
ar
X

iv
:0

80
2.

31
70

v1
 [

ph
ys

ic
s.

so
c-

ph
]

 2
1

Fe
b

20
08

Fat tails, long memory, maturity and ageing in open-source software projects

Damien Challet
Institute for Scientific Interchange, via S. Severo 65, 10113 Turin, Italy and

Département de Physique, Université de Fribourg, Pérolles, 1700 Fribourg, Switzerland∗

Sergi Valverde
ICREA-Complex Systems Lab, Pompeu Fabra University, Dr. Aiguader 80, 08003 Barcelona, Spain and

Centre de Recherches sur la Cognition Animale, CNRS-UMR 5169,

Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04 France †

We report activity data analysis on several open source software projects, focusing on time between
modifications and on the number of files modified at once. Both have fat-tailed distributions, long-
term memory, and display systematic non-trivial cross-correlations, suggesting that quiet periods are
followed by cascading modifications. In addition the maturity of a software project can be measured
from the exponent of the distribution of inter-modification time. Finally, the dynamics of a single
file displays ageing, the average rate of modifications decaying as a function of time following a
power-law.

I. INTRODUCTION

The time between consecutive events observed in many human activities is neither Poissonian nor Markovian, but
exhibits bursts of rapidly occurring events separated by long periods of inactivity. The distribution of interevent times
follows heavy-tailed distributions [1, 2, 3, 4, 5].

Although activity patterns resulting from an aggregated behaviour, such as financial markets, have been studied
for a long time, recent work focused on the individual behaviour. It has been shown that in some cases non-
Poissonian behaviour is not only a by-product of human interaction, but can be traced back to individuals. Some
remarkable examples are web surfing and e-mail communication [1, 2, 6] . An important issue is the relationship
between individual behaviour and aggregate activity, which we shall investigate with the help of an important, yet
under-explored, archive of human activity: open-source software (oss) development. Distributed communities of
programmers develop open-source software projects [7], where several programmers change simultaneously possibly
more than one piece of software.

In the past, indices of global development activity have been devised to assess the stability of a software system.
A popular measure, called software volatility, measures the number of enhancements per unit of time over a specified
time frame [8]. High volatility is often associated to high maintenance costs; according to this point of view, when
the volatility exceeds some threshold it may be more economical to rewrite the entire system from scratch instead of
maintaining an aged (and unstable) software system [9, 10]. We show here however that the probability distribution of
scaled waiting times of the software projects converges towards a universal function, providing a contrario a measure
of software maturity.

We also investigate the relationship between individual programmer behaviour and global project activity by means
of a detailed statistical analysis of both the timing and size of individual actions. Unlike previous studies (e.g. [10]),
we do not attempt to make any distinction between different types of modifications.

The vast majority of software projects keep track of every single change and its author, using various so-called
version control systems. CVS (concurrent versioning system) is a frequently used system in open source projects. In
order to avoid costly information losses, the CVS keeps each programmer apart by managing multiple revisions for
each project file. These features makes the CVS an invaluable source of information about software evolution and
programmer activity patterns. We have analyzed the CVS databases of six large-scale open-source projects from their
creation date until November 2005: Mozilla, Apache, FreeBSD, OpenBSD, NetBSD, and PostgreSQL.

∗Electronic address: challet@isi.it
†Electronic address: svalverde@imim.es

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany.

Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9

DOI 10.4108/ICST.WIOPT2008.3219

peri
Typewriter

http://arXiv.org/abs/0802.3170v1
mailto:challet@isi.it
mailto:svalverde@imim.es

2

II. ANALYING CVS LOGS

Analyzing operational logs of OSS project developments stored in CVS code repositories requires sometimes delicate
ad-hoc pre-processing, without which spurious effects can easily spoil the results in an uncontrollable way. Indeed,
while CVS stores all of its information in a text file describing in a human-legible way the nature of each modification
(see Fig. 1), there is no standard format definition; it takes therefore some efforts to extract valuable and trustable
information from CVS log files.

revision 1.6

date: 2002/04/09 18:43:28; author: arnetheduck; state: dead; lines: +0 -0

Major code reorganization, to ease maintenance and future port...

