
Including communication success
in the estimation of information gain

for multi-robot exploration
Arnoud Visser and Bayu A. Slamet

Intelligent Systems Laboratorium Amsterdam
Universiteit van Amsterdam (UvA)

Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands
http://www.science.uva.nl/research/isla

Abstract—This article investigates the effect of incorporating
knowledge about the communication possibilities in an explo-
ration algorithm used to map an unknown environment. The
mission is to explore a hypothetical disaster site with a small
team of robots. The challenge faced by the robot team is to
coordinate their actions such that they efficiently explore the
environment in their search for victims. The coordination can
only be optimal when the robots share the same map. With
a limited communication range the map cannot be shared in
all circumstances. This article concentrates on the effect of a
distributed map, where each robot has only has knowledge of a
part of the global map and has no guaranteed connection to the
other robot or the operator.

I. INTRODUCTION

This paper1 will investigate the influence of a limited com-
munication distance on a multi-robot exploration approach that
was designed with the disaster sites of the RoboCup Rescue
Competitions in mind. These scenarios can be simulated in
the real world [1] or virtually within the USARSim simulator
[2]. In either case, the team of robots is challenged to explore
the site and locate victims in a constrained amount of time.
Afterwards, the efforts of the robot team are evaluated on the
amount of covered area, the quality of the produced map and
most importantly the number of located victims. See [3] for a
more detailed discussion on this scoring process.

The exploratory efforts exposed by our robots have so
far been governed by strictly reactive behavior (2006) and
tele-operation (2007). Although the autonomous behavior has
demonstrated good robustness and obstacle avoidance, any
seemingly “intelligent” autonomous exploration effort was due
to randomizations that were inherent to the behavior control
design [4].

A well-known paradigm to address the multi-robot ex-
ploration challenge in a more intelligent fashion is frontier-
based exploration. The frontiers are typically defined as the
boundaries of the currently mapped free area where the robot
can enter yet unexplored area [5]. Collaborating robots can use
these frontiers to coordinate their actions [6]–[8], i.e.: assign

1The research reported here is performed in the context of the Interactive
Collaborative Information Systems (ICIS) project, supported by the Dutch
Ministry of Economic Affairs, grant nr: BSIK03024.

robots to frontiers such that the robots simultaneously explore
multiple yet unexplored parts of the environment. This shifts
the exploration problem to a frontier assignment problem.

Most approaches use a cost measure to evaluate the utility of
a frontier. The Manhattan distance and the anticipated traveling
distance are examples of such cost measures. In [9] and [10]
however, frontier evaluation approaches were presented that
focus on the opposite measure: the information gain that can
be expected if the frontier would be explored. This gain is
expressed as an estimate for the amount of area that lies
beyond the frontier. While [9] uses a sampling method that
extrapolates the current map to estimate the information gain,
the approach of [10] directly measures the expected gain from
the current map.

This paper will incorporate a measure which estimates the
probability of communication into the information gain. For
a single robot this probability will be mainly a function of
the distance from the base station. When the observations are
relayed between the robots, the position of the other robots has
to be included into the measure. In the following Section we
will introduce our robotic and simulation platform. In Section
III our simultaneous mapping and localization approach is
given. In Section IV our multi-robot exploration strategy is
explained. Subsequently, the value of information sharing
is demonstrated in a number of exploration experiments in
Section V. This will lead to the conclusions in Section VII.

II. EXPERIMENTAL PLATFORM

A. ROBOTIC PLATFORM

The robotic platform utilized in this paper is realistic
simulation of the P3AT robot. The same robot was used by
the SPQR team in the Rescue Robot league [11].

For our algorithm the choice of the robotic platform is of
minor importance, because the method is on a much higher
level than the actual movements and odometry measurements
of the robot. The SLAM approach mainly relies on the
measurements collected by the laser scanner, and is applicable
to any robot which can carry a laser scanner (the SICK LMS
200 weights 4.5 kg), as demonstrated in [3].

