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Abstract—Statistical mechanics-based approach to studying
wireless communication systems is useful not only in analyzing
theoretical performance of a given model, but also in optimizing
design of a class of system models. In this paper, we demonstrate
usefulness of statistical-mechanics approach in the problem of
optimizing a spreading sequence set of randomly-spread code-
division multiple-access (CDMA) communication systems. It has
been shown that the optimal spreading sequences of a randomly
spread CDMA channel in the large-system limit are Welch-
bound-equality sequence sets, even when a non-Gaussian input
distribution is assumed.

I. I
In recent years, information technologies are becoming

available almost anywhere, via mobile devices with informa-
tion processing and wireless communication functionalities.
Such devices are required to provide very high data rates
of wireless communication functionalities, since demands of
users of such devices are rapidly growing toward multimedia-
oriented services. Those devices are also expected to operate
well in environments of rather bad conditions, such as urban
areas with many buildings standing, passengers walking, and
cars running, as well as many other users coexisting, and/or
indoor spaces where there are many objects which scatter
electromagnetic waves in a very complex way. One therefore
has to consider communication systems which are of high di-
mensional and with certain kinds of randomness, representing
those rather uncontrolled environmental conditions. Intuitively,
this is the reason why one can expect statistical mechan-
ics (which typically deals with extremely high-dimensional
systems) of disordered systems (which bear some sorts of
randomness) to provide an efficient means to analyze large-
dimensional wireless communication systems.

Most existing statistical mechanics-based studies of wireless
communication systems have discussed performance of given
mathematical models of wireless communication systems with
some randomness in the so-called large-system limit. The main
objective of this paper is to demonstrate that the statistical
mechanics-based approach can also be used to obtain insights
which are useful in designing communication systems.

In this paper, we focus on a problem in the context of code-
division multiple-access (CDMA) communication systems.
CDMA is a technology to provide multiple-access functionali-
ties: In typical mobile communication systems, an access from
a mobile communication device is handled by a base station

or an access point located near the mobile device. In real
situations, it is often the case where there are more than one
devices which connect to the same base station. Such situations
are called multiple access. In a multiple-access environment,
signals originated from different devices are summed up, and
the base station has to extract relevant information sent from
the users out of the mixture. CDMA provides one method of
resolving such difficulties in multiple-access environments.

The basic idea of CDMA is to make use of a very
high-dimensional representation of signals, in order to avoid
interference between signals from different users. Each
user’s signal only occupies a low-dimensional (usually one-
dimensional) subspace of the high-dimensional representation.
The subspace is specified by a so-called spreading sequence
assigned to that user. If spreading sequences of different users
are mutually orthogonal, then they are free from interference.
In commercial cellular phone systems, pseudorandom spread-
ing sequences are commonly used in order to make any pair of
them statistically orthogonal without prior negotiations. One
can alternatively consider a scenario in which optimization
of the set of spreading sequences takes place in order to
reduce effects of interference. In this paper, we consider the
latter scenario, and discuss how to choose a set of spreading
sequences in order to optimize information-theoretic capacity
of such communication channels.

This paper is organized as follows: Section II shows the
formulation of the problem to be dealt with in this paper. In
Section III, we show our main results. Detailed derivations of
these results are given in Appendices. Section IV concludes
the paper. A brief presentation of the results discussed in this
paper has been given in [1].

II. P

We consider a linear vector channel with additive white
Gaussian noise (AWGN) as a mathematical model of CDMA
channels. The channel is defined as

Y = L−1/2SX + N, (1)

where X ∈ RK and Y ∈ RL are random vectors representing
channel input and output vectors, respectively, with K and L
being input and output dimensions, and where channel noise
vector N ∈ RL is assumed to follow a multivariate Gaussian
distribution N(0, σ2

0I), with I denoting an identity matrix.
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The matrix S consists of the spreading sequences used in the
system: kth column sk ∈ RL of S represents the spreading
sequence used by the user whose information symbol is Xk.
The factor L−1/2 of the first term in the right-hand side of (1)
is for normalization.

