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Abstract— The problem of utility maximization in an

OFDMA downlink is considered. Based on measurements

of a scalable video codec, concave and nonconcave utility

functions are proposed. Two approaches to solving the

utility maximization problem in a modular fashion are

considered, one based on Lagrange duality, the other based

on a projected gradient algorithm. Both methods yield the

optimum solution for concave utilities. In the nonconcave

case, simulation results show almost identical performance

for both methods under the assumption that the dual

solution is found. In contrast, the dual approach fails if the

dual subproblems can only be solved to local optimality.

I. INTRODUCTION

Utility maximization is widely recognized as a power-

ful framework for optimizing system parameters in wire-

less networks, see, e.g., [1], [2], [3]. A utility function

usually represents a model of how system performance

depends on the allocated resources, or, more generally,

on the system’s parameters. From an optimization point

of view, convexity is a very desirable property of the

utility maximization problem. As a result, the utility

function is usually assumed to be concave. While a

concave utility seems to be a good model for best-effort

traffic, it may not be the most appropriate model for

other traffic classes, such as voice and real-time video

[4]. In this work, the scalable extension of H.264/AVC

is considered as an exemplary application, which, due to

its scalability with respect to source rate, fits well into a

utility framework. Given a set of video quality measure-

ments, different possibilities exist in the formulation of

the utility model, in particular, one may either choose

a convex or a nonconvex model.1 The choice of the

model’s properties has an impact on both the accuracy

of the solution as well as on the methods available for

solving the utility maximization problem.

1We use the term “convex utility model” for a model with concave

utility function, in order to emphasize the fact that the resulting

optimization problem is convex.

On the physical layer, multicarrier techniques repre-

sent a promising candidate for next-generation wireless

systems. In this work, the downlink of an infrastructure

wireless network is considered, where the users share

the common resources transmit power and subcarriers,

and each subcarrier is allocated to a single user only

(OFDMA). It is assumed that resources are allocated

by a central unit at the transmitter. Optimum power

and subcarrier allocation in the OFDMA downlink has

recently attracted significant interest, where optimality

criteria range from weighted-sum rate maximization [5]

to more general utility models [6], [7], [8]. This work

differs from previous work in two aspects: First, previous

works on resource allocation in the OFDMA downlink

usually assumed a concave utility function. Second, a

modular approach to solving the utility maximization

problem is taken, i.e., given a generic utility model,

the utility maximization problem is not solved from

scratch, but by employing available efficient solutions

for maximizing the weighted-sum rate in the OFDMA

downlink. Following [9], two such modular approaches

are considered, the well-known dual decomposition, and

a method which operates on the boundary of the rate

region.

In the context of network utility maximization (NUM),

the case of nonconcave utility functions has been inves-

tigated in [4], [10]. Both [4], [10] consider a slightly

different setup, with a more complex network topology,

but simpler models concerning the link capacities. While

[4] proposes a distributed (heuristic) solution to the

nonconvex NUM problem, [10] develops a centralized

method for computing tight upper bounds on the op-

timum utility value. In contrast, this work investigates

centralized methods for computing good (but poten-

tially suboptimum) power and subcarrier allocations in

a single-hop OFDMA downlink.
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II. PROBLEM SETUP

An OFDMA downlink with K users and N subcarri-

ers is considered. The usual model of OFDMA as a set of

parallel channels, with each channel allocated to a single

user, is employed. The received signal on subchannel n
allocated to user k is given by

yn,k =
√
pn,khn,kxnk + ηn,k,

where pn,k denotes the transmit power allocated to this

subchannel, hn,k is the channel coefficient, xn,k the

transmitted unit power signal and ηn,k additive white

Gaussian noise with variance σ2
n,k. Accordingly, the

capacity of subchannel n is given by

rn,k(pn,k) = log2

(

1 + σ−2
n,k|hn,k|2pn,k

)

.

Let π ∈ {1, . . . ,K}N denote the subchannel allocation,

i.e., if subchannel n is allocated to user k, then πn =
k. Thus, for a given power and subchannel allocation

(p,π), an achievable rate of user k is given by

rk(p,π) =
∑

n:πn=k

rn,k(pn,k).

Power allocation is subject to a sum power constraint,

i.e., the set of feasible power allocations is given by

P = {p : p ≥ 0, ‖p‖1 ≤ Ptr}.

Moreover, let Π = {1, . . . ,K}N denote the set of fea-

sible subchannel allocations. The rate region achievable

by certain choices of the parameters (p,π) is given by

R =
⋃

π∈Π

{r(p,π) : p ∈ P}, (1)

with r = (r1, . . . , rK). With the usual time-sharing

argument, the capacity region C is defined as the convex

hull of R:

C = Co (R) . (2)

According to Eqs. (1) and (2), every r ∈ C can be written

as

r =

W
∑

w=1

αwr(pw,πw),

with αw ≥ 0 and
∑W
w=1 αw = 1. Note that the provision

of a time-sharing mode may be undesirable in a practical

system. This issue will be further discussed in later

sections.