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany. 
Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9
DOI 10.4108/ICST.WIOPT2008.3218

peri
Typewriter



(a)
real P3AT robot

(b)
simulated P3AT robot

(c) simulated
ComStation

Fig. 1. The Pioneer All-Terrain Robot platform is used in the Rescue Robot
league and Virtual Robot competition. The SICK laser range scanner on top
and the sonar rings are clearly visible. The stereo camera on top of the real
robot was not used in this research. On the right a simulated ComStation is
given.

B. SIMULATION FRAMEWORK

The robots are simulated in the USARSim framework2.
Care has been taken to validate the simulator as good as
possible [12], an effort which still continues. The USARSim
framework provides a development, testing, and competition
environment that is based on a realistic interpretation of a
disaster scenario. The current version of USARSim [2] is
based on the UnrealEngine2 game engine that was released by
Epic Games as part of Unreal Tournament 2004. The Unreal
engine handles most of the basic mechanics of simulation and
includes modules for handling input, output (3D rendering,
2D drawing, and sound), networking, physics and dynamics.
Multiplayer games use a client-server architecture in which the
server maintains the reference state of the simulation while
multiple clients perform the complex graphics computations
needed to display their individual views. USARSim uses this
feature to provide controllable camera views and the ability to
control multiple robots.

Fig. 2. One of the P2AT robots in an USARSim simulated world.

When a robot is instantiated through USARSim, for each
component of the robot an object is created which provides
information and can be controlled. For instance objects like

2The USARSim framework can be downloaded from http://sourceforge.net/
projects/usarsim.

wheels and sensors are part of the API to USARSim. For
each class of objects there are class-conditional messages
that enable a user to query the component’s geography and
configuration, send commands, and receive status and data.
Permissible calls into the game engine and complete details
on the API may be found in the USARSim Reference Manual
[13].

An important aspect for this paper is the simulation of the
wireless communication. All information between the robots
has to go via Wireless Communication Server, which performs
a sanity check and drops messages and connection when they
are not longer feasible. Also the information for the operator
is directed via the Wireless Communication Server. Only the
information that reaches a ComStation (see Fig. 1(c)) which
is physically present in the environment may be used by
the operator. Only the physical layer of communication is
simulated, protocol and routing issues are ignored.

III. LOCALIZATION AND MAPPING

The mapping algorithm is based on the manifold approach
[14]. Globally, the manifold relies on a graph structure that
grows with the amount of explored area. Nodes are added to
the graph to represent local properties of newly explored areas.
Links represent navigable paths from one node to the next.

The mapping algorithm is not dependent on information
about the movement of the robot for the creation of links. A
good estimate of the displacements can be derived only from
scan matching. In practice the displacement as reported by the
inertial navigation sensor is valuable as initial estimate for the
scan matching. The displacement is estimated by comparing
the current laser scan with laser scans recorded shortly before,
stored in nearby nodes of the graph. In principle the scan
matcher can also perform a comparison with measurements
elsewhere in the graph, but such a comparison is only made
under specific circumstances (for instance during loop closure,
as illustrated in Figure 3). At the moment that the displacement
becomes so large that the confidence in the match between
the current scan and the previous scan drops, a new node is
created to store the scan and a new link is created with the
displacement. A new part of the map is learned.

As long as the confidence is high enough, the information
on the map is sufficient and no further learning is needed. The
map is just used to get an accurate estimate of the current loca-
tion. The localization algorithm maintains a single hypothesis
about where the robot currently is and does an iterative search
around that location when new measurement data arrives. For
each point the correspondence between the current measure-
ment data and the previous measurement data is calculated.
The point with the best correspondence is selected as the center
of a new iterative search, until the search converges. Important
here is the measure for the correspondence. Lu and Milios
[15] have set the de-facto standard with their Iterative Dual
Correspondence (IDC) algorithm, but afterward many other
approaches have been proposed. Our approach is based on the
Weighted Scan Matching (WSM) algorithm [16], which works



(a) before loop closure. (b) after loop closure.