revision 1.5

date: 2002/04/03 23:20:35; author: arnetheduck; state: Exp; lines: +2 -0

...

revision 1.4

date: 2002/03/04 23:52:31; author: arnetheduck; state: Exp; lines: +3 -0

Updates and bugfixes, new user handling almost finished...

revision 1.3

date: 2002/02/09 18:13:51; author: arnetheduck; state: Exp; lines: +2 -2

Fixed level 4 warnings and started using new stl

FIG. 1: An example of CVS log entry generated by the cvs log command for a file in the dcpp project. Each entry describes
a single file revision, indicating revision number, date, author’s name, state, number of lines added and removed and a brief
description. The raw CVS log is human-readable but difficult to analyze by automated means.

We parsed CVS logs and generated synthetic files (thereafter event logs) which are more amenable to analysis (see
Fig. 2 for an example). Every entry in this file describes a single file revision and provides information about the
event time, author’s identifier, unique file identifier, number of changed lines of code (added and/or removed) and a
detailed list of link changes (added and/or removed) (see below).

697055 1 40 31 -6

697055 1 45 58 -15

697055 1 46 6 -11

697055 1 49 7 -2

862903 1 8 8 -2 -21 +77 +27 +81 +80 +75

862903 1 40 9 -4

862903 1 43 24 -11

862903 1 45 9 -3

862903 1 46 10 -9 -54 +72 +75 +64

862903 1 54 65 -31

862903 1 56 135 -110 +68

862903 1 57 51 -33

862903 1 63 14 -12

862903 1 64 11 -3 +50 +70

Register N

Register N+1

List of added/

removed links

File Revision

Number of

added/removed

lines of code

time file id

author id

FIG. 2: An example of event log file generated from the CVS log file of the DCPP project. This file format allows for simpler
numerical analysis of development patterns.

A. Filename changes

Unfortunately, CVS logs have a number of shortcomings. For instance, CVS does not handle file rename or file
moves, making it difficult to rebuild faithfully the evolution of software structure. Instead, every renamed file generates
a new file in the CVS, resulting in two entries for the same file and giving rise to specific patterns in the space-time
map (see Fig. 3).

There is no general easy way to implement name aliasing. Two simple approaches can address this problem: (i) to
deal only with the set of CVS registers before the actual file rename takes place or (ii) to fix the CVS manually by
providing a list of filename aliases. Which scheme to choses depends on the size of CVS log. For instance, (i) is a

3

FIG. 3: Activity map of dcpp before and after filename aliasing; each point represents a single file change. In the right hand
side figure, the label zlib points at a stream of modifications carried out on an auxiliary software library.

suitable approach for very large CVS logs with few file renames. On the other hand, the small size of some CVS logs
allows the file moves to be fixed by human inspection. Moreover, one cannot discard registers from small CVS logs
without affecting the statistics (for instance, the long tail of the distribution of size of changes).

Some peculiar patterns in the space-time diagram appear as groups of files change together in a remarkably syn-
chronized fashion (see the upper region of the plot in Fig. 3b). These patterns represent synchronization events
between auxiliary software components (i.e., libraries or frameworks) and the core software application . The external
software library evolves in parallel and is maintained by external software team. However, the interaction between
these systems is often asymmetric. Changes to the auxiliary software library are exogenous perturbations in the
core application; interaction rarely happens the other way around. A statistical way of detecting such processes was
proposed by one of us [11].

B. Software structure

Because of software reuse, files link to each other, thereby defining a network of dependency which plays an
important role in software dynamics (see e.g. [12, 13, 14, 15]). Visualizing structural changes helps understanding
the microscopic dynamics. However, CVS log files do not contain any structural information.

FIG. 4: Mapping between software networks and the stream of CVS registers. Here, software network a maps to register R−2,
software network b maps to registers R − 1 and R and finally, software network c maps to registers R + 1 and R + 2.

The first step is to obtain enough source code versions for a given project. Since this can generate a large volume

4

of information, one has to limit oneself to a subset of all versions for large OSS projects. Then, it is easy to define a
mapping between the sequence of software networks and the time evolution of CVS registers (see Fig. 4) and to add
information about insertion/deletion of new files and links.