The properties of upper layers are modeled by a utility

function u : RK0,+ → R, which maps a rate vector r

into a utility value u(r). The utility function is assumed

to be strictly monotonically increasing (i.e., larger rates

yield better performance) and differentiable. In contrast

to the usual setup, u is not required to be concave. More

details on the utility model used in this work are provided

in Section III. Given a utility function u, the goal is

twofold: First, find the rate vector r∗ that maximizes

utility, i.e., solves

max
r∈C
u(r). (3)

Second, find the physical layer parameters

(αw,pw,πw)Ww=1 that implement the optimum rate

vector. The second step is required because the

optimum parameter setup is required at transmission

time, i.e., the system parameters have to be adjusted

such that r∗ is achievable. Problem (3) is convex if

the utility function u is concave. Due to convex hull

operation, however, the set C is not directly accessible

to optimization methods, as no explicit parametrization

of C is available.

A special case is given by

u(r) = λTr,

i.e., weighted sum rate maximization (WSRmax). For

WSRmax,

max
r∈C
λTr = max

r∈R
λTr (4)

= max
p∈P,π∈Π

λTr(p,π). (5)

Recently, efficient algorithms for (approximately) solv-

ing problem (5) have been proposed, e.g., [5]. Note that

problem (5) is nonconvex, due to the discrete nature of

the subcarrier allocation. In the following, however, it

is assumed that the WSRmax problem can be solved to

optimality.

The availability of efficient algorithms for solving the

WSRmax problem in the OFDMA downlink motivates a

modular approach to the utility maximization problem:

Instead of solving the utility maximization problem in

the OFDMA downlink from scratch, two approaches are

presented which transform the original problem into a

sequence of WSRmax problems.

III. UTILITY MODEL

Most works on utility maximization assume a concave

utility function u. This work is motivated by the observa-

tion that a real-world application may be modeled more

precisely by a nonconcave utility function.

The utility model used in this work is based on QoS

measurements of a state-of-the art scalable video codec
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Fig. 1. Operation points of scalable video codec
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Fig. 2. Interpolated utility models

[11]. In our measurements, we used the reference im-

plementation of the H.264/AVC scalable video extension

[12]. For different operation modes, required source rate

and resulting peak signal-to-noise ratio (PSNR) were

recorded, resulting in a set of rate/PSNR pairs. Such an

exemplary set of operation points is shown in Figure 1,

where each star corresponds to an operation point (Note

that points are connected by lines for a better visual

impression).

In the chosen measurement setup, some of the op-

eration points yield lower PSNR at higher source rate,

therefore can be excluded from the set of relevant

operation points. For the example under consideration,

the set of relevant operation points is shown in Figure 2.

One of the basic assumptions is that the utility func-

tion u is continuous. Consequently, a utility model is

generated by a continuous interpolation between the

set of operation points. Two interpolation methods are

investigated: a nonconvex interpolation, which attempts

to follow the operation points as closely as possible,

and a convex interpolation, which further drops some

points in order to obtain a concave utility function. For

the example under consideration, the two resulting utility

curves are also shown in Figure 2.

The details of the measurement setup are outside the

scope of the paper. Instead of focusing on how the set

of operation points is generated, the idea is to take the

set of operation points as given and to investigate how

to best deal with the properties of this set.

So far, utility models for a single video sequence have

been considered. In a multi-user system, each user is

assumed to receive a video sequence. How to best map

the user’s utilities uk into an overall utility function u
represents an important problem. In the following, the

sum of users’ utilities is considered:

u(r) =

K
∑

k=1

uk(rk).

IV. DUAL DECOMPOSITION

The dual decomposition is a well-known method to

decompose the utility maximization problem into a set

of coupled subproblems, with each subproblem corre-

sponding to a layer (vertical decomposition) [2]. If the

dual decomposition is applied, it is usually assumed that

strong duality holds – which basically requires problem

(3) to be convex.

A. Basic Algorithm

Following [2], problem (3) is first modified by intro-

ducing additional variables:

max
r,s
u(s) s.t. s ≤ r, r ∈ C. (6)

The corresponding dual function is given by

g(λ) = gA(λ) + gP(λ),

and

gA(λ) = max
s
u(s)− λTs, and (7)

gP(λ) = max
r∈C
λTr. (8)

For a fixed λ, the optimization is decomposed into two

subproblems (7) and (8). Note that (8) is a WSRmax

problem, which, based on our assumption, can be solved

to optimality. Let sλ and rλ denote maximizers of

problems (7) and (8), respectively. Then rλ − sλ is a

subgradient of g at λ [13]. There exist λ for which

the maximizers are not unique, as a consequence, the



dual function is nondifferentiable. In this work, a cutting

plane-based outer linearization method is used to find

the optimum dual variable [13]. The outer linearization

method iteratively refines a polyhedral approximation of

the dual function based on subgradients of g at iterates

λ(n).

