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Rate and Power Allocation in Fading Multiple
Access Channels

Ali ParandehGheibi, Atilla Eryilmaz, Asuman Ozdaglar, and Muriel Médard

Abstract— We consider the problem of rate and power allo-
cation in a fading multiple-access channel. Our objective is to
obtain rate and power allocation policies that maximize a utility
function defined over average transmission rates. In contrast
with the literature, which focuses on the linear case, we present
results for general concave utility functions. We consider two
cases. In the first case, we assume that power control is possible
and channel statistics are known. In this case, we show that the
optimal policies can be obtained greedily by maximizing a linear
utility function at each channel state. In the second case, we
assume that power control is not possible and channel statistics
are not available. In this case, we define a greedy rate allocation
policy and provide upper bounds on the performance difference
between the optimal and the greedy policy. Our bounds highlight
the dependence of the performance difference on the channel
variations and the structure of the utility function.

I. INTRODUCTION

Dynamic allocation of communication resources such as
bandwidth or transmission power is a central issue in multiple
access channels in view of the time varying nature of the
channel and interference effect. Most of the existing literature
focuses on specific communication schemes such as TDMA
(time-division multiple access) [1] and CDMA (code-division
multiple access) [2], [3] systems. An exception is the work by
Tse et al. [4], who consider the notion of throughput capacity
for the fading channel with Channel State Information (CSI).
That is the notion of Shannon capacity applied to the fading
channel, where the codeword length can be arbitrarily long
to average over the fading of the channel. The points on the
boundary of the capacity region are attained by dynamically
allocating the resources with the goal of maximizing a linear
utility function.

In this paper, we consider the problem of rate and power
allocation in a multiple access channel with perfect CSI.
Contrary to the linear case in [4], we consider maximiz-
ing a general utility function of transmission rates over the
throughput capacity region. Such a general concave utility
function allows us to capture different performance metrics
such as fairness or delay (c.f. Shenker [5], Srikant [6]). Our
contributions can be summarized as follows.
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We first consider the case where channel statistics are known
and power can be controlled at the transmitters. Owing to
strict convexity of the capacity region, we show that the
resource allocation problem for a general concave utility is
equivalent to another problem with a linear utility. Hence, the
optimal resource allocation policies are obtained by applying
the results in [4] for the linear utility. Given a general utility
function, the conditional gradient method is used to obtain
the corresponding linear utility. Second, we consider the case
where the transmitters do not have the power control feature
and channel statistics are not known. In this case, a greedy
policy which maximizes the utility function for any given
channel state, is suboptimal. However, we can bound the
performance difference between the optimal and the greedy
policies. We show that this bound is tight in the sense that
it goes to zero either as the utility function tends to a linear
function of the rates or as the channel variations vanish.

Other than the papers cited above, our work is also related
to the work of Vishwanath et al. [7] which builds on [4] and
takes a similar approach to the resource allocation problem for
linear utility functions. Other works address different criteria
for resource allocation including minimizing the weighted sum
of transmission powers [8], and considering Quality of Service
(QoS) constraints [9]. In contrast to this literature, we consider
the utility maximization framework for general concave utility
functions.

The remainder of this paper is organized as follows: In
Section II, we introduce the model and describe the capacity
region of a fading multiple-access channel. In Section III, we
address the resource allocation problem with power control
and known channel statistics. In Section IV, we consider the
same problem without power control and channel statistics.
Finally, we give our concluding remarks in Section V.

Regarding the notation, we denote by xi the i-th component
of a vector x. A vector x is positive when xi > 0 for all
components i of x. We denote the nonnegative orthant by
Rn

+, i.e., Rn
+ = {x ∈ Rn | x ≥ 0}. We write x′ to denote the

transpose of a vector x.