III. DATA ANALYSIS

From each CVS database history, we analyze the time, the author and the number of modified files of each
source code alteration. Each development history comprises a number M of modification registers. Hence, the i-th
modification was at time ti by programmer ai and concerned si >= 1 files, 1 ≤ i ≤ M . Modification attributes can
be obtained as the sum of individual contributions. Lets cjk(t) = 1 if programmer j modifies file k at time t and
cjk(t) = 0 otherwise. Then,

Si =
∑

1≤k≤Nf

caik(ti) (1)

measures the number of changed files at time ti, thereafter called modification size.

A. Interevent and modification size distributions

We will be interested in the interevent distribution P (T) of between two consecutive modifications The time
elapsed between two consecutive modifications i and i − 1 is denoted by Ti = ti − ti−1. It reflects a maturation
process at a particular stage of software development and depends on many factors, such as the cognitive capabilities
of programmers [16], team composition [17], software usage or deadlines. We report the distribution of interevent
times at three different scales: project, individual developers, and files. In order to differentiate them, we adopt the

following notation: T
(f)
i is the time interval between two consecutive modifications of file f , T

[a]
i , the time interval

between two consecutive modifications made by author a, while the absence of a superscript denotes the global project
level. Therefore, we focus on P (T), P (T (f)), P (T [a]), P (S) and P (Sa), and how they are related to each other.

Previous work produced plots en masse of the number of files modified by a given author, or the number of
modifications contributed per author, without further analysis such as fitting, scaling or discussion of stationarity [18].
A related work consisted in measuring the distributions of number of lines of code added or deleted per modification,
which are both clean power-laws with exponent around −3/2 [19], whose origin is still unclear. Previous work has
compared Apache and Mozilla in a qualitative way [20]. Finally, recent work studied the size of modifications and
carried out a detrended fluctuation analys [21]

B. Time series analysis: caveats

Human beings have intrinsic time scales. Despite this obvious fact, one finds frequent bursts of modifications from
the same programmer occurring with super-natural high frequencies. This comes from the way some programmers
submit their modifications to CVS with automated scripts, for instance every 5 seconds. One must therefore coarsen
the time series so as to remove non-human dynamics by merging the modifications i and i + 1 separated by less than
δT seconds, i.e., ti+1 − ti < δT ; the influence of δT is discussed thereafter.

The other fundamental problem is that the dynamics of software projects is seldom stationary during their whole
histories. Indeed, one characteristics of the successful large-scale open-source projects analyzed here is to gradually
attract the attention of the public and of companies, resulting into an increasing number of programmers, denoted
with. Na(t). In addition, in any software project, the number of files Nf (t) increases as a well. Since we are first
focusing on global activity patterns, this may not be a problem if for instance the activity of each programmer, or
the rate of modifications of a given file decreases in a related manner.

A simple and effective way to measure the change of programming pattern is to plot measures of cumulated activity.
The cumulative number of modified files as a function of the time t, defined as

Σ(t) =
∑

ti≤t

Si (2)

5

FIG. 5: Cumulative number of modified files Σ as a function of time t (black lines) and of modification number i (red lines).
The units of t and i, Σ(t) and Σ(i) have been chosen so as to make the end of the time series coincide.

is a good candidate, as its slope is equal to the rate of modified files per unit of time and reflects therefore the
global activity of the project. Fig 5 reports Σ(t) for six software projects. Some of them have a relatively constant
rate of modification after a transient period (FreeBSD, NetBSD), while PostgreSQL has a remarkably constant
modification rate. Apache has a more erratic behaviour [28], while OpenBSD experiences various episodes of high
and low activity, the activity reducing lately. Finally, Mozilla’s activity has been decreasing for much of its history,
which can be a sign of software maturing.