Fig. 3. An occupancy map generated by our mapping algorithm. In this example the robot drives a loop of 40 meters. The robot starts at the lobby at the
bottom right and moves up. Then the robot turns left several times until it returns in the lobby. In Fig. 3(a) the lobby seems to be visible twice, once from
the observations at the start of the loop and once from the observations at the end of the loop. During the loop small localization errors are accumulated,
resulting in a final error of a few meters and several degrees. When the robot realizes that it is on a location visited before (by re-observing an particular
landmark) it can close the loop by matching the measurements at positions in the graph.

fast and accurate in circumstances where dense measurements
are available and the initial estimate can be trusted3.

The graph structure allows to have multiple disconnected
maps in memory. In the context of SLAM for multiple robots,
this allows to communicate the graphs and to have one
disconnected map for each robot. Additionally, it is possible
to start a new disconnected map when a robot looses track of
its location, for example after falling down stairs.

When there seems to be an overlap between two dis-
connected maps, this hypothesis can be checked by scan
matching. The displacement and correspondence between the
measurements of two nearby points in each overlapping region
are calculated. When the correspondence is good, a loop
closing operation may be performed to refit all points on the
two maps for improved accuracy. An example of a merged
map is shown in [4].

The graph structure of the manifold can be easily converted
into occupancy grids with standard rendering techniques, as
demonstrated in [17] and Figure 3.

IV. MULTI-ROBOT RESCUE SITE EXPLORATION

Exploration addresses the challenge of directing a robot
through an environment such that its knowledge about the
environment is maximized [18]. A mobile robot typically
maintains its knowledge about the external world in a map

3MatLab code of the Weighted Scan Matching algorithm was made
available by Samuel T. Pfister et al.. C++ and Visual Basic versions are
implemented by Max Pfingsthorn and Bayu A. Slamet and downloadable via
http://www.robocuprescue.org.

m. Increasing the knowledge represented by m is achieved by
either reducing the uncertainty about current information, or
by inserting new information. The latter occurs when the map
coverage is extended as the robot visits areas in the external
world not yet covered by m before.

The approach in [4] was to passively acquire the information
to store in the map, i.e. while the robot was wandering
around pursuing other objectives like finding victims. In this
work however, the focus is on active exploration with limited
communication range: to explicitly plan the next exploration
action a which will increase the knowledge about the world
the most (taken into account if this knowledge can still reach
the ComStation). In this paradigm victim finding becomes the
side-effect of efficient exploration.

Occupancy grids [19] are a convenient representation for
m in order to address the exploration challenge as they lend
themselves excellently for storing probabilistic information
about past observations. Each cell x corresponds to a region
in the external world and holds the value p(x) that denotes
the aggregated probability that this region in the real world is
“occupied”, i.e. is (part of) an obstacle. The objective of active
exploration can then be seen as to minimize the information
entropy H(m) [20] of the probability distribution defined over
all x ∈ m:

H(m) = −
∑
x∈m

p(x)log(p(x)) (1)

Initially each grid cell has unknown occupancy, so p(x) =
0.5 for all x ∈ m and the entropy of the map H(m) is max-



imum. For exploration purposes the absolute value of H(m)
is not of interest, what is relevant is the difference in entropy
before H(m) and after H(m|a) a particular exploration action
a: the information gain ∆I(a) [21]–[23].

∆I(a) = H(m|a) − H(m) (2)

Note that the exploration action a could be a complex ma-
neuver, consisting of a number of controls ui and observations
zi that spans multiple time steps i. Hence, for predictions
about ∆I(a) that lie multiple timestamps in the future, the
set of possible exploration actions can grow rather fast. In
many current exploration strategies this issue is addressed by
evaluating only a limited set of future states. These approaches
consider only the situations where a robot actually enters yet
unexplored area, which are by definition the locations where
open area borders on unknown area: the frontiers [5].

Given the occupancy grid map m the concepts of open area
and unexplored area are well-defined by the occupancy values
p(x) for all the grid cells x ∈ m [5]. The unexplored area
involves all the cells x for which the occupancy p(x) is still
at its initial value p(x) = 0.5. The free space are the cells for
which p(x) is sufficiently close to zero.