Clearly, the goal is to obtain the optimum rate vector

r∗, as well as the optimum power and subcarrier al-

location that implement r∗. In other words, a strategy

for recovering a primal solution r∗ and parameters

(α∗w,p
∗
w,π

∗
w)Ww=1 from λ∗ is required.

B. Convex Case

If the utility function u is concave, problem (6) is con-

vex and satisfies Slater’s condition, thus strong duality

holds. Due to strong duality, r∗ ∈ argmaxr∈C(λ
∗)Tr

[13]. If argmaxr∈C(λ
∗)Tr is a singleton set, W = 1

and the solution is determined by (p∗,π∗) that solve

problem (5).

If argmaxr∈C(λ
∗)Tr is not a singleton set, i.e., r∗

lies in a time-sharing region, primal recovery is more

involved. To obtain the optimum solution, it would be

required to construct time-sharing solutions, an issue that

is further discussed in the context of a MIMO downlink

in [14]. In the OFDMA downlink, a suboptimum, but

simple approach is to assume that

u(r∗) ≈ u(r),∀r ∈ argmax
r∈R

(λ∗)Tr,

i.e., it is assumed that the corner points of the time-

sharing regions are a good-enough approximation of

the optimum solution. Based on this approximation, set

W = 1 and r̂ = r(p̂, π̂), where (p̂, π̂) are the physical

layer parameters returned by the WSRmax algorithm,

given λ∗. Due to the fact that the optimum solution is

approximated by one of the corner points of the time-

sharing region, the system no longer needs to provide a

time-sharing mode.

The approximation of r∗ by r̂ is based on the intuition

that for a large enough number of subcarriers, the time-

sharing regions are relatively small – and, implicitly, that

the utility function is sufficiently flat around r∗. While

a rigorous justification remains an open problem, the

approach works sufficiently well in practice [8].

C. Nonconvex Case

For nonconcave utility u, subproblem (7) is noncon-

vex. If it can be solved to optimality at each iteration

of the cutting plane method (i.e., for each λ(n), a global

maximizer sλ(n) is determined), the cutting plane method

(or any other subgradient-based method) converges to

the optimum dual variable λ∗, as the dual function is

always convex. Finding a global maximizer is possible

if the maximizers can be computed analytically, On the

other hand, if the function u is such that a maximizer

of (7) has to be computed numerically, it may not be

guaranteed that the numerically obtained maximizer is

a global maximizer. If a local maximizer is obtained,

then rλ − sλ no longer represents a subgradient of g.
As a result, a local maximizer leads to an erroneous

polyhedral approximation of g, and the cutting plane

method is likely to not find the optimum dual variable.

For nonconcave utility functions, strong duality can

no longer be assumed and it may be the case that r∗ /∈
argmaxr∈C(λ

∗)Tr. By weak duality, g(λ∗) provides an

upper bound on the maximum utility value. The main

interest, however, lies in obtaining a good rate vector r̂

and the corresponding physical layer parameters. Let λ̂

denote the dual variable returned by the cutting plane

algorithm. Each r ∈ argmaxr∈C(λ̂)Tr represents a

feasible, though not necessarily optimum, solution to

the original primal problem (3). Thus, r̂ is chosen from

argmaxr∈R(λ∗)Tr.

V. EFFICIENT SET APPROACH

A primal method [15] for solving the utility maximiza-

tion problem was proposed in [9]. The method, denoted

as iterative efficient set approximation (IEA), basically

corresponds to a projected gradient algorithm on the

boundary of the rate region C. As an ascent method,

the projected gradient method provides convergence to

stationary points [15].

A. Basic Algorithm

Define the Pareto efficient set as follows:

E =
{

r ∈ C : ∄r′ ∈ C, r′ > r
}

. (9)

The efficient set E is a subset of the boundary of C
and contains the rate vectors which are largest under

the partial Pareto order. Due to the monotonicity of the

utility function, the optimum rate vector r∗ is element

of E . This motivates the use of a gradient ascent method

on the efficient boundary.

The algorithm proceeds as follows: Starting at r(k),

the gradient of the utility function at r(k) and an or-

thonormal basis B(r(k)) of the tangent space of C at

r(k) are computed. The utility gradient is projected onto

the tangent space, and this projected gradient is used to

give the ascent direction in the tangent space. With a

stepsize t, a new point r̃(k+1) results:

r̃(k+1) = r(k) + tB(r(k))B(r(k))T∇u(r(k)).



In general, r̃(k+1) 6∈ E , therefore a second projection is

required, which projects r̃(k+1) onto E to yield the next

iterate:

r(k+1) = PE(r̃
(k+1)).