Σ(t) does not characterize entirely the activity of a project. Let us define a related quantity, the cumulative number
Σ(i) of modified files as a function of modification number i:

Σ(i) =
∑

j≤i

Sj (3)

The slope of Σ(i) is equal to the average modification size 〈S〉 and therefore provides an additional criterion of
stationarity. The example of PostgreSQL is striking in this respect: although the slope of Σ(t) is remarkably
constant, Σ(i) increases superlinearly for at least half of the time series before reaching a constant slope, meaning
that the number of modifications per batches has increased. This increase, although usually less spectacular, is seen
in almost all the projects. This could reflect the evolution of the software structure: changes are likely to propagate
to nearest neighbors, hence 〈Σ(i)〉 follows in part the evolution of the average number of nearest neighbours; and
indeed one of us [11], found an initial increase of propagation of changes to nearest neighbors and then a saturation,
confirming the above interpretation. The only exception here is Mozilla whose modification rate decreases at the
end of its time series, while the average number of modified files shows no sign of decrease; this is the signature of a
genuine slowdown of the development.

In short, a transient state is generally present at the beginning of projects histories and a steady state is reached after
some time. Mozilla is clearly not in a steady state in the last part of the history considered here, its modification
rate having slowed down significantly. OpenBSD behaviour changes much with time, and Apache is erratic. At any
rate, the history of a software project is generally not very smooth, the first part of its development is different from
the following ones, hinting at how crucial it is to split the timeseries into several parts, which will be confirmed in the
next subsections.

Plotting Si as a function of ti, and Ti and Si as a function of i reveals a highly non-trivial temporal structure (Fig
6). In particular, this figure displays two distinctive features found in all the datasets we studied: non-Gaussianity
and clustered activity, which we will characterize in details.

6

0 5000 10000
t
i

0
50

100
150
200
250
300

S
i

0

50

100

150

200

T
i

0 1000 2000 3000 4000 5000
i

0
50

100
150
200
250

S
i

FIG. 6: Activity patterns: number of modifications vs time of modification (upper graph), time interval between two modifi-
cations (middle graph) and number of modified files (lower graph) as a function of the modification number (Inkscape).

FIG. 7: Rescaled cumulative distribution of time delay between two modifications of FreeBSD; each part contains an equal
number of modification batches.

C. Time between modifications

Non-stationarity, particularly frequent at the beginning of the history of the projects, suggest to split the time
series into several parts. We performed it in such a way that the number of modification batches is the same in each
part. Focusing on FreeBSD and plotting the cumulative distribution of T , denoted by P>(T) =

∫ ∞

T
P (t)dt for the

five parts reveals a pattern shared by all the projects studied here (Fig. 7): the first parts have a broader distribution
than the subsequent ones, sometimes with a clear power-law tail, and then converges to a stable law whose tail is very
well fitted with a stretched exponential, i.e. a Weibull distribution,

P>(T) ≃ e
−
(

T
〈T 〉c

)α

(4)

7

FIG. 8: Rescaled cumulative distribution of time delay between two modifications of the last part of various projects. Inset:
− log P>(T), shifted vertically for the sake of clarity.

0 2 4 6 8 10
part

0

0.1

0.2

0.3

0.4

0.5

0.6

α

Apache
FreeBSD
Mozilla
NetBSD
OpenBSD
PostgreSQL

FIG. 9: Time evolution of the stretched exponential exponent α as a function of the time. Time series divided into 10 parts,
except for Apache and PostgreSQL (5 parts).

for large T/〈T 〉, which can be seen by the straight line behaviour of − logP>(T) in a log-log plot (inset of Fig 7).
For instance, the cumulative distribution functions of the last two parts of FreeBSD are indistinguishable. In all
the projects analysed, P>(T) seem to converge to the same functional shape given by Eq. (4) (Fig 8), although
less clearly for PostgreSQL and Apache. The parameters α were obtained for the last part of the time series
by maximum likelyhood estimation (see e.g. [22]) for T/〈T 〉 > 0.1, resulting in 0.62 (FreeBSD), 0.57 (NetBSD),
0.58 (OpenBSD), 0.58 (Apache), 0.48 (Mozilla), 0.59 (PostgreSQL). One sees therefore that α is consistently
about 0.58, except for FreeBSD and Mozilla. The time evolution of α is reported in Fig 9: generally speaking, α
increases as a function of time and then saturates at 0.58 − 0.60. Mozilla’s α is still increasing, hence, may reach
∼ 0.59 someday, while PostgreSQL’s α = 0.59 is stable. Coarsening the time series Ti in order to group batches of
modifications does not alter the generic shape of P>(T), but changes the exponent α.

