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Adaptive Rate Control over Multiple
Spatial Channels in Ad Hoc Networks

Andrew M. Hunter and Jeffrey G. Andrews

Abstract— In ad hoc networks of nodes equipped with multiple
antennas, the tradeoff between spatial multiplexing and diversity
gains in each link impacts the overall network capacity. An optimal
algorithm is developed for adaptive rate and power control for
a communication link over multiple channels in a Poisson field
of interferers. The algorithm and its analysis demonstrate that
optimum area spectral efficiency is achieved when each commu-
nication link in a large distributed wireless network properly
balances between diversity and multiplexing techniques. The channel
adaptive algorithm is shown to be superior to traditional and static
multi-antenna architectures, as well as to certain channel adaptive
strategies previously proposed. Lastly, the adaptive rate control
algorithm is coupled with an optimum frequency hopping scheme
to achieve the maximum area spectral efficiency.

I. INTRODUCTION

While much of the work on wireless network capacity focuses
on the limiting capacity as the network grows large or dense
[1] and [2], there remain a number of unanswered questions
concerning the effect of physical signaling and medium access
procedures on the network capacity. A practical approach is to
determine which techniques perform best in a given network
density or which can support the largest network. This approach
is adopted in this paper to analyze spatial multiplexing multiple
antenna (MIMO) techniques in ad hoc networks.

In MIMO systems, the need for improved signal quality pro-
vided by spatial diversity and the need to increase data rate with
spatial multiplexing compete for limited degrees of freedom. In
a single link setting, this results in a tradeoff between probability
of symbol error and data rate [3]. However, in an interference-
limited wireless ad hoc network, a different tradeoff emerges.
When outage induced by topology-dependent interference is
considered, it was shown by the authors in [4] that diversity
techniques that do not enhance interference permit an increase in
the density of contending transmitters. The present paper analyzes
spatial multiplexing systems, which increase per transmission
data rate at the expense of contention density. The tradeoff then
between multiplexing and diversity becomes a tradeoff between
the spectral efficiency of each link and spatial reuse (or increased
density). As an analogy, the tradeoff is between having fewer
large pipes or many smaller pipes in the network. Also unlike
the tradeoff in point-to-point throughput, from the perspective of
network area spectral efficiency, changes in density and changes
in link throughput both directly affect network capacity. The goal
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of this paper is to explore this tradeoff, and develop optimal
strategies for using multiple spatial channels in ad hoc networks.

II. SYSTEM MODEL AND MATHEMATICAL PRELIMINARIES

A. The Transmission Capacity Framework

In a large decentralized wireless network, nodes are often
distributed randomly and may interfere with each other in a
random fashion depending on the topology of the network and the
spatial traffic needs. In a randomly distributed network with mean
density λ, the transmission capacity is defined as the density of
successful transmissions multiplied by their data rate given some
outage constraint. Adopting a technological model, a symbol is
successfully decoded if the SIR ≥ β for some target β. So with
a constraint that attempted transmissions fail with probability
no more than ε, a contention density is feasible if attempted
transmissions experience

P(SIR ≥ β) ≥ 1− ε (1)

for each transmission. The optimal contention density is then

λε = max{λ|P(SIR ≥ β) ≥ 1− ε} (2)

since the SIR statistics are a function of the density of inter-
fering transmitters λ. The transmission capacity then (1 − ε)λε,
the density of successful transmissions under the performance
constraints, and for a given data rate b in b/s/Hz achievable with
SIR β, the area spectral efficiency (ASE) is given by ASE =
b(1− ε)λε.