A. Estimating Area Beyond Frontiers on Occupancy Grids

A good autonomous exploration algorithm should navigate
the robot to optimal target observation points [24]. The ap-
proach presented in [10] enables a robot to distinguish these
locations using a method that is based on “safe regions”. The
idea is that the robot simultaneously maintains two occupancy
grids: one based on the maximum sensing range rmax of
the range sensing device and another one based on a more
conservative safety distance rsafe. Typical values for rmax and
rsafe are 20 meters and 3 meters respectively. The result is
that the safe region is in effect a subset of the open area as
visualized in Figure 4(a). Frontiers can then be extracted on the
boundaries of the safe region where the robot can enter the free
space, as illustrated in Figure 4(b). Subsequently, Figure 4(c)
illustrates how the area beyond the frontier can be estimated
directly from the current map by measuring the amount of free
space beyond the safe region.

Greedy exploration could continuously focus the robot to
the frontier f with largest area A(f) and which will ultimately
lead to a complete coverage of the environment. More efficient
exploration can be expected when also the distance d(f) is
considered in a utility function U(f) that trades off the costs
of moving to the frontier with the expected information gain.
In our experiments we used the equation:

U(f) = A(f)P (f)/d(f) (3)

The information gain ∆I(af ) of the action af going to
frontier f , is estimated by the product A(f) ∗ P (f). Here
P (f) is the probability that the robot can still communicate at
the location of the frontier. How this probability is estimated
is explained in the following section.

(a) Open area
(white) and safe
region (gray)

(b) Frontiers
(white)

(c) Area Beyond
Frontiers
(colored)

Fig. 4. Frontier Estimation: based on the open area and safe region in a) the
frontiers in b) can be extracted. The regions beyond the frontiers can then be
estimated directly from the map as in c).

B. Estimating the Success of Communication

During the exploration, the signal level of the communica-
tion towards the ComStation is measured at regular intervals.
The location of the robot is provided by the localization, the
position of ComStation is broadcasted. This means that at
those regular intervals the tuple (distance, signal level) can be
stored in a datastructure4. When the signal level of an unknown
distance is needed, this can be looked up in the datastructure
by finding the nearest neighbor. To find the nearest neighbor
also a heuristic estimate of the signal level S(d) is needed,
which can be calculated from the current signal level S(d0)
plus the distance component from the equation:

S(d)[dBm] = S(d0)[dBm] − 10nlog(
d

d0
) (4)

This estimate only takes the dominant effect of path loss into
account. Other effects, such as attenuation, reflection, refrac-
tion and diffraction of the signal in an indoor environment,
are not taken explicitly into account. Instead, those effects
(mainly dependent on the obstacles in the line of sight) are
partly incorporated in the current signal level S(d0) and partly
incorporated in the stored values in the datastructure. The
attenuation of the current environment is “learned” in this
datastructure. With the estimated signal level an estimate of
the Bit Error Rate can be made, which can be translated in
probability of a Message Error Rate. This Message Error Rate
cuts down fast at a certain signal level (for these experiments
fixed on -93 dBm).

4As datastructure a quadtree [25] for fast retrieval of nearest neighbors is
used



C. Multi-Robot Coordination

After the frontier extraction method illustrated in Figure 4
and the utility function from Equation (3) we are left with the
challenge to intelligently assign frontiers to the members of a
multi-robot team.

Given the set of frontiers F = {f} and team of robots
R = {r} the full utility matrix U = [uij ] can be computed
that stores the utility uij for all possible assignment of robots
ri ∈ R to frontiers fj ∈ F . This matrix U is calculated with
an Euclidian distance measure deu(f). The Euclidean distance
deu gives a lower bound of the actual distance to be traveled.
This means that the utility values [uij ] are optimistic. The
actual distance to be traveled can be calculated by performing
a path-planning operation, but this is typical a computation
intensive operation. The efficiency of our algorithm is opti-
mized by recalculating only a few elements of the matrix;
only the highest utility uij ∈ U is recalculated. Thereafter it is
checked if this value is still the maximum value. Otherwise the
new maximum value is recalculated with a distance measure
based on path-planning. When the path-planned value is the
maximum, the frontier fj is assigned to robot ri and the rows
and columns of the utility matrix U are pruned. This process
continues until a frontier is assigned to the current robot rc.
The pseudo code of this algorithm is given in Algorithm 1.