The channel input-output characteristic is also represented
in terms of the conditional probability density

pY|X,S(y|x, S) =
L∏
µ=1

pY |X,S(yµ|x, sµ)

pY |X,S(y|x, s) =
1

√
2πσ2

exp

− 1
2σ2

(
y −

1
√

L
sT x

)2 , (2)

where sµ denotes the vector that corresponds to µth row of
the matrix S. We assume that the elements of channel input X
are independent and identically distributed (i.i.d.) following
a prior distribution pX(x) =

∏K
k=1 pX(xk). The probability

density function of Y given S is thus

pY|S(y|S) =
∫

pY|X,S(y|x, S) pX(x) dx. (3)

In the above formula, and in what follows as well, integrals
should be replaced with appropriate sums if the relevant
random variables take discrete values.

We consider situations where one can choose the matrix S,
and wish to discuss how to choose S in order to maximize
theoretical information transmission capability of the channel.
The problem of optimizing S is straightforward when K ≤ L,
or equivalently, the system load β = K/L is not greater than
1, where one can arbitrarily take K orthogonal vectors in RL

and form S by putting those vectors column by column. The
problem becomes non-trivial when β > 1, however, in which
case one can no longer take K orthogonal vectors.

In order for analytical tractability we regard the matrix S as
a random quantity and consider random ensembles of S. We
assume that each column vector of L−1/2S is of unit norm in
expectation, or equivalently, that

ES(|Sk |
2) = L (4)

holds, where Sk denotes a random vector corresponding to
kth column of S. This assumption normalizes powers of the
signals. When we consider the non-trivial case β > 1, and
when the input vector X follows Gaussian distribution N(0, I),
then it has been known [2] that the so-called Welch Bound
Equality (WBE) sequence sets are optimal. It has also been
known [3] that WBE sequence sets exist for any β > 1. The
WBE sequence sets are characterized by [4]

SST = βI. (5)

When the input vector X follows a distribution other than
Gaussian, on the other hand, as far as the authors’ knowledge
there does not seem to be any results about optimal sequence
sets. In this paper we discuss the problem of finding optimal
spreading sequence sets for non-Gaussian input distributions.

In view of intrinsic difficulty of the problem with non-
Gaussian input distributions, we consider the problem only
in the large-system limit, in which we take a limit K, L→ ∞
while their ratio β = K/L kept finite. In this paper, we take,

as a measure of information transmission capability of the
channel, capacity of the channel per input dimension in the
large-system limit

C = lim
K→∞

1
K

I(X; Y|S), (6)

where I(X; Y|S) is a conditional mutual information of channel
input X and output Y given S.

III. A

A. Evaluation of capacity

By decomposing the capacity C as

C = F −
1

2β
(log 2πσ2 + 1), (7)

where
F = − lim

K→∞

1
K

EY,S[log pY|S(Y|S)], (8)

and where EY,S(· · · ) denotes expectation with respect to Y
and S, the problem of evaluating the capacity C is reduced to
evaluating the free energy F .

We invoke replica method of statistical mechanics in order
to evaluate the free energy F . The first step is to rewrite (8)
by introducing an auxiliary real-valued variable n as

F = − lim
K→∞

1
K

lim
n→0

∂

∂n
log EY,S[(pY|S(Y|S))n]. (9)

The next step is to interchange order of the operation regarding
K and that regarding n, yielding

F = − lim
n→0

∂

∂n
lim

K→∞

1
K

log EY,S[(pY|S(Y|S))n]. (10)

Following the standard prescription of replica method, we first
regard n to be an integer, on the basis of which we make use
of the saddle-point method in evaluating the limit K → ∞.
We then regard that n is a real-valued variable, and take the
derivative and the limit n → 0 in order to obtain the final
result.

We need some preliminary definitions to state our claim.
Let ρ(λ) be a density with a compact support. The Hilbert
transform of ρ(λ) is defined by

Cρ(γ) =
∫ ∞

−∞

ρ(λ)
γ − λ

dλ (11)

for γ outside the support of ρ(λ). The R-transform Rρ(z) of
ρ(λ) is defined in terms of the Hilbert transform, as

Cρ

(
Rρ(z) +

1
z

)
= z. (12)

Let

pU(u; ξ) =
∫ √

ξ

2π
e−ξ(u−x)2/2 pX(x) dx (13)

be a probability density function of output U of a scalar
AWGN channel with noise variance 1/ξ, when the input X
follows the distribution pX .