The definition of transmission capacity is straightforward to
apply when only a single symbol is sent at a time, or even if
multiple symbols are sent as part of one datastream but each
symbol experiences the same effective channel statistics as in
the case of orthogonal designs of space-time block codes. But
if multiple datastreams are sent, different SIR statistics may be
seen on the different datastreams and so a broader definition is
needed. If SIRi ≥ βi is chosen to be the target SIR to achieve
rate bi and εi is the outage constraint for the ith datastream, the
optimal contention density becomes

λε = max{λ|P(SIRi ≥ βi) ≥ 1− εi, ∀i}. (3)

In general, if target SIRs and outage constraints are specified for
each subchannel, then one subchannel will become the limiting
factor in the optimal contention density, and hence the optimal
transmission capacity (or area spectral efficiency).
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B. Analysis in a Poisson Field of Interferers

We consider a receiver-transmitter pair in the midst of a Poisson
distributed set of interferers on the plane with intensity λ; the
point process of interferers is denoted by Φ. To model propagation
through a single wireless channel, let signals be subject to path
loss attenuation model |d|−α for a distance d with exponent α >
2 as well as small scale Rayleigh fading with unit mean. We
will assume the transmitter and receiver have full channel state
information on all available channels.

For such a channel, the typical receiver obtains desired signal
power ρS0R

−α for some fixed transmitter-receiver separation dis-
tance R, and with a fading power factor S0 on the signal from its
intended transmitter, labeled 0. The interfering nodes, numbered
1, 2, 3, ... constitute the marked process Φ = {(Xi, Si)}, with Xi

denoting the location of the ith transmitting node, and with marks
Si that denote fading factors on the power transmitted from the ith
node and then received by the typical receiver. Thus the receiver
receives interference power ρSi|Xi|−α from the ith interfering
node. For single-antenna narrowband systems in Rayleigh fading
channels, for example, the power factors S0 and Si are distributed
exponentially with unit mean so that the mean interfering power
is governed by transmit power and path loss.

Given a target SINR β, we say a symbol is successfully
decoded if on its particular spatial mode

ρS0R
−α

ρIΦ +No
≥ β (4)

is satisfied for S0 the channel fading factor for the received
signal for this particular subchannel which is a squared singular
value, R the transmitter-receiver separation, aggregate co-channel
interference ρIΦ on its particular spatial mode and No the
background thermal noise power. The aggregate interference is
a Poisson shot noise process (scaled by ρ), which is a sum over
the marked point process:

IΦ =
∑
Xi∈Φ

Si|Xi|−α. (5)

From here on, it will be assumed that the network is interference
limited, with ρIΦ � No so that thermal noise is negligible,
and normalized by setting ρ = 1. Following [5] and [4], the
probability of successful transmission for a typical receiver in a
uniformly random network is:

P(SIR ≥ β) = P
(
ρS0R

−α

ρIΦ
≥ β

)
=

∫ ∞
0

F cS0
(sβRα)dPr(IΦ ≤ s) (6)

where the third step is reached by conditioning on s and F c(·)
denotes a CCDF. In the SISO case, the received signal power is
exponentially distributed with F cS0

(sβRα) = e−sβR
α

so that

P(SIR ≥ β) =
∫ ∞

0

e−sβR
α

fIΦ(s)ds . (7)

This is now a Laplace transform of the PDF of IΦ which gives:

P(SIR ≥ β) = LIΦ(βRα). (8)

The Laplace transform for a general Poisson shot noise process
in R2 with i.i.d. marks Si is given by [6]

LIΦ(ζ) = exp
{
−λ
∫

R2
1− E

[
e−ζSi|x|

−α
]

dx
}

(9)

where the expectation, denoted by E[·], is over Si. To generalize
(6), we have the following Lemma derived in [4]:

Lemma 1: Let the interfering transmitters form a Poisson
process of intensity λ around a typical receiver with the outage
probability being P(SIR ≤ β) = P(ρS0R

−α

ρIΦ
≤ β) with fixed ρ,

β, R, and α. Suppose F cS0
takes the form

F cS0
(x) =

∑
n

e−nx
∑
k

an,kx
k (10)

for n, k ∈ N, and suppose S0 is independent of IΦ, then

P(SIR ≥ β) =
∑
n

∑
k

[
an,k

(
− ζ
n

)k
dk

dζk
LIΦ(ζ)

]
ζ=nβRα

.