Note that in some specific cases this could lead to a slightly
sub-optimal assignment, i.e. a different non-greedily selected
assignment could exist which has higher joint utility. Also,
when there are less frontiers than robots some robots will
not be assigned a frontier. However, in our experience these
occasions are rather rare as robots usually quickly find more
frontiers than they can close.

D. Planning Safe Paths

In the second part of the algorithm a check is made if an
obstacle free path exists to a frontier. The same occupancy
grid that was used to extract the frontiers can also be used to
plan safe paths that avoid obstacles. If paths would planned
on the free-space robots may be guided to locations that are
dangerously close to obstacles. This is a well-studied problem
in robotics [26] and several solutions exist.

Because path-planning has to be performed for several
robot-frontier combinations, a simple method has been ap-
plied that gives fast reasonable path. The occupancy map is
converted into a safety map by convoluting the obstacles with
the shape of the non-holonomic robot. This is approximated
by employing a Gaussian convolution kernel. On this approx-
imated safety map path-planning is performed with a breath-
first algorithm.

This completes the set of tools necessary to enable coordi-
nated frontier-based exploration by a team of robots. In the
subsequent section the method will be applied to guide robots
through to a virtual disaster site in several experiments.

V. EXPERIMENTS AND RESULTS

Our experiments will be based on the “Hotel Arena” that
was used extensively during the RoboCup Rescue competi-

Data: the identity of the current robot rc ∈ R and the
map m as known by rc.

Data: the set of robots ri in R. Each ri consist of the
tuple (xri , yri , θri).

Data: the set of frontiers fj in F . Each fj consist of the
tuple (xfj , yfj , Afj , Pfj ).

Result: the pair rc, fc and the path pc to the location
(xfc , yfc)

for each robot ri in R do
for each frontier fj in F do

deu =
√

(xfj − xri)2 + (yfj − yri)2;
uij = Afj

Ṗfj
/deu;

end
end
umax = maxuij ;
repeat

for robot ri and frontier fj of umax do
p=PathPlanning from (xri , yri) to (xfj , yfj ) on
map m;
dpp=length of path p;
uij = Afj Ṗfj /dpp;

end
if max uij = umax then

Assign fj to ri;
Prune U from i and j;

end
umax = maxuij ;

until robot rc is Assigned ;
pc=last path p

Algorithm 1: The algorithm for the assignment of frontiers
to robots

tions of 2006 5. Figure 5 shows a blue-print of this office-like
environment. The wide vertical corridor in the center connects
the lobby in the south with several horizontal corridors that go
east and west. Numerous rooms border on all the corridors.
For the competition runs, robots would typically be spawned
in the lobby or at the far ends of corridors, e.g. in the north-
east, north-west or south-east corners.

Following the same setup as in the RoboCup competition
each experiment will involve a run of 20 minutes. So the
comparisons will focus on the amount of area that the robots
were able to explore in this fixed time-window.

A. Results based on Coordinated Exploration

These experiments involve multi-robot exploration using the
presented approach. We used three spawn positions in the
Northern corridor: at both ends and at the T-junction near the
middle. Each spawn position was used as the fixed location
of the ComStation, with the robots at the two other spawn
positions. The Northern corridor has a length of 25 meters,

5USARSim simulator, the simulated worlds used in these experiments and
documentation are available on http://www.sourceforge.net/projects/usarsim.
The maps used in 2007 are unfortunately not publicly available.



Fig. 5. A blue-print of the Hotel Arena, the virtual environment used for our experiments.

which allows error-free communication in this corridor. Com-
munication problems occur in rooms and corridors further
away.