The first main claim of this paper is the following: Let ρ(λ)
be the limiting eigenvalue distribution of the correlation matrix
R = L−1ST S of the spreading sequences, in the large-system
limit. Let us assume that the random matrix R is orthogonally



invariant, i.e., the probability law of R and that of VT RV with
an arbitrary orthogonal matrix V are the same, and that ρ(λ)
has a compact support. The channel capacity C is given, using
parameters {θ, E} to be determined later, as

C = −
1
2
θE −

1
2

Gρ

(
−
E

σ2

)
−

1
2

log
2π
θ
−

1
2

−

∫
pU(u; θ) log pU(u; θ) du, (14)

where pU(u; θ) is defined in (13), and where the function Gρ
is defined as the following integral of the R-transform of ρ(λ):

Gρ(x) =
∫ x

0
Rρ(z) dz. (15)

The parameters {θ, E} are to be determined by the following
saddle-point equations:

E = EU[〈(X − 〈X〉)2〉; θ], (16)

θ =
1
σ2Rρ

(
−
E

σ2

)
, (17)

where 〈· · · 〉 denotes posterior average, given channel output
U, of the scalar AWGN channel defined above.

The case of equal-power binary phase-shift-keying (BPSK)
input modulation has been discussed by Takeda et al. [5], so
that the above result is an extension of their result, in that
our analysis assume an arbitrary input distribution pX . Takeda
et al.’s result is recovered from our result by letting pX(x) =
(1/2)[δ(x − 1) + δ(x + 1)].

B. Special cases

In the conventional random spreading, one considers i.i.d.
elements of the matrix S. Let us assume that the distribution
of the elements of S is zero-mean, unit-variance, and has finite
higher-order moments. Then, it has been well known that the
limiting eigenvalue distribution of the correlation matrix R =
L−1ST S is given by the Marc̆enko-Pastur law [6]

ρMP(λ) =
(
1 −

1
β

)+
δ(λ) +

√
(λ − a)+(b − λ)+

2πβλ
, (18)

where (x)+ = max{0, x}, and where a = (1 −
√
β)2 and b =

(1 +
√
β)2. The R-transform of the Marc̆enko-Pastur law is

RMP(z) =
1

1 − βz
, (19)

on the basis of which one can recover the capacity of the vector
channel with i.i.d. elements of S, which was evaluated in the
BPSK case in [7] and in the case of general data modulation
in [8], from the result given in the previous subsection.

Our result is also applicable when one considers random
spreading in which S consists of orthogonally invariant random
WBE spreading sequences with β > 1. From the characteriza-
tion (5) of WBE sequence sets, the eigenvalue distribution of
the correlation matrix R is given by

ρWBE(λ) =
(
1 −

1
β

)
δ(λ) +

1
β
δ(λ − β). (20)

The R-transform of ρWBE(λ) is calculated to be

RWBE(z) =
2

1 − βz +
√

(1 − βz)2 + 4z
, (21)

which can be used to evaluate capacity numerically on the
basis of the result given in the previous subsection.

C. Optimization

Since the capacity (14) is evaluated as a functional of the
limiting eigenvalue distribution ρ(λ) of the correlation matrix
R = L−1ST S, one can consider optimization problem of the
capacity C with respect to ρ(λ). In what follows we restrict
our discussion to the non-trivial case where β > 1. There
are several constraints imposed on the limiting eigenvalue
distribution ρ(λ). First, ρ(λ) should be properly normalized,
so that ∫

ρ(λ) dλ = 1 (22)

must hold. Second, one has to impose the normalization
constraint corresponding to (4), which is rewritten in terms
of ρ(λ) as ∫

λρ(λ) dλ = 1. (23)

Third, since we consider the case β > 1, the correlation matrix
R is rank deficient. Thus, R has trivial zero eigenvalue with
multiplicity (K − L), and accordingly, ρ(λ) should be of the
following form:

ρ(λ) =
(
1 −

1
β

)
δ(λ) +

1
β
π(λ), (24)

where π(λ) is a probability density function which, in view
of (22) and (23), should satisfy∫

π(λ) dλ = 1, (25)

and ∫
λπ(λ) dλ = β, (26)

respectively. Our optimization problem can now be stated as
follows: Maximize C with respect to ρ(λ), subject to the
constraints (22)–(24) on ρ(λ).

One can show that the solution of the constrained optimiza-
tion problem is ρ(λ) = ρWBE(λ). This is the second main result
of this paper, derivation of which is given in Appendix B.