(11)
Furthermore, for a small outage constraint ε, the optimal con-
tention density is given by the first order Taylor expansion of
(11) around λβ

2
αR2Cα = 0:

λε =
Kα

Cα

ε

R2β
2
α

+ o(ε)· (12)

for

Kα =

[∑
n

∑
k

an,kn
2
α−k

k∏
l=0

(l − 2/α)

]−1

(13)

and Cα(βRα)
2
α =

∫
R2 1− E[e−ζSi|x|

−α
]dx.

C. Decomposing the MIMO Channel

We consider a network in which each transmitter and receiver
has N antennas and each transmitter performs spatial multiplex-
ing sending M = N data streams, each with a separate packet1. In
Rayleigh fading, the channel between the receiver of interest and
its intended transmitter is R−

α
2 H00 which is an N×N matrix of

i.i.d. complex Gaussian entries with unit variance. This channel
can be decomposed into spatial modes by means of its SVD:

H00 = U00Σ00VH
00 , (14)

where (·)H denotes a conjugate transpose, V00 and U00 are the
unitary matrices of input and output singular vectors respectively
and Σ00 is the diagonal matrix of singular values, which are the
square roots of the eigenvalues of H00H

H
00. The ith interferer has

the Rayleigh channel

R−
α
2 Hii = R−

α
2 UiiΣiiVH

ii (15)

between itself and its intended receiver with |Xi| denoting the
distance between it and the receiver of interest; and |Xi|−

α
2 H0i

is the Rayleigh channel between the ith interferer and the receiver
of interest. The M spatial modes can be accessed by precoding

1This assumption, while not standard, and not completely necessary, makes the
definition of outage and application of Lemma 1 clear.
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the vector of symbols s0 by V00 and postcoding by UH
00 and the

receiver of interest sees interference according to:

y =
√

ρ

N
R−

α
2 H00V00s0 +

√
ρ

N

∑
i

|Xi|−
α
2 H0iViisi + n

z = UH
00y

=
√

ρ

N
R−

α
2 UH

00H00V00s0

+
√

ρ

N

∑
i

|Xi|−
α
2 UH

00H0iVisi + UH
00n

=
√

ρ

N
R−

α
2 Σ0s0 +

√
ρ

N

∑
i

|Xi|−
α
2 Heff,isi + ñ (16)

where the SINR is calculated on the statistic z. In a Rayleigh
fading environment, Heff,i is a standard random Gaussian matrix.
In this analysis, it is assumed that Gaussian signaling is used
over each datastream so that an SINR of β guarantees that
log2(1 + β) spectral efficiency is achievable on that stream.
Furthermore, the total power of each node will be fixed at ρ
though nontrivial power allocation strategies may be employed by
each user over its various available channels (e.g., spatial modes).
As shown in [7], without knowledge of interfering users’ channels
(both at the receiver of interest and at the interferers’ intended
receivers), power control can be harmful to network throughput.
It is assumed in the above that s0 and si are unit norm with power
allocated among their respective entries.

D. Analysis of Spatial Multiplexing Systems

The interference is modeled as a sum over the marked point
process defined by (5). When multiplexing across M modes, the
interfering power mark has the form:

Si =
M∑
k=1

∣∣∣uHH0iv
(k)
i s

(k)
i

∣∣∣2 . (17)

Here H0i is the Rayleigh fading channel between the receiver
and the ith interferer, uH is the combining vector applied at
the receiver for the packet of interest, v(k)

i is the kth column
of the precoding matrix applied by the interferer to transmit the
symbol s(k)

i . All uH , v(k)
i , H0i, and s(k)

i are independent of one
another. The interfering power is the sum of the interference from
the M independent data symbols transmitted by the interferer.
Each factor

∣∣uHH0iviks
′
∣∣2 is an exponential random variable

and all M factors are independent. Thus the factor Si for spatial
multiplexing systems is a Gamma distributed variate with scale
parameter one and shape parameter M . The mean of Si is M
and its MGF is

E
[
e−ζSi|x|

−α
]