II. SYSTEM MODEL

We consider M transmitters sharing the same media to
communicate to a single receiver. We model the channel as
a Gaussian multiple access channel with flat fading effects

Y (n) =
M∑
i=1

√
Hi(n)Xi(n) + Z(n), (1)

where Xi(n) and Hi(n) are the transmitted waveform and the
fading process of the i-th transmitter, respectively, and Z(n)
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is white Gaussian noise with variance N0. We assume that the
fading processes of all transmitters are jointly stationary and
ergodic, and the stationary distribution of the fading process
has continuous density. We also assume that all the transmitters
and the receiver have instant access to channel state infor-
mation. In practice, the receiver measures the channels and
feeds back the channel information to the transmitters. The
implicit assumption in this model is that the channel variations
are much slower than the data rate, so that the channel can
be measured accurately at the receiver and the amount of
feedback bits is negligible compared to that of transmitting
information.

First, consider the non-fading case where the channel gains
are fixed. The capacity region of the Gaussian multiple-access
channel with no power control is described as follows [10]

Cg(P ,h) =
{

R ∈ RM
+ :

∑
i∈S

Ri ≤ C
(∑

i∈S

hiPi, N0

)
,

for all S ⊆M = {1, . . . ,M}
}

, (2)

where Pi and Ri are the i-th transmitter’s power and rate,
respectively. C(P,N) denotes Shannon’s formula for the ca-
pacity of AWGN channel given by

C(P,N) =
1
2

log(1 +
P

N
) nats. (3)

For a multiple-access channel with fading, but fixed trans-
mission powers Pi, the throughput capacity region is given by
averaging the instantaneous capacity regions with respect to
the fading process [11],

Ca(P ) =
{

R ∈ RM
+ :

∑
i∈S

Ri ≤ EH

[
C
(∑

i∈S

HiPi, N0

)]
,

for all S ⊆M
}

, (4)

where H is a random vector with the stationary distribution
of the fading process.

A power control policy P is a map from any given fading
state h to P(h) = (P1(h), . . . ,PM (h)), the powers allocated
to the transmitters. Similarly, we can define the rate allocation
policy, R, as a map from the fading state h to the transmis-
sion rates, R(h). For any given power-control policy P , the
capacity region follows from (4) as

Cf (P) =
{

R ∈ RM
+ :

∑
i∈S

Ri ≤

EH

[
C
(∑

i∈S

HiPi(H), N0

)]
, for all S ⊆M

}
.

Tse et al. [4] have shown that the throughput capacity of a
multiple access fading channel is given by

C(P̄ ) =
⋃
P∈G

Cf (P), (5)

where G = {P : EH [Pi(H)] ≤ P̄i, for all i} is the set of all
power control policies satisfying the average power constraint.
Let us define the notion of boundary or dominant face for any
of the capacity regions defined above.

Definition 1: The dominant face or boundary of a capacity
region, denoted by F(·), is defined as the set of all M -tuples
in the capacity region such that no component can be increased
without decreasing others while remaining in the capacity
region.

III. RATE ALLOCATION WITH POWER CONTROL

In this section, we assume that the channel statistics are
known a priori. The goal of optimal resource allocation is to
find feasible rate and power allocation policies denoted by R∗
and P∗, respectively, such that R∗(H) ∈ Cg

(
P∗(H),H

)
,

and P∗ ∈ G. Moreover,

EH [R∗(H)] = R∗ = argmax u(R)
subject to R ∈ C(P̄ ) (6)

where u(·) is a given utility function and is assumed to
be a continuously differentiable concave function of R, and
monotonically increasing in each component Ri for all i.

For the case of a linear utility function, i.e., u(R) = µ′R
for some µ ∈ RM

+ , Tse et al. [4] have shown that the optimal
rate and power allocation policies are given by the optimal
solution to a linear program, i.e.,

(R∗(h),P∗(h)) = arg max
r,p

(
µ′r − λ′p

)
subject to r ∈ Cg(h,p), (7)

where h is the channel state realization, and λ ∈ RM
+ is a

Lagrange multiplier satisfying the average power constraint,
i.e., λ is the unique solution of the following equations

∫ ∞

0

1
h

∫ ∞

2λi(N0+z)
µi∏

k 6=i

Fk

(
2λkh(N0 + z)

2λi(N0 + z) + (µk − µi)h

)
fi(h)dhdz = P̄i

(8)

where Fk and fk are cumulative distribution function (CDF)
and probability density function (PDF) of the stationary
distribution of the channel state process for transmitter k,
respectively.