The first experiment is used as reference scenario. The
robots relay their positions to each other, but they do not
share their maps. Their observations are only combined at the
operator, and this information is not feed back to the robots.
The resulting maps can be seen in Figure 6. On the maps the
following color-coding is used:

• blue indicates unknown terrain,
• shades between light-blue and white indicate the proba-

bility that the area is free from obstacles
• black indicates obstacles
• solid grey indicates “safe region”, as introduced in Sec-

tion IV-A
• red indicates a victim
• light-green indicates the path of the robots

In Figure 6(b) the robots started in the north-west and
north-east end of the corridor. The ComStation was located
at position N in the middle near the T-junction. In Figure 6(a)
the ComStation was located in the north-west location NW
and in Figure 6(c) in the north-east location NE. Although
the resulting maps are already quite good (the results are
comparable with the 2006 competition results, with 6 robots
and no limit on the communication), it can be noticed that
there is some inefficiency in the exploration. Some corridors
are explored several times, which can be seen from the many
green paths in those corridors.

In Figure 6(a) the first robot (called Hercules) starts ex-
ploring near the T-junction, while the second robot (called
Achilles) starts at the NE location. Hercules heads west
towards the ComStation. Near the ComStation Hercules turns
back and follows the corridor to the east. That was precisely
the point where Achilles started. Achilles goes south at the
T-junction. In the lobby it discovers the door towards the
north-west. During this passage communication is lost for
short period, but is reestablished short afterwards. This is

a good indication of a typical communication range in this
environment. In the mean time Hercules also reached the
lobby, which means that the same corridor was explored twice.

In Figure 6(b) the robot Hercules starts in the north-east.
Hercules explores the first two rooms and heads towards the
lobby. Achilles starts at the north-west, checks the room below
and the small corridor to the west. After that Achilles heads
towards the T-junction (where the ComStation is located),
checks the first two rooms of the east-corridor but continues
towards the north-east corridor (which was already explored
extensively by Hercules).

In Figure 6(c) Hercules started near the T-junction. Hercules
goes west (towards the ComStation). Hercules explores the
two rooms near the ComStation and heads towards the lobby.
In the lobby it discovers the passage to the north-east. For a
long time the wireless connection is broken, but closer to the
ComStation the connection is reestablished. More exploration
is possible here, but the time limit of 20 minutes is reached.

It should be clear from these examples that the exploration
choices of the robot are good, but not coordinated. Sometimes
the communication link drops because the robots plan too
far ahead, and cannot always predict what this means for the
communication link. Reducing this planning horizon is maybe
good to guarantee communication, but not for the exploration
efficiency.

The next set of experiments demonstrates the effect of
sharing map information between the robots. It should be clear
that there will be less overlap between the areas explored by
the robots. The expectation is that the robots will explore less
corridors in the north and more corridors in the south. The
resulting maps can be found in Figure 7.

In Figure 7(a) Hercules starts at the T-junction and directly
heads towards the lobby. There the north-west passage is
found. This information is relayed to the ComStation via
Achilles. After the passage the robot gets stuck for a while, and
heads towards the south-west corridor. Achilles explores the
first two rooms and continues to explore the northern corridor.



(a) ComStation NW (535 m2, 3 victims) (b) ComStation N (556 m2, 4 victims) (c) ComStation NE (545 m2, 6 victims)

Fig. 6. Exploration from the Northern corridor with two robots which do not share their map

(a) ComStation NW (531 m2, 3 victims) (b) ComStation N (642 m2, 5 victims) (c) ComStation NE (568 m2, 4 victims)

Fig. 7. Exploration from the Northern corridor with two robots sharing their map

In Figure 7(b) Achilles starts at the location NW. Achilles
explores the narrow north-west corridor. After that Achilles
is able to enter the cubicle area and to come back. Also the
room south of the start location is partly explored. During all
those narrow passages some orientation error is accumulated.
Hercules in the mean time explores one room, continues
towards the T-junction, heads towards the lobby and find the
north-west passage.

In Figure 7(c) Achilles directly heads east. At the T-junction
Achilles goes south, explores part of the lobby. The results of
the lobby are relayed via Hercules. After the lobby Achilles
goes back to the corridor in the east and finds 6 rooms.
Hercules explores in the mean time the northern corridor and
one of the rooms.