=
1

(1 + ζ|x|−α)M
. (18)

Carrying out the integral in (9)

LIΦ(ζ) = e−λζ
2
αCα,M (19)

with

Cα,M =
2π
α

M−1∑
k=0

(
M

k

)
B

(
2
α

+ k;M −
(

2
α

+ k

))
(20)

and B(a; b) = Γ(a)Γ(b)/Γ(a + b) being the beta function,
and ζ = βRα. Note that while the terms and factors in (17)
were all independent, the interference powers seen by different
simultaneous datastreams across the link of interest are not
independent at all. The reason is that they depend heavily on
|Xi|−α, the distance-dependent attenuation of the signal from the
ith interferer. When an interferer happens to be nearby, it will
likely cause high interference to all datastreams at the same time,
while if no interferers are nearby, it is likely that all datastreams
will experience light interference. This is the motivation for an
ergodic analysis, i.e., of determining the statistics of a random
symbol (or packet) through the reference link.

For a typical (i.e., randomly selected) spatial mode, the
channel gain of the received signal has the distribution of
an unordered eigenvalue of H00H

H
00 from among the spatial

modes used. If all are used, the marginal pdf is: fφ(φ) =
1
M

∑M−1
k=0 [Lk(φ)]2e−φ where the Laguerre polynomial of order

k is Lk(x) =
∑k
i=0

(
k
k−i
) (−x)i

i! . Writing F cS0
in terms of fφ(φ)

and integrating term by term,

F cS0
(x) = 1−

∫ x

0

fφ(φ)dφ = e−x
2(M−1)∑
j=0

a
(j)
M xj (21)

where the coefficients a(j)
M are given by the formula

a
(j)
M =

1
j!M

M−1∑
m=0

1
22m

m∑
k=0

(2k)!
(k!)2

(
2m− 2k
m− k

) 2k∑
i=j

(−2)i

i!

(
2k

2k − i

)
(22)

If instead the weakest spatial mode is not used and the power
is split among the other modes, then the CCDF of an unordered
eigenvalue from among the top M − 1 is

F cS0
(x) = e−x

2(M−1)∑
j=0

M − 1
M

a
(j)
M xj − 1

M
e−Mx. (23)

Via Lemma 1, this permits the transmission capacity of these
cases to be computed: For small outage constraints ε, the optimal
contention density is given by

λε =
Ksm
α,M ε

β2/αR2Cα,M
· (24)

When all spatial modes are used with an equal power allocation,
the factor Ksm

α,M ≥ 1 is given by

Ksm
α,M =

1 +
2(M−1)∑
k=1

a
(k)
M

k∏
l=0

(l − 2/α)

−1

. (25)

When the smallest spatial mode is abandoned, the factor becomes

Ksm′

α,M =

1 +
2(M−1)∑
k=1

M − 1
M

a
(k)
M

k∏
l=0

(l − 2/α)− 2
α
M

2
α−1

−1

.

(26)
In [8], the CCDF of the square of the maximum singular value of
the desired channel (which is the largest eigenvalue of a complex
Wishart matrix), has been reported (originally given by [9]):

F cφ2
max

(x) = 1− |Ψ(x)|
Πq
k=1Γ(q − k + 1)Γ(s− k + 1)
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where | · | denotes a determinant, q = min{Nt, Nr}, s =
max{Nt, Nr}, and the entries of the q × q matrix Ψ(x) are

{Ψ(x)}i,j = γ(s− q + i+ j − 1, x) , i, j = 1, ... , q

where γ(·, ·) is the lower incomplete gamma function. Recall
γ(n, x) = (n− 1)!

(
1− e−x

∑n−1
k=0

xk

k!

)
. For the 2×N channel

when only the top spatial mode is used,

F cS0
=
γ(N − 1, x)γ(N + 1, x)− γ2(N, x)

Π2
k=1Γ(N − k + 1)

(27)

and when both are used,

F cS0
= 1−

∫ x

0

1
2

2∑
k=1

[LN−2
k (t)]2t2e−tdt. (28)

While the full sum of exponentials and polynomials expressions
are somewhat complicated and yield little intuition (and are hence
omitted), they lend themselves to numerical evaluation and to the
application of Lemma 1.