Exploiting the polymatroid structure of the capacity region,
problem (7) can be solved by a simple greedy algorithm
(see Lemma 3.2 of [4]). It is also shown in [4] that for
positive µ the optimal solution, R∗, to the problem in (6)
is uniquely obtained. Given the distribution of channel state
process, denoted by Fk and fk, we have

R∗i (µ) =
∫ ∞

0

1
2(N0 + z)

∫ ∞

2λi(N0+z)
µi∏

k 6=i

Fk

(
2λkh(N0 + z)

2λi(N0 + z) + (µk − µi)h

)
fi(h)dhdz,

(9)

The uniqueness of R∗ follows from the fact that the stationary
distribution of the fading process has continuous density [4].
It is worth mentioning that (9) parametrically describes the
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boundary of the capacity region, and hence, there is a one-to-
one correspondence between the boundary of C(P̄ ) and the
positive vectors µ with unit norm.

Now consider a general concave utility function. We use
an iterative method to compute the optimal solution, R∗, of
problem (6). Note that by monotonicity of the utility function,
R∗ always lies on the boundary of the capacity region, C(P̄ ).
Once R∗ is known, then in view of one-to-one correspondence
between the boundary of C(P̄ ) and the positive vectors µ,
there exist a positive vector µ∗ such that

R∗ = argmax (µ∗)′R subject to R ∈ C(P̄ ). (10)

Therefore the optimal rate and power allocation policies can
be obtained by using the greedy policies of Tse et al. [4] for
the linear utility function, u(R) = (µ∗)′R.

We use the conditional gradient method [12] in order to
iteratively compute the optimal solution of problem (6). The
k-th iteration of the method is given by

Rk+1 = Rk + αk(R̄k −Rk), (11)

where αk is the stepsize and R̄
k is obtained as

R̄
k ∈ argmax

R∈C(P̄ )

(
∇u(Rk)′(R−Rk)

)
. (12)

Since the utility function is monotonically increasing, the
gradient vector is always positive and, hence, the unique
optimal solution to the above sub-problem is obtained by
(9), in which µ is replaced by ∇u(Rk). By concavity of
the utility function and convexity of the capacity region, the
iteration (11) will converge to the optimal solution of (6) for
appropriate stepsize selection rules such as Armijo rule or
limited maximization rule (c.f. [12] pp. 220-222).

Note that our goal is to determine rate and power allocation
policies. Finding R∗ allows us to determine such policies
by the greedy policy in (7) for µ∗ = ∇u(R∗). It is worth
mentioning that all the computations for obtaining R∗ are
performed once in the setup of the communication session.
So the convergence rate of the conditional gradient method is
generally not of critical importance.

IV. RATE ALLOCATION WITHOUT POWER CONTROL

In this section we assume that the channel statistics are
not known and that the transmission powers are fixed to P .
In practice, this scenario occurs when the transmission power
may be limited owing to environmental limitations such as
human presence, or limitations of the hardware.

The capacity region of the multiple access channel for this
scenario is a polyhedron and is given by (4). Similarly to the
previous case, the optimal rate allocation policy, R∗(·), is such
that R∗(H) ∈ Cg(P ,H), and

EH [R∗(H)] = R∗ ∈ argmax u(R)
subject to R ∈ Ca(P ). (13)

It is worth mentioning that the approach used to find the
optimal resource allocation policies for the previous case does
not apply to this scenario, because Cg(P ,h) is a polyhedron

and hence, the uniqueness property of R∗ for any positive
vector µ does not hold anymore.