The difference between the two sets of experiments is
twofold. Firstly, with shared maps less area is explored double,
which can be seen from the green paths through the corridors.
Further, more information collected in the southern regions,
outside the direct communication range. A rough indication
of the communication range is drawn in Figure 7(c) and 6(c).
This is possible because the information reaches the operator
via a relay (when the other robot is near). More important,
the shared map-information forces the other robot to take

less obvious choices for observation points, because a portion
of nearby frontiers is already explored by the other robot.
Unfortunately, this also means that the local navigation of the
robot is tested in narrow passages.

Notice not only the explored area but also the number of
victims found by the two robots in the previous experiments is
comparable to the number of victims found in the semi-final
by teams with four to eight robots [3].

VI. DISCUSSION

This paper investigates the influence of a limited commu-
nication distance on a multi-robot exploration approach. The
proposed algorithm incorporates wireless constraints in the
selection between frontiers. Compared to other research, as
for instance [27] and [24], the planning looks far ahead (both
in time and space). In [27] also a utility function is used to
select an optimal action, but there the action is a single move
over an occupancy grid with cells of a few centimeters. In this
paper planning looks several meters ahead.

Planning so far ahead makes it also difficult to estimate the
probability of communication success, because the signal level
indoors can drop sharply when traveling several meters ahead.
Our hypothesis was that the emergent behavior of robots would



be to first explore the area inside the communication range,
followed by an exploration outside the communication range.
The experiments performed here indicate exploration outside
the communication range occurs already before the whole
area inside is explored, because the precise location of the
communication range can only be learned by crossing that
line several times (by accident). Further we had hoped that the
exploration outside the communication range would occur for
both robots at the same time, and that both robots could benefit
from each other efforts. The limited number of experiments
indicates that hope about the timing could be correct, but that
this is no guarantee that both robots benefit from each other.
It is clear that the role as relay station should be explicitly
planned.

VII. CONCLUSIONS

This paper investigated the influence of a communication
range on a frontier-based exploration approach that can be
used to coordinate a team of robots. The approach assigns
utilities to frontiers using a measure of the information gain
that can be estimated directly during exploration. In this paper,
an approach is proposed to incorporate a measure for the
communication probability in the estimate of the information
gain. This information gain is balanced by the movement costs.
Subsequently, a frontier with the highest utility is assigned to
the members of a robot team.

In a number of experiments the importance of reliable
communication is indicated, and the need to include the
communication probability inside the planning of multi-robot
exploration. Further experiments are needed, but before these
experiments are performed, the underlying navigation should
be optimized.

In our experiments we have shown that this approach leads
to efficient rescue site coverage. In future work we would
like to investigate the possibilities for multi-robot coordinated
exploration with more than two robots, study the influence
of a-priori data and the effect of explicitly planning relay-
positions to optimize exploration outside the communication
range of the ComStation.

REFERENCES

[1] A. Jacoff, E. Messina, B. Weiss, S. Tadokoro, and Y. Nakagawa, “Test
arenas and performance metrics for urban search and rescue robots,”
in Proceedings of the 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems, October 2003.

[2] S. Balakirsky, C. Scrapper, S. Carpin, and M. Lewis, “Usarsim:
providing a framework for multi-robot performance evaluation,”
in Proceedings of PerMIS 2006, August 2006, pp. 98–
103. [Online]. Available: http://www.isd.mel.nist.gov/PerMIS 2006/
proceedings/PerMIS Program.pdf

[3] S. Balakirsky, S. Carpin, A. Kleiner, M. Lewis, A. Visser, J. Wang,
and V. A. Ziparo, “Towards heterogeneous robot teams for disaster
mitigation: Results and performance metrics from robocup rescue,”
Journal of Field Robotics, to appear.

[4] B. Slamet and M. Pfingsthorn, “ManifoldSLAM: a Multi-Agent Simul-
taneous Localization and Mapping System for the RoboCup Rescue Vir-
tual Robots Competition,” Master’s thesis, Universiteit van Amsterdam,
December 2006.