IV. C

In this paper we have shown that if a WBE sequence set
is used as spreading sequences of a CDMA system, then
it is asymptotically optimum in the sense that it maximizes
the capacity of the CDMA channel in the large-system limit,
regardless of input distribution. Since WBE sequence sets
have been known to be optimal when input distribution is
Gaussian, our result can be regarded as an extension of the
result to the cases with non-Gaussian input distribution. This
extension has been possible by considering the large-system
limit, as well as random spreading in which we have assumed
orthogonal invariance of the correlation matrix R of the



spreading sequences. We have followed statistical-mechanics
approach, and in particular, replica method has been the key
tool for the analysis. On the basis of the expression for the
capacity obtained with the replica method, we have considered
the problem of optimizing the limiting eigenvalue distribution
of the correlation matrix R.

One interesting problem would be to consider non power
controlled systems, in which elements of X have different
variances. It is important from communication theory point of
view, since it is often the case in practice that power of signals
from different users are unequal. In such cases, requiring the
orthogonal invariance to the correlation matrix R should be
inappropriate for maximizing capacity. Although spreading
sequence sets that maximize capacity in the unequal-power
Gaussian-input case has been known [13], whether or not the
same sequence sets optimize capacity in non-Gaussian input
cases is an open problem.

A A
D  

In this appendix we show a derivation of the result (14),
which gives the capacity of the vector channel model. Let

Ξn = EY,S[(pY|S(Y|S))n], (27)

so that the free energy F is given by

F = − lim
n→0

∂

∂n
lim

K→∞

1
K

logΞn. (28)

We rewrite Ξn as

Ξn = ES


( n∏

a=0

[pY|X,S(y|xa, S) pX(xa) dxa] dy


=

1
(2πσ2)Ln/2(n + 1)L/2

×

(
ER

[
exp

(K
2

tr RX
)] n∏

a=0

[pX(xa) dxa], (29)

where R = L−1ST S is the correlation matrix of S, and where

X =
1

Kσ2

 1
n + 1

 n∑
a=0

xa

  n∑
a=0

xa

T

−

n∑
a=0

xaxT
a

 . (30)

The random matrix R is orthogonally invariant, so that one
can apply Itzykson-Zuber integral [9], [10], [11] to obtain

ER

[
exp

(K
2

tr RX
)]
≈ exp

[K
2

tr Gρ(X)
]
, (31)

when K is sufficiently large, where the function Gρ is defined
in (15).

The right-hand side of (31) is dependent on X only through
its eigenvalues. Let X be a representation of X with the
(generally non-orthogonal) basis {x0, x1, . . . , xn}. Since one
has

Xab =
1
σ2

 1
n + 1

n∑
c=0

qac − qab

 , (32)

with qab = K−1 ∑K
k=1 xak xbk, the eigenvalues of X are given as

functions of Q = (qab). On the basis of this observation, one
can decompose the integral with respect to {xa} in (29) as an

integral with a fixed Q and another integral with respect to all
possible Q, which yields

Ξn =
1

(2πσ2)Ln/2(n + 1)L/2

(
eK tr G(X)/2µ(Q) dQ, (33)

where

µ(Q) =
(

δ

Q − 1
K

K∑
k=1

xk xT
k

 n∏
a=0

[pX(xa) dxa], (34)

with the symbol xk denoting (x0k, x1k, . . . , xnk)T , is a proba-
bility weight, induced from {pX(xa)}, of the “subshell”

S (Q) =
{
(x1, . . . , xK)

∣∣∣∣∣ Q =
1
K

K∑
k=1

xk xT
k

}
. (35)

Since Q is defined as an empirical mean of i.i.d. random
matrices, Q follows the large-deviation principle [12] with
a rate function I(Q), from which one obtains the following
heuristic formula

µ(Q) ≈ e−KI(Q) (36)

for large K. Applying Varadhan’s theorem, or the saddle-point
method, one obtains

lim
K→∞

1
K

logΞn = sup
Q

[tr G(X) − I(Q)]−
1

2β
log(n+1)−

n
2β

log 2πσ2.