In other contexts, several works report a power-law behaviour of P>(T): the cumulative distribution of intervals
between print requests is P>(T) ∝ T−3/4 [23], while that of financial market transactions has a fat tail [24, 25].
Software development is therefore clearly different, but the fact that P>(T) is not Poissonian indicates that there is
some kind of interaction/correlation between the programmers.

8

FIG. 10: Auto-correlation function of time interval between two modifications of various programs (black lines: first part, red
line: second part of the project history)

In order to test the presence of long memory in Ti, we computed its auto-correlation function

C(τ) =
〈Ti(t + τ)Ti(t)〉 − 〈Ti〉

2

〈T 2
i 〉 − 〈Ti〉2

. (5)

A slow decrease of C(τ), i.e., C(τ) ∝ τ−β with β < 1, is a sign of long-memory. Unveiling long memory requires
as long time series as possible, but we face the problem that the time series are not stationary. Hence we split the
time series into two parts of equal size. According to Fig. 10, the auto-correlation functions of the first parts are
always larger than those of the second parts, which is possibly due to the increase of the number of programmers.
The exponent β of the second parts are comprised between 0.42 and 0.61 β (see Table A in appendix).

The presence of long memory at the macroscopic scale, that is, from the point of view of the CVS system collecting
the modifications, means intuitively that periods of high activity are likely to be followed by periods of high activity,
and reversely, suggesting the existence of cascading modifications. However, it is possible to convince oneself that
large submissions of size S drawn from a power-law distribution P (S) = αS−α−1 split into a number of chunks
proportional to S give a power-law to C(τ) (see [26] for more details). The way to make sure that this long memory
is genuine is to take a δT > 0 and check that CδT (τ) still decreases as a power-law. Since the distribution of T has fat
tails, detecting long memory is made easier by computing the auto-correlation function of log Ti, which decreases the
importance of large fluctuations of Ti; the resulting auto-correlation function is much less noisy but has a different
exponent. Increasing δT of course decreases C(τ), which becomes more noisy. We found that C(τ) is still a power-law
for δT ≤ 0.5 hour, whereas the rapid sequences of modifications are typically separated by at a few seconds at most.
Therefore we conclude that the long memory of Ti is genuine and that there are cascades of modifications.

D. Modifications

Fig. 11 reports the cumulative distributions of modification size P>(S). The groups of submissions separated by
less than one minute each have been merged in order to give cleaner distributions. From the plot one concludes that
P>(S) has generally a fat tail. Fitting the data with a power-law P>(S) ∝ S−γ+1 should be done carefully,[29] as
most cases do not have a pure power-law, and also because all the data sets do not have the same functional form.
For instance, all the BSDs have a power-law core with exponent γ ≃ 2 with a cut-off. Mozilla has a power-law
tail with γ ≃ 2.4 and no cut-off, while Apache has γ ≃ 2.5 with a strong cut-off. PostgreSQL is clearly irregular,
hence we do not try to find its γ.

When γ ≃ 2, P>(S) is stable if one splits the time series into several parts, as it is Levy stable. On the other hand,
the exponent of Mozilla changes from part to part, which is of an other clue of the non-stationarity of the project.
In short, the exponent γ has no universal value. In any case, γ is markedly different from that of the distribution of
added or deleted lines, which follows a clean power-law with exponent 3/2 [19]. A recent study found independently

9

FIG. 11: Cumulative distributions of the number of modified files per modification batch (δT = 0.017 hours = 1 minute). The
distributions have been shifted for the sake of clarity.

-10 -5 0 5 10
τ

-0.1

0

0.1

0.2

0.3

0.4

Ξ(
τ)

δT=0.001
δT=0.005
δT=0.01
δT=0.05
δT=0.1
δT=0.5
δT=1

FIG. 12: Log Cross-correlation Ξ(τ) of FreeBSD for increasing δT expressed in hours

fat tails for P>(S), although with different exponents [21]. It is very tempting to relate this finding to the exponent
of incoming links in the software network, which as an exponent ranging from 2 to 2.4 depending on the way one
measures it [14, 15, 27]: sometimes, when a programmer modifies the code of a given file, it is necessary to change all
the files linking to it as well.