III. THE OPTIMAL STATIC, NETWORK-WIDE STRATEGY

A. Power Allocation for Fixed Rate Multiplexing

Let ρi be the fraction of power allocated to the ith channel with
the constraint

∑
i ρi ≤ 1. Given a set of channels for a reference

transmitter-receiver pair to select from whose signal distributions
meet the requirements of Lemma 1, then for each channel

λ =
Kiρ

2
α
i εi

Cα,MR2β
2
α

· (29)

To maintain a total outage constraint on the typical packet which
may be sent on any of M channels, we must have that 1

M

∑
i εi ≤

ε. Solving for εi in terms of the rest of the parameters above,

Mε =
M∑
i=1

λCα,MR
2β

2
α

Kiρ
2
α
i

= λCα,MR
2β

2
α

M∑
i=1

1

Kiρ
2
α
i

(30)

For fixed ρ, β, R, M , Ki, Cα,M , and ε, the transmission capacity
is maximized when

∑M
i=1K

−1
i ρ

− 2
α

i is minimized since λ is then
maximized. To solve for the optimal power allocation ρi, we have
the Lagrangian:

L(ρi;µ) =
M∑
i=1

K−1
i ρ

− 2
α

i + µ(
∑
i

ρi − 1) (31)

for which the solution can easily be found to be

ρi =
K
−1/δ
i∑

j K
−1/δ
j

(32)

for δ = 2
α + 1. Note that the solution for the optimal power

allocation is dependent only on the relative channel gains and the
path loss exponent. The optimal contention density can then be
found by solving for λ in (30):

λε =
K
′
ε

Cα,MR2β
2
α

(33)
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Fig. 1. Adaptive vs. static rate control for Rayleigh channels in a Poisson field
of interferers.

for

K
′

= M

(
M∑
i=1

K−δi

)−δ
. (34)

Since an outage constraint is applied, more power is allocated
to the weaker modes to make them more robust to interference,
thus allowing a higher density of interferers.

B. The Tradeoff between Multiplexing and Diversity

As an initial, straightforward example of determining the
optimal tradeoff between multiplexing and diversity, we can
determine the largest number of nodes per unit area which can
transmit at fixed power and over a fixed distance so that a given
target β is achieved with outage ε: P(ρS0R

−α

ρIΦ
≥ β) ≥ 1−ε. From

(17), regardless of the choice of weights at the transmitter and
receiver when the power is fixed, the statistics of the interference
are unchanged from the single antenna case when only one
datastream is sent. Clearly if S0 corresponds to the square of the
largest singular value of the channel, this stochastically dominates
any other effective channel gain [10] and so results in the largest
possible contention density. In addition, it is obvious that devoting
any power to lesser channels reduces λε so that there is a clear
tradeoff the number of transmitters and the number of independent
symbols sent by each transmitter.

However, one can also ask how many independent datastreams
can be transmitted per unit area each of which achieves the
target β with total outage ε. This is equivalent to the ASE =
mb(1 − ε)λε,m and depends on the number m of independent
datastreams sent by each node. The optimal tradeoff maximizes
the area spectral efficiency by selecting the number of spatial
modes m∗ and the corresponding λε,m∗ :

m∗ = argmaxm {mλε,m, m = 1, ...,M} (35)

for M the number of non-zero singular values in the MIMO
channel. For φi the ith largest singular value of the channel, since
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φ1 ≥st φ2 ≥st ... ≥st φM , then λε,1 ≥ λε,2 ≥ ... ≥ λε,M , but
this does not guarantee that jλε,j ≥ kλε,k for any particular
j, k. Since the distributions of eigenvalues of complex Wishart
matrices fall under the criteria of Lemma 1, the K factors can be
readily computed.

Remark: The best case increase in ASE would come from
a set of (statistically) equally good channels