(37)
The rate function I(Q) is given by a Legendre transform of
cumulant generating function of Xk, as

I(Q) = sup
Q̃

[tr QQ̃ − log M(Q̃)], (38)

where

M(Q̃) = EX
[
exp

(
tr Q̃XXT

)]
=

∫
exp

(
tr Q̃xxT

) n∏
a=0

[pX(xa) dxa], (39)

with X ∼
∏n

a=0 pX(xa), is a moment generating function. The
supremum of (38) is characterized by

Q =
EX

[
XXT exp

(
tr Q̃XXT

)]
EX

[
exp

(
tr Q̃XXT

)] . (40)

To proceed further we assume replica symmetry (RS), under
which elements of the matrices Q and Q̃ are invariant under
exchange of indices. More precisely, we assume

qaa = p, qab = q, q̃aa =
p̃
2
, q̃ab =

q̃
2

(41)

for a, b = 0, 1, . . . , n, a , b. We have

M(Q̃) = EX

exp

 p̃ − q̃
2

n∑
a=0

X2
a +

q̃
2

 n∑
a=0

Xa

2


=

√
q̃

2π

× EX


∫

exp

− q̃
2

u2 + q̃u
n∑

a=0

Xa +
p̃ − q̃

2

n∑
a=0

X2
a


 du

=

(
2π
q̃

)n/2 ∫
enq̃u2/2[pU(u; p̃, q̃)]n+1 du, (42)



where we let

pU(u; p̃, q̃) =
∫ √

q̃
2π

e−q̃(u−x)2/2e p̃x2/2 pX(x) dx, (43)

and therefore

I(Q) = sup
p̃, q̃

{n + 1
2

pp̃ +
n(n + 1)

2
qq̃ −

n
2

log
2π
q̃

− log
∫

enq̃u2/2[pU(u; p̃, q̃)]n+1 du
}
. (44)

The conditions (40) are rewritten under the RS assumption as

p =

∫
enq̃u2/2[pU(u; p̃, q̃)]n EX

[
X2

√
q̃

2πe
−q̃(u−X)2/2ep̃X2/2

]
du∫

enq̃u2/2[pU(u; p̃, q̃)]n+1 du
(45)

q =

∫
enq̃u2/2[pU(u; p̃, q̃)]n−1

{
EX

[
X

√
q̃

2πe
−q̃(u−X)2/2ep̃x2/2

]}2
du∫

enq̃u2/2[pU(u; p̃, q̃)]n+1 du
(46)

Under the RS assumption, the only non-zero eigenvalue of
the matrix X turns out to be −(p − q)/σ2 with multiplicity n,
and the remaining eigenvalue is zero. One thus obtains

tr Gρ(X) = nGρ
(
−

p − q
σ2

)
. (47)

Collecting these results, we obtain

lim
K→∞

1
K

logΞn = sup
p, q

inf
p̃, q̃

{n
2

Gρ
(
−

p − q
σ2

)
−

n + 1
2

pp̃ −
n(n + 1)

2
qq̃ +

n
2

log
2π
q̃

+ log
∫

enq̃u2/2[pU(u; p̃, q̃)]n+1 du
}

−
n

2β
log 2πσ2 −

1
2β

log(n + 1). (48)

In view of the limit n→ 0 taken at the end of the analysis,
we have only to consider the conditions (45) and (46), as well
as the conditions of the supremum with respect to p and q,
in the limit n → 0. These conditions in the limit n → 0 are
given by

p̃ = 0 (49)

q̃ =
1
σ2Rρ

(
−

p − q
σ2

)
(50)

p = EU(〈X2〉) (51)

q = EU(〈X〉2) (52)

where

〈· · · 〉 =
EX|U

[
(· · · )

√
q̃

2πe
−q̃(U−X)2/2

]
pU(U; q̃)

(53)

is the posterior mean given channel output U of the scalar
AWGN channel introduced in (13), and where EU(· · · ) here
denotes averaging with respect to the channel output U ∼

pU(u; q̃).

Taking the derivative with respect to n and the limit n→ 0,
the free energy F thus becomes

F = −
1
2

Gρ
(
−

p − q
σ2

)
−

1
2

(p − q)q̃ −
1
2

log
2π
q̃

−
1
2
−

∫
pU(u; q̃) log pU(u; q̃) du

+
1

2β
(log 2πσ2 + 1), (54)

with values of the parameters {p, q, q̃} determined by the
conditions (50)–(52). Letting E = p − q and θ = q̃, we arrive
at the final result (14).