The timeseries of number of changed files Si(t) has also long memory, although the auto-correlation function C(τ)
is noisier than the one for time intervals, preventing us to try and obtain an exponent. However, once again, the
auto-correlation function of log S is cleaner and we obtained the exponent δ of the log auto-correlation function of two
largest datasets, i.e., FreeBSD (0.78) and Mozilla (0.48) ; the auto-correlation functions of the other projects, while
clearly displaying long memory, were too noisy to be fitted. Non-trivial detrended fluctuation plots of modification
size in [21] also indicate long memory.

E. Cross-correlations

The cross-correlation between the time intervals T and modification size S is defined as

〈T (t)S(t + τ)〉 − 〈T 〉〈S〉
√

〈(T − 〈T 〉)2〉〈(S − 〈S〉)2〉
(6)

where |τ | indicates the time delay. The fat-tailed nature of their underlying distributions of P (T) and P (S) makes it
difficult to detect any cross-correlation pattern. This problem is overcome by computing the cross-correlation of log T

10

20000 30000 40000 50000 60000
t
i

0

50

100

150

S i

0

500

1000

1500

2000

T
i

0 1000 2000 3000

i

0

50

100

150

200
S i

FIG. 13: Activity patterns of developer jst of Mozilla: number of modifications vs time of modification (upper graph), time
interval between two modifications (middle graph) and number of modified files (lower graph) as a function of the modification
number.

and log S, denoted by Ξ(τ). The most interesting part of Ξ is for small values of |τ |. For example, if Ξ(0) < 0, this
means that a longer than usual wait results in a smaller than usual number of modified files. Reversely, Ξ(0) > 0 if a
programmer works for a while on many files and then submits the changes at once. Therefore Ξ(0) is much influenced
by steady submissions of modification batches separated by few seconds. Fig 12 reports that Ξ(0) is significantly
negative when δT = 0, then increases as a function of δT until it reaches the noise level for δT of the order of a
minute, and then decreases again. This not only supports the hypothesis of cascading modifications, but also shows
that there are fewer than average files modified after a long wait. Ξ(1) is markedly different: first significantly negative,
it increases as a function of δT , becomes positive and very large for δT > 0.5 hour. Its increase is yet another sign
that modifications are submitted by cascades.

IV. INDIVIDUAL DEVELOPERS

The same analysis can be performed at the level of individual developers. Fig. 13 plots T (jst), the time between two
modifications of a Mozilla developper nicknamed jst: the individual time series shows a much greater variability
than that of a whole project. Individual actions have also long memory, as confirmed by Fig. 14.

When studying the dynamics of individual, the question of stationary state is of utter importance, and plots of Σ(a)

as a function of i and t must be carried out, since the activity pattern of a programmer may change abruptly. We
took therefore care of selecting stationary periods when plotting of P>(T (a)) for the programmers studied here. Of
these developers, only the ones labelled 1 and 91 were still contributing at the end of the time series, developer 91
being active in the second half of the history of the project. There is an obvious change of behaviour at T (a) > 24
hours: P>(T (1)) and P>(T (91)) are stretched exponentials for 0.5 < T (a) < 24 hours, and a power-law with exponent
2 for longer times; the other two programmers (52 and 16) have not the same waiting time distributions. This may
reflect the variety of personal behaviour, but also be related to the particular type of work done by each programmer:
for instance creating a whole new part of a program is more complex than translating its user interface, hence the
power-law of waiting times of programmers 1 and 91 may reflect the structure of the program on which they worked.

Finally, the collapse plot of S (Fig. 16) is also convincing and suggests that P>(S) is a superposition of single
individual distributions of roughly the same functional form as the global distribution.

All the above provides evidence that some global properties of software projects are found again at a microscopic
level.