Here we present a greedy rate allocation policy and com-
pare its performance with the unknown optimal policy. The
performance of a particular rate allocation policy is defined
as the utility at the average rate achieved by that policy. The
greedy policy, denoted by R̄(·), optimizes the utility function
for any channel realization. i.e.,

R̄(h) = argmaxR∈Cg(P ,h) u(R). (14)

Consider the following relations

EH

[
u
(
R∗(H)

)]
≤ EH

[
u
(
R̄(H)

)]
≤ u

(
EH

[
R̄(H)

])
≤ u

(
EH

[
R∗(H)

])
, (15)

where the second inequality follows from the Jensen’s inequal-
ity by concavity of the utility function.

In the case of a linear utility function we have
u
(
EH

[
R∗(H)

])
= EH

[
u
(
R∗(H)

)]
, so equality holds

throughout in (15) and R̄(·) is indeed the optimal rate alloca-
tion policy. For nonlinear utility functions, the greedy policy
can be strictly suboptimal.

However, the greedy policy is not arbitrarily worse than
the optimal one. In view of (15), we can bound the per-
formance difference, u(R∗) − u

(
EH

[
R̄(H)

])
, by bounding∣∣∣u(EH

[
R∗(H)

])
− u
(
EH

[
R̄(H)

])∣∣∣ or
∣∣∣u(EH

[
R∗(H)

])
−

EH

[
u
(
R∗(H)

)]∣∣∣ from above. We show that the first bound
goes to zero as the channel variations become small and the
second bound vanishes as the utility function tends to have a
more linear structure.

Before stating the main theorems, let us introduce some
useful definitions and lemmas.

Definition 2: Let Q be a polyhedron described by a set of
linear constraints, i.e.,

Q = {x ∈ Rn : Ax ≤ b} . (16)

Define the expansion of Q by δ, denoted by Eδ(Q), as the
polyhedron obtained by relaxing all the constraints in (16), i.e.,
Eδ(Q) = {x ∈ Rn : Ax ≤ b + δ1} , where 1 is the vector of
all ones.

Definition 3: Let X and Y be two polyhedra described by
a set of linear constraints. Let Ed(X) be an expansion of X by
relaxing its constraints by d. The distance dH(X, Y ) between
X and Y is defined as the minimum scalar d such that X ⊆
Ed(Y ) and Y ⊆ Ed(X).

Lemma 1 extends Chebychev’s inequality for capacity re-
gions. It states that the time varying capacity region does not
deviate much from its mean with high probability.

Lemma 1: Let H be a random vector with the stationary
distribution of the fading process with mean H̄ and covariance
matrix K. Then

Pr
{

dH (Cg(P ,H), Ca(P )) > δ
}
≤ σ2

H

δ2
, (17)
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where σ2
H is defined as

σ2
H ,

1
4

∑
S⊆{1,...,M}

Γ′SKΓS

(
1 +

[
(1 + Γ′SH̄)(

√
2 log(1 + Γ′SH̄)−

√
Γ′SKΓS

2
)

]2)
,

(18)

where

(ΓS)i =
{

Pi

N0
, i ∈ S

0, otherwise.
(19)

Proof: Define random variables YS and ZS as the
following:

YS =
1
2

log
(
1+
∑
i∈S

HiPi

N0

)
=

1
2

log(1+ZS), for all S ⊆M.

(20)
The facet defining constraints of Cg(P ,H) and Ca(P )
are of the form of

∑
i∈S Ri ≤ YS and

∑
i∈S Ri ≤

E[YS ], respectively. Hence, by Definition 3, we have
dH (Cg(P ,H), Ca(P )) > δ if and only if |YS − E[YS ]| > δ,
for all S ⊆ M . After some manipulations, the following
relations can be verified by employing Chebyshev’s inequality:

Pr
{

dH (Cg(P ,H), Ca(P )) > δ
}

= Pr
{

max
S

|YS − E[YS ]| > δ
}

≤ 1
δ2

∑
S⊆M

σ2
YS

(21)

where σ2
YS

denotes variance of Ys, and can be bounded from
above as follows (c.f. Appendix II, [13])

σ2
YS
≤

σ2
ZS

4

(
1 +

[
(1 + Z̄S)(

√
2 log(1 + Z̄S)− σZS

2
)
]2)

,

(22)
where

Z̄S = E
[∑

i∈S

HiPi

]
= Γ′SH̄,

σ2
ZS

= var
(∑

i∈S

HiPi

)
= Γ′SKΓS .