A B
O  

In this appendix, we explain how one can find the limiting
eigenvalue distribution ρ(λ) which maximizes the capacity
C. As a first stage of the analysis, we study effects of
perturbations of ρ(λ) on the capacity C. Perturbations of ρ(λ)
affects the capacity C via changes in the function Gρ(x) in a
direct manner, as well as via changes of the stationary values
of {θ, E} indirectly. The latter indirect effects can, however,
safely be ignored within the first-order perturbation theory,
because of the stationary conditions which determine their
values. One can therefore focus on the direct effects, so that the
capacity C is maximized if −Gρ(−E/σ2) is maximized with
respect to ρ(λ).

Next key observations are that E/σ2 ≥ 0 and that

−G
(
−
E

σ2

)
= −

∫ −E/σ2

0
R(z) dz =

∫ 0

−E/σ2
R(z) dz. (55)

On the basis of these observation, one can make the following
statement: If there is a distribution ρ∗(λ) whose R-transform
R∗(z) satisfies

R∗(z) ≥ Rρ(z), for all z < 0, (56)

for any distributions ρ(λ) which satisfy the constraints (22)–
(24), then the distribution ρ∗(λ) maximizes −G(−E/σ2). Our
optimization problem is solved if one can find a distribu-
tion ρ∗(λ) which maximizes the R-transform on the interval
(−∞, 0). It should be noted that it is a sufficient condition
for our optimization problem to be solved with the solution
ρ∗(λ), and that it is not obvious at this stage whether or not
there exists such a distribution ρ∗(λ) which maximizes R(z)
for all z < 0. In the following, we will show that there is a
distribution with the required properties, and that ρWBE(λ) is
the solution.

We proceed by converting the sufficient condition in terms
of R-transform into that in terms of Hilbert transform. Since
we are concerned with the R-transform R(z) for z < 0, we
can restrict the domain of the Hilbert transform C(γ) to γ <
λmin, where λmin denotes the minimum eigenvalue. For γ <
λmin, the integrand ρ(λ)/(γ − λ) of the Hilbert transform (11)
for λ ≥ λmin is convex upward as a function of γ. From the
convexity and the definition of the R-transform (12), one can
state the following: If one can find a distribution ρ∗(λ) which
maximizes the Hilbert transform C(γ) for all γ < λmin, then
ρ∗(λ) maximizes the R-transform R(z) for all z < 0.



To summarize the discussion so far, we have shown a
sufficient condition under which our optimization problem is
solved, that if there exists ρ∗(λ) which maximizes the Hilbert
transform C(γ) for all γ < λmin, subject to the constraints (22)–
(24), then the distribution ρ∗(λ) maximizes the capacity C.
In view of the constraint (24), what we have to solve is the
maximization problem of the Hilbert transform

Cπ(γ) =
∫
π(λ)
γ − λ

dλ, for all γ < λmin, (57)

with respect to π(λ), subject to the constraints (25) and (26)
on π(λ).

In the following we show that the solution is given by π(λ) =
δ(λ − β). In order to do that, let us define

fγ(λ) =
1
γ − λ

(58)

and
gγ(λ) =

λ − β

(γ − β)2 +
1
γ − β

. (59)

It should be noted that the function gγ(λ) is a linear function
in λ and is tangential to fγ(λ) at λ = β, and that the function
fγ(λ) is convex upward for λ > γ, so that fγ(λ) ≤ gγ(λ) with
equality at λ = β. We then consider the objective function

Iπ(γ) =
∫

[ fγ(λ) − gγ(λ)]π(λ) dλ

= Cπ(γ) −
∫

gγ(λ)π(λ) dλ. (60)

Note that the second term is constant under the constraints (25)
and (26). Thus, Iπ(γ) and Cπ(γ) are simultaneously maximized
by the same π(λ) under these constraints. Let us consider
maximizing Iπ(γ) with the constraint (25), but without (26).
Since fγ(λ) ≤ gγ(λ) with equality at λ = β, Iπ(γ) is maximized
by concentrating all the probability mass at λ = β, namely, by
letting

π(λ) = δ(λ − β). (61)

Since the solution (61) also satisfies the constraint (26), it is
the solution of the maximization problem with both of the
constraints (25) and (26) as well. Therefore, one can conclude
that the solution (61) is maximizing the Hilbert transform C(γ)
for all γ < λmin. The resulting eigenvalue distribution is exactly
the same as ρWBE(λ) with β > 1, which proves that ρWBE(λ)
maximizes the capacity C.
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