1, e−1, e−1/2, and e−1/6 (the atoms consist of
all integer multiples), the Vandermonde histogram shows a
more continous eigenvalue ditribution, with the peaks which
the Poisson distribution has at integer multiples clearly vis-
ible here as well (the peaks are not as sharp though). We
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Fig. 4. Histogram of the mean eigenvalue distribution of
640 samples of VHV, with V a 1600×1600 Vandermonde
matrix with uniformly distributed phases.

remark that the support of VHV goes all the way up to N ,
but lies within [0, N ]. It is also unknown whether the peaks
at integer multiples in the Vandermonde histogram grow to
infinity as we let N → ∞. From the histogram, only the
peak at 0 seems to be of atomic nature. In figures 5 and 6,
the same histogram is shown for 1600×1200 (i.e. c = 0.75)
and 1600 × 800 (i.e. c = 0.5) Vandermonde matrices, re-
spectively. It should come as no surprise that the effect of
decreasing c is stretching the eigenvalue density vertically,
and compressing it horizontally. just as the case for the dif-
ferent Marc̆henko Pastur laws. Eigenvalue histograms for
Gaussian matrices which in the limit give the correspond-
ing (in the sense of corollary 1) Marc̆henko Pastur laws for
figures 5 (i.e. µ0.75) and 6 (i.e. µ0.5), are shown in figures 7
and 8.

5.3. Deconvolution

Deconvolution with Vandermonde matrices (as stated in (6)
in theorem 1) differs from the Gaussian deconvolution coun-
terpart [22] in the sense that there is no multiplicative [22]
structure involved, since Kρ,ω is not multiplicative in ρ. The
Gaussian equivalent of theorem 3 (i.e. VHV replaced with
1
N XXH , with X an L × N complex, standard, Gaussian
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Fig. 5. Histogram of the mean eigenvalue distribution of
640 samples of VHV, with V a 1600×1200 Vandermonde
matrix with uniformly distributed phases.
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Fig. 6. Histogram of the mean eigenvalue distribution of
640 samples of VHV, with V a 1600× 800 Vandermonde
matrix with uniformly distributed phases.
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Fig. 7. Histogram of the mean eigenvalue distribution of
20 samples of 1

N XXH , with X an L ×N = 1200 × 1600
complex, standard, Gaussian matrix.
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Fig. 8. Histogram of the mean eigenvalue distribution of
20 samples of 1

N XXH , with X an L × N = 800 × 1600
complex, standard, Gaussian matrix.

matrix) is

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 + 3d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 + 5d3d2 + 10d3d
2
1+

10d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 6d4d2 + 15d4d
2
1+

3d2
3 + 30d3d2d1 + 20d3d

3
1+

5d3
2 + 10d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 + 7d5d2 + 21d5d
2
1+

7d4d3 + 42d4d2d1 + 35d4d
3
1+

21d2
3d1 + 21d3d

2
2 + 105d3d2d

2
1+

35d3d
4
1 + 35d3

2d1 + 70d2
2d

3
1+

21d2d
5
1 + d7

1,

(19)

(where the mi and the di are computed as in (9) by scaling
the respective moments by c). This follows immediately
from asymptotic freeness, and from the fact that 1

N XXH

converges to the Marc̆henko Pastur law µc. In particular,
when all Di(N) = IL and c = 1, we obtain the limit mo-
ments: 1,2,5,14,42,132,429, which also were listed in corol-
lary 2. One can also write down a Gaussian equivalent to
the fluctuations of Vandermonde matrices (13) (fluctuations
of Gaussian matrices are handled more thoroughly in [25]).
These are

E
[(

trn

(
D(N) 1

N XXH
))2

]

= (trn(D(N))2 + 1
nN trn(D(N)2)

E
[(

trn

(
D(N) 1

N XXH
))n]

= (trn(D(N))n + O(N−2)
E

[
trn

(
D(N) 1

N XXH
)
trn

((
D(N) 1

N XXH
)2

)]

= trn(D(N))trn(D(N)2) + O(N−2).
(20)

These equations can be proved using the same combinatori-
cal methods as in [24]. Only the first equation is here stated
as an exact expression. The second and third equations also
have exact counterparts, but their computations are more in-
volved. Similarly, one can write down a Gaussian equiva-
lent to theorem 4 for the exact moments. For the first three
moments (the fourth moment is dropped, since this is more
involved), these are

m1 = d1

m2 = d2 + d2
1

m3 =
(
1 + N−2

)
d3 + 3d1d2 + d3

1.

This follows from a careful count of all possibilities after
the matrices have been multiplied together (for this, see
also [24], where one can see that the restriction that the ma-
trices Di(N) are diagonal can be dropped in the Gaussian
case). It is seen, contrary to theorem 4 for Vandermonde
matrices, that the second exact moment equals the second



asymptotic moment from (19), and also that the conver-
gence is faster (i.e. O(n−2)) for the third moment (this will
also be the case for higher moments).

6. CONCLUSION AND FURTHER DIRECTIONS

We have shown how asymptotic moments of random Van-
dermonde matrices can be computed analytically, and treated
many different cases. Vandermonde matrices with uniformly
distributed phases proved to be the easiest case and was
given separate treatment, and it was shown how the case
with more general phases could be expressed in terms of
the case of uniformly distributed phases. In addition to the
general asymptotic expressions stated, exact expressions for
the first moments of Vandermonde matrices with uniformly
distributed phases were also stated.

Throughout the paper, we assumed that only diagonal
matrices were involved in mixed moments of Vandermonde
matrices. The case of non-diagonal matrices is harder to
address, and should be addressed in future research. The
analysis of the support of the eigenvalues is also of impor-
tance, as well as the behavior of the maximum and mini-
mum eigenvalue. The methods presented in this paper can
not be used directly to obtain explicit expressions for the
asymptotic mean eigenvalue distribution, so this is also a
case for future research. A way of attacking this problem
could be to develop for Vandermonde matrices analytic coun-
terparts to what one has in free probability (such as the
R- and S-transform and their connection with the Stieltjes
transform).
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