The desired result is concluded by substituting Z̄S and σ2
ZS

in (22) and combing the result with (21).
The system parameter σ2

H in Lemma 1 is proportional to
channel variations, and we expect it to vanish for small channel
variations. The following lemma ensures that the distance
between the optimal solutions of the utility maximization
problem over two regions is small, provided that the regions
are close to each other.

Lemma 2: Let R∗
1 and R∗

2 be the optimal solution of
maximizing the utility over Cg(P ,H1) and Cg(P ,H2),

respectively. If there exist positive scalars A and B such that

|u(R1)− u(R2)| ≤ B‖R1 −R2‖,
for all Ri ∈ F(Cg(P ,Hi)), i = 1, 2.

|u(R∗
i )− u(Ri)| ≥ A‖R∗

i −Ri‖2,
for all Ri ∈ Cg(P ,Hi), i = 1, 2,

(23)

and moreover if

dH

(
Cg(P ,H1), Cg(P ,H2)

)
≤ δ

then, we have

‖R∗
1 −R∗

2‖ ≤ δ
1
2

[
δ

1
2 +

(B

A

) 1
2
]

. (24)

Proof: Without loss of generality assume that u(R∗
2) ≥

u(R∗
1). To simplify the notations for capacity regions, let C1 =

Cg

(
P ,H1

)
be a polymatroid, i.e.,

C1 =
{

R ∈ RM
+ :

∑
i∈S

Ri ≤ f(S), for all S ⊆M
}

, (25)

for some submodular function f(S), and let C2 be an expan-
sion of C1 by δ as defined in Definition 2. We first show that
for every R ∈ F(C2), there exists a vector R′ ∈ F(C1) such
that ‖R−R′‖ ≤ δ, where F(·) denotes the dominant face of
a capacity region as in Definition 1.

Assume R is a vertex of C2. Then the polymatroid structure
of C2 implies that R is the intersection of M constraints
corresponding to a chain of subsets of M. Hence, there is
some k ∈ M such that Rk = f({k}) + δ. Choose R′ as
follows

R′i =
{

Ri − δ, i = k
Ri, otherwise. (26)

R′ is obviously in a δ-neighborhood of R. Moreover, the
constraint corresponding to the set M is active for R′, so we
just need to show that R′ is feasible in order to prove that it
is on the dominant face. First, let us consider the sets S that
contain k. We have∑

i∈S

R′i =
∑
i∈S

Ri − δ ≤ f(S). (27)

Second, consider the case that k /∈ S.∑
i∈S

R′i =
∑

i∈S∪{k}

R′i −Rk + δ

≤ f(S ∪ {k}) + δ −Rk

≤ f(S) + f({k}) + δ −Rl

= f(S).

where the first inequality come from (27), and the second
inequality is valid because of the submodularity of the function
f(·).

The previous argument establishes that the claim is true
for each vertex Rj of the dominant face. But every other
point R on the dominant face can be represented as a convex
combination of the vertices, i.e.,

R =
∑

j

αjRj ,
∑

j

αj = 1, αj ≥ 0.
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Using the convexity of the norm function, it is quite straight-
forward to show that the desired R′ is given by

R′ =
∑

j

αjR
′
j ,

where R′
j is obtained for each Rj in the same manner as in

(26).
So we have verified that there exists a point, R, on the

dominant face of C1 = Cg(P ,H1) such that ‖R∗
2−R‖ ≤ δ.