The stepsize t is determined via a backtracking line-

search.

Due to the structure of E , the projection step is the

most complex step in each iteration. A projection or-

thogonal to the tangent space is employed. Let n denote

the unit-norm vector that is orthogonal to span(B(r(k))
and points away from C. To project r̃ on E , the following

problem is solved:

max
x,r
x s.t. r̃ + xn ≤ r, r ∈ C. (10)

The solution is again obtained by Lagrange duality. As

shown in [9], the optimum dual variable is found by

solving

min
λ≥0

λT(r∗(λ)− r̃) s.t. λTn = 1, (11)

where r∗(λ) ∈ argmaxr∈C λ
Tr. Again, the solution

allows to reuse existing WSRmax algorithms. Given the

optimum dual variable λ∗ the same strategy for primal

approximation as in case of the dual decomposition is

applied.

Due to the fact that the projection has to be carried

out at each outer iteration, the IEA method generally

requires more calls to the WSRmax algorithm than the

dual decomposition. In contrast, the dual decomposition

requires the solution of an application layer problem (7)

at each iteration, while IEA only requires evaluation of

the gradient of the utility function.

B. Convex Case

Under convexity, any local optimum is globally op-

timum, therefore the gradient ascent on E with back-

tracking line search converges to the optimum solution

r∗. Due to the applied strategy for primal approximation,

solutions in time-sharing regions are again approximated

by a corner point of the time sharing region, implying

the same assumptions already discussed in case of the

dual decomposition.

C. Nonconvex Case

In contrast to the dual decomposition, the efficient

set approach provides convergence to a local optimum.

Moreover, even if convergence to the global optimum

cannot be guaranteed, starting from an initial point, the

efficient set method always provides an improvement

in utility (assuming the initial point is not a stationary

point). The most complex step, the projection on E , is

completely independent of the properties of the utility

function.

VI. SIMULATION RESULTS

In this section, simulation results are used to compare

the performance of the two methods discussed in the

previous section. A scenario with K = 2 users is con-

sidered. As a reference, the utility value achieved by the

rate vector that maximizes sum-rate is also shown. The

sum-rate point does not take into account the properties

of the utility function and serves as a starting point for

the IEA algorithm.

An OFDMA system with 512 subcarriers is simulated,

using the WSRmax algorithm from [5]. The channel

coefficients hn,k are iid. complex Gaussian with zero

mean and variance σ2
k. In the simulations, σ2

2 = 10σ2
1 ,

i.e., user 2 has a higher channel gain on average. Results

are averaged over 500 channel realizations.

Both users have the same utility function uk, which,

depending on the scenario, either correspond to the

convex or the nonconvex interpolation shown in Figure 2.

Figure 3 shows the average sum utility u = u1 +
u2 for different values of maximum transmit power Ptr

that is achieved by the IEA method (IEA), by the dual

decomposition (DD-GA), and by choosing the sum rate

maximizing rate point, for concave u. A gradient ascent

method is used to solve the application layer subproblem

(7) in the dual decomposition.

As expected, for a convex problem, both IEA and dual

decomposition provide identical performance. Moreover,

optimizing power and subcarrier allocation with respect

to the properties of the upper layers offers a significant

gain in utility compared to a physical layer setup that

maximizes sum rate.

Figure 4 shows the average sum utility u = u1+u2 for

different values of maximum transmit power Ptr in the

case of nonconcave utility. For the dual decomposition,

two graphs are shown. As before, the graph labelled

DD-GA corresponds to the dual decomposition with the

application layer subproblem solved numerically with a

gradient method. In contrast, for DD-ES the subproblem

is solved via an exhaustive search over sampled intervals.

While the exhaustive search can always find a globally

optimum solution, the gradient method in some cases

only returns local maximizers. The simulation results

show that DD-GA often fails in providing a good so-

lution. On the other hand, IEA and DD-ES show almost

identical performance and again provide a significant
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performance gain compared to the maximum sum rate

strategy.

VII. CONCLUSIONS

Utility maximization in an OFDMA downlink is in-

vestigated. Two methods for modular parameter opti-

mization are applied to solve the utility maximization

problem. Moreover, two cases are considered: A convex

and a nonconvex utility model. For a convex model, both

methods provide the optimum solution, and significantly

outperform the sum rate maximization strategy. In the

nonconvex case, the local convergence properties of the

IEA method lead to good performance of this approach.

The performance of the dual decomposition strongly

depends on whether the application layer subproblem

can be solved to optimality. If a global maximizer is

found, the dual decomposition, combined with a heuristic

rule for primal recovery, yields good performance in

the OFDMA downlink, even for nonconcave utility. On

the other hand, if the optimum dual variable cannot be

found, the dual decomposition shows significantly lower

performance than the IEA method.
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