11

-200 0 200
τ

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

cr
os

s-
co

rr
el

at
io

n

1 10 100
0.01

0.1

1

au
to

-c
or

re
la

tio
n

FIG. 14: Left figure: cross-correlation function of T
(jst) and S

(jst). Right figure: auto-correlation of log T
(jst). The dotted

lines delimit noise at 99% confidence.

FIG. 15: Time interval cumulative distributions of the four most active developers of OpenBSD.

V. FILES

The source files are not modified at a constant rate after their creation, but less and less frequently on average. In
other words, they age as they converge slowly to an acceptable state, with bursts of modifications from time to time.
A way of visualising ageing is to plot the time interval between two modifications of a given file T [f] as a function
of the modification number: T [f] tends to increase (see Fig 17) and display larger and larger spikes, suggesting once
again a non-constant dynamics. The bursts of new activity are either due to the implementation of a new feature, or
to a tentative bug fix; in the latter case, the long quiet period reflects the time needed to find and correct a bug. The
clustered activity at the level of a single file is yet another clue of trial and error, or cascading modifications.

A better statistical characterisation of this process is done by plotting the cumulated number of modifications as

a function of the time elapsed since the file’s creation, t
[f]
i − t

[f]
0 (see Fig 18). If the rate of modification is constant,

both quantities depend linearly from each other; if the rate of modifications slows down with time, the dependence
is sub-linear. Fitting our datasets with two-parameter function c(Ti − T0)

z, we found z ranging from 0.6 to 0.9: the
cumulative number of modifications increase sub-linearly as a function of time (Fig 18), echoing a decreases of activity.

12

FIG. 16: Modification cumulative distributions of developers of OpenBSD, and OpenBSD itself.

0 20 40 60 80 100
i

0

5000

10000

15000

T
i[8

2]

FIG. 17: Time interval between two modifications of file 82 of OpenBSD.

VI. CONCLUSION

In short, we have provided evidence that the process of software development does not follow a Poissonian process
as often assumed in software engineering, but that it shares many properties with other kinds of human activity,
be it submitting printing jobs, trading in financial markets, or answering emails and letters. Remarkably, our study
suggests that software development does not belong to the universality classes previously reported in the literature. In
addition, we wish to point out that open-source software provides most detailed data: contrarily to financial markets,
one has full access to the most microscopic actions.

Our results point at the non-smooth trial-and-error processes that underly software projects: the correlations due
to the interaction of programmers and to the structures of the software itself cause large fluctuations of both the time
between two modification submissions and size of the modifications itself. Nevertheless, all the projects analyzed here
have a remarkable degree of statistical regularity and reach a stationary, or mature, state

We thank Matthijs den Besten and Paul David for useful suggestions.
This work has been supported in part by the E.U. within the 6th Framework Program under contract 001907

13

0 25000 50000 75000 100000

t
i

[f]
-t

0

[f]

0

100

200

300

400

500

600

700

800

M
od

if
ic

at
io

n
i

file89
file42
file60
file47

FIG. 18: Modification number versus time from file creation for various files of NetBSD. Dotted lines are best fits with
c(Ti − T0)

z′

(DELIS).

[1] A. Johansen. Response time of internauts. Physica A, 296:539–546, 2001.
[2] A.-L. Barabási. The origin of bursts and heavy tails in human dynamics. Nature, 2005.
[3] Alexei Vázquez et al. Exact results for the Barabási model of human dynamics. Phys. Rev. Lett., 2005. preprint

physics/0506126.
[4] Alexei Vázquez et al. Modeling bursts and heavy tails in human dynamics. 2005. preprint physics/0510117.
[5] Daniel B. Stouffer, R. Dean Malmgren, and Luis A. N. Amaral. ”comment on Barabasi, Nature 435, 207 (2005)”. 2005.
[6] A. Lukács B. Rácz I. Szakadát A.-L. Barabási Z. Dezso, E. Almaas. Fifteen minutes of fame: the dynamics of information

access on the web. 2005. cond-mat/0505087.
[7] S. Valverde and R. V. Sole. Self-organization patterns in wasp and open source communities. IEEE Intelligent Systems,

21(2):36–40, 2006.
[8] R. D. Banker and S. A. Slaughter. The moderating effects of structure on volatility and complexity in software enhancement.

Inf. Syst. Res., 11(3):219–240, 2000.
[9] S. L. Chung T. Chan and T.-H. Ho. An economic model to estimate software rewriting and replacement times. IEEE

Trans. Soft. Eng., 22(8):580–598, 1996.
[10] J. Heales. A model of factors affecting an information system’s change in state. J. Softw. Maint. Evol.: Res. Pract.,

14:409–427, 2002.
[11] Sergi Valverde. Crossover from endogenous to exogenous activity in opensource software development. Eur. Phys. Lett.,

77:20002, 2007.
[12] S. Valverde, R. Ferrer-Cancho, and R. V. Solé. Scale-free networks from optimal design. Europhys. Lett, 60:512–517, 2002.
[13] S. Valverde and R. V. Sole. Logarithmic growth dynamics in software networks. Europhys. Lett., 72, 2005.
[14] C. R. Myers. Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs.

Phys. Rev. E, 68:046116, 2003. cond-mat/0305575.
[15] Damien Challet and Andrea Lombardoni. Bug propagation and debugging in asymmetric software structures. Phys. Rev.

E, 70:046109, 2004.
[16] M. Borst B. S. Curtis, P. Milliman and T. Love. Measuring psychological complexity of software maintenance tasks with

the halstead and mccabe metrics. IEEE Trans. Soft. Eng., 5(2):96–104, 1997.
[17] K. Clark and S. Wheelwright. Managing product and process development. The Free Press, New York, 1998.
[18] http://libresoft.urjc.es/cvsanaly/.
[19] A. Gorshenev and Yuri Pis’mak. Punctuated equilibrium in software evolution. Phys. Rev. E, 70:067103, 2004.
[20] R. T. Fielding A. Mockus and J. D. Herbsleb. Two case studies of open source software development: Apache and mozilla.

ACM Trans. Softw. Eng. Meth., 11(3):309–346, 2002.
[21] Jingwei Wu, Richard C. Holt, and Ahmed E. Hassan. Empirical evidence for soc dynamics in software evolution. IEEE

http://libresoft.urjc.es/cvsanaly/

14

conference on Software Maintenance, ICSM 2007., pages 244–254, 2007.
[22] J. Laherrre and D. Sornette. Stretched exponential distributions in nature and economy: fat tails with characteristic scales.

Eur. Phys. J. B, 2(4):525–539, 1998.
[23] Uli Harder and Maya Paczuski. Correlated dynamics in human printing behavior. 2004. preprint cs.PF/0412027.
[24] Jaume Masoliver, Miquel Montero, and George H. Weiss. Continuous-time random-walk model for financial distributions.

Phys. Rev. E, 2003. cond-mat/0210513.
[25] Z. Eisler and J. Kertész. Size matters: some stylized facts of the stock market revisited. Eur. Phys. J. B, 51:145–154,

2006.
[26] F. Lillo, S. Mike, and J. D. Farmer. A theory for long memory in supply and demand. Phys. Rev. E, 71:66122, 2005.
[27] S. Valverde and R. V. Solé. Hierarchical small worlds in software architecture. Dynamics of Continuous Discrete and

Impulsive Systems: Series B: Applications and Algorithms, 14:1–11, 2007.
[28] This is in line with the qualitative study of Ref. [20]
[29] We used both Hill estimator and direct fitting.

APPENDIX A: EXPONENTS

Program Number of points α β γ δ
Apache 12992 0.58 0.45 ± 0.06 2.5 ?

FreeBSD 105843 0.61 0.62±0.01 2.0 0.78
Mozilla 154852 0.48 0.44±0.02 2.0 0.48
NetBSD 95568 0.57 0.57±0.02 2.0 ?
OpenBSD 62347 0.58 0.54±0.02 2.0 ?

PostgreSQL 17934 0.59 0.60±0.06 ? ?

	Introduction
	Analying CVS logs
	Filename changes
	Software structure

	Data analysis
	Interevent and modification size distributions
	Time series analysis: caveats
	Time between modifications
	Modifications
	Cross-correlations

	Individual developers
	Files
	Conclusion
	References
	Exponents