By monotonicity of the utility function the optimal solution
R∗

2 lies on the dominant face of Cg(P ,H2), hence, from the
hypothesis and the fact that u(R∗

2) ≥ u(R∗
1) ≥ u(R), we

conclude

u(R∗
2)−u(R) = |u(R∗

2)−u(R)| ≤ B‖R∗
2−R‖ ≤ Bδ. (28)

Now suppose that ‖R∗
1 −R‖ > (B

A δ)
1
2 . By the hypothesis in

(23) we can write

u(R∗
1)− u(R) = |u(R∗

1)− u(R)| > Bδ. (29)

By subtracting (28) from (29) we obtain u(R∗
2) < u(R∗

1)
which is a contradiction. Therefore, ‖R∗

1−R‖ ≤ (B
A δ)

1
2 , and

the desired result follows immediately by invoking the triangle
inequality.

The following theorem combines the results of the above
lemmas to obtain a bound on the performance difference of
the greedy and optimal policy.

Theorem 1: Let R∗ be the optimal solution to (13), and
R̄(·) the greedy rate allocation policy as defined in (14) for
a non-negative concave utility function u(·). Then for every
ε ∈ (0, 1],

u(R∗) −u
(
EH

[
R̄(H)

])
≤ εu(R∗) + (1− ε)B(ε)[(σH√

ε

) 1
2

+
(B(ε)

A(ε)

) 1
2
](σH√

ε

) 1
2
,

(30)

where B(ε) and A(ε) are positive functions of ε, such that for
all H with dH(Cg(P ,H), Ca(P ))) ≤ σH√

ε
, they satisfy the

following conditions.

|u(Ra)− u(Rg)| ≤ B(ε)‖Ra −Rg‖,
for all Ra ∈ F(Ca(P )),
for all Rg ∈ F(Cg(P ,H)),

(31)
|u(R̄(H))− u(R)| ≥ A(ε)‖R̄(H)−R‖2,

for all R ∈ Cg(P ,H). (32)

Proof: Pick any ε ∈ (0, 1]. Define the event V as

dH(Cg(P ,H), Ca(P ))) ≤ σH√
ε
.

By Lemma 1, the probability of this event is at least 1 − ε.
Conditioned on V , we have the following∣∣u(R∗)− u

(
R̄(H)

)∣∣ ≤B(ε)‖R̄(H)−R∗‖

≤B(ε)
[(σH√

ε

) 1
2

+
(B(ε)

A(ε)

) 1
2
](σH√

ε

) 1
2
,

(33)

Fig. 1. Parameterized upperbound on performance difference between greedy
and optimal policies.

where the first inequality follows from monotonicity of the
utility function and (31). The second inequality is a direct
result of applying Lemma 2.

Using Jensen’s inequality as in (15) we can bound the left-
hand side of (30) as follows

u(R∗)− u
(
EH

[
R̄(H)

])
≤ u(R∗)− EH

[
u
(
R̄(H)

)]
≤ u(R∗)− (1− ε)EH

[
u(R̄(H))

∣∣∣V]
−Pr(Vc)EH

[
u(R̄(H))

∣∣∣Vc
]

≤ εu(R∗) + (1− ε)EH

[
|u(R∗)− u(R̄(H))|

∣∣∣V].
(34)

In the above relations, the second inequality follows from
Pr(V) ≥ 1 − ε, and the third inequality is obtained from
non-negativity of the utility function after some manipulation.
Replacing (33) in (34) gives the desired upperbound.

Theorem 1 provides a bound parameterized by ε. For very
small channel variations, σH tends to zero, and we can choose
ε proportional to σH such that the bound in (30) approaches
zero. Figure 1 illustrates the behavior of the parameterized
bound provided in (30) for different values of σH . For each
value of σH , the upperbound is minimized for a specific choice
of ε, which is illustrated as a dot in Figure 1. As demonstrated
in the figure, for smaller channel variations tighter bound is
achieved and the minimizer parameter decreases.

The next theorem provides another bound demonstrating
the impact of the structure of the utility function on the
performance of the greedy policy.