[5] B. Yamauchi, “A frontier based approach for autonomous exploration,”
in Proceedings of IEEE International Symposium on Computational
Intelligence in Robotics and Automation, Monterey, CA, July 10-11,
1997., 1997.

[6] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp. 376–378, 2005.

[7] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
AGENTS ’98: Proceedings of the second international conference on
Autonomous agents. New York, NY, USA: ACM Press, 1998, pp. 47–
53.

[8] R. Zlot, A. Stentz, M. Dias, and S. Thayer, “Multi-robot exploration con-
trolled by a market economy,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2002.

[9] H. H. González-Baños and J.-C. Latombe, “Navigation Strategies for
Exploring Indoor Environments,” The International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 829–848, 2002. [Online]. Available:
http://ijr.sagepub.com/cgi/content/abstract/21/10-11/829

[10] A. Visser, Xingrui-Ji, M. van Ittersum, and L. A. G. Jaime,
“Beyond frontier exploration,” in Proceedings of the 11th RoboCup
International Symposium, July 2007. [Online]. Available: http:
//www.science.uva.nl/∼arnoud/publications/BeyondFrontiers.pdf

[11] D. Calisi, A. Censi, A. Farinelli, L. Iocchi, D. Nardi, and G. Tipaldi,
“Spqr real rescue team description paper,” in Robocup 2006: Robot
Soccer World Cup X, Bremen, Germany, June 2006, (Proceedings CD-
ROM).

[12] S. Carpin, T. Stoyanov, Y. Nevatia, M. Lewis, and J. Wang, “Quantitative
assessments of usarsim accuracy,” in PERMIS, 2006.

[13] J. Wang and S. Balakirsky, “Usarsim v 3.1.1,” http://sourceforge.net/
projects/usarsim, May 2007.

[14] A. Howard, G. S. Sukhatme, and M. J. Matarić, “Multi-robot mapping
using manifold representations,” Proceedings of the IEEE - Special Issue
on Multi-robot Systems, 2006.

[15] F. Lu and E. Milios, “Robot Pose Estimation in Unknown Environments
by Matching 2D Range Scans,” Journal of Intelligent and Robotic
Systems, vol. 18, pp. 249–275, 1997.

[16] S. T. Pfister, K. L. Kriechbaum, S. I. Roumeliotis, and J. W. Burdick,
“A weighted range sensor matching algorithm for mobile robot displace-
ment estimation,” IEEE Transactions on Robotics, 2007, (to appear).

[17] M. Pfingsthorn, B. Slamet, and A. Visser, “A scalable hybrid multi-robot
slam method for highly detailed maps,” in Proceedings of the 11th
RoboCup International Symposium, July 2007. [Online]. Available:
http://www.science.uva.nl/∼arnoud/publications/slam method.pdf

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, September 2005.

[19] H. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI
Magazine, vol. 9, pp. 61–74, 1988.

[20] D. Fox, W. Burgard, and S. Thrun, “Active markov localization for
mobile robots,” Robotics and Autonomous Systems, vol. 25, pp. 195–
207, March 1998.

[21] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation -
mobile robot navigation with uncertainty in dynamic environments,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 1999, pp. 34–40.

[22] R. Sim and N. Roy, “Global a-optimal robot exploration in slam,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Barcelona, Spain, 2005.

[23] R. G. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,
S. Thrun, and H. Younes, “Coordination for multi-robot exploration and
mapping,” in AAAI/IAAI, 2000, pp. 852–858.

[24] T. Kollar and N. Roy, “Trajectory Optimization using Reinforcement
Learning for Map Exploration,” The International Journal of Robotics
Research, vol. 27, no. 2, pp. 175–196, 2008. [Online]. Available:
http://ijr.sagepub.com/cgi/content/abstract/27/2/175

[25] H. Samet, “The quadtree and related hierarchical data structures,” ACM
Comput. Surv., vol. 16, no. 2, pp. 187–260, 1984.

[26] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, June 2005.

[27] M. N. Rooker and A. Birk, “Multi-robot exploration under the con-
straints of wireless networking,” Control Engineering Practice, vol. 15,
no. 4, pp. 435–445, 2007.