Theorem 2: Let R∗ be the optimal solution to (13) for the
non-negative utility function u(R). Also let R∗(·) and R̄(·)
be the optimal and greedy rate allocation policies, respectively.
Then for every ε ∈ (0, 1],

u(R∗)−u
(
EH

[
R̄(H)

])
≤ εu(R∗) +

1
2
(1− ε)r(ε)2Ω, (35)

where Ω satisfies the following

λmax(−∇2u(ξ)) ≤ Ω, for all ξ, ‖ξ −R∗‖ ≤ r(ε), (36)
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and r(ε) is given by

r(ε) =
√

M
σH√

ε
+ M∑

i=1

EH

[
1
2

log

(
(1 + HiPi)(1 +

∑
j 6=i HjPj)

1 +
∑M

j=1 HjPj

)]2
 1

2

.

(37)
Proof: Pick any ε ∈ (0, 1]. Define the event V similarly

to the proof of Theorem 1. Because of monotonicity of the
utility function, we know that R∗ lies on the dominant face
of Ca(P ). Since the region Ca(P ) is the average of all regions
Cg(P ,H), the optimal policy R∗(H) should give a point on
the dominant face of Cg(P ,H), for almost all H . Therefore,
conditioned on V , we can bound the set in which R∗(H)
ranges, i.e., ‖R∗(H)−R∗‖ ≤ r(ε), after some straightforward
manipulations. Now let us write the Taylor expansion of the
function u(·) at R∗. We have

u(R) = u(R∗) +∇u(R∗)′(R−R∗)

−1
2
(R−R∗)′(−∇2u(ξ))(R−R∗)

≥ u(R∗) +∇u(R∗)′(R−R∗)

−1
2
‖R−R∗‖2λmax(−∇2u(ξ)),

for some ξ, ‖ξ −R∗‖ ≤ ‖R−R∗‖.
(38)

By replacing R by R∗(H) and conditioning on V we have
the following

u(R∗(H)) ≥ u(R∗) +

∇u(R∗)′(R∗(H)−R∗)− 1
2
r(ε)2Ω.

Now we can bound the left-hand side of (35) by bounding
the Jensen’s difference u(R∗)− EH [u(R∗(H))]. After some
manipulation similar to (34), we have

u(R∗)− u
(
EH

[
R̄(H)

])
≤ u(R∗)− EH

[
u
(
R∗(H)

)]
≤ u(R∗)− (1− ε)EH

[
u(R∗(H))

∣∣∣V]
−Pr(Vc)EH

[
u(R∗(H))

∣∣∣Vc
]

≤ u(R∗)− (1− ε)
(
u(R∗)− 1

2
r(ε)2Ω

)
= εu(R∗) +

1
2
(1− ε)r(ε)2Ω.

Similarly to Theorem 1, Theorem 2 provides a bound
parameterized by ε which goes to zero for proper choice of ε
as Ω becomes smaller and the utility function tends to have
a more linear structure. The behavior of this parameterized
upperbound is also similar to the one illustrated in Figure 1.

In summary, the performance difference between the greedy
and the optimal policy is bounded from above by the minimum
of the bounds provided by Theorem 1 and Theorem 2.

V. CONCLUSION

We addressed the problem of optimal resource allocation
in a fading multiple access channel from an information
theoretic point of view. We formulated the problem as a
utility maximization problem for a more general class of utility
functions.

We considered two different scenarios. First, we assumed
that the transmitters have power control feature and the
channel statistics are known a priori. In this case, the optimal
rate and power allocation policies are obtained by greedily
maximizing a properly defined linear utility function.

In the second scenario, power control and channel statistics
are not available. In this case, the greedy policy is not optimal
for nonlinear utility functions. However, we showed that its
performance in terms of the utility is not arbitrarily worse
compared to the optimal policy, by bounding their performance
difference. The provided bound tends to zero as the channel
variations become small or the utility function behaves more
linearly.

The greedy policy may itself be computationally expensive.
A computationally efficient algorithm can be employed to allo-
cate rates close to the ones allocated by the greedy policy. This
algorithm just takes one iteration of the gradient projection
method at each time slot. Under slow fading conditions, it
can be shown that this method tracks the greedy policy very
closely, and its performance is close to the optimal policy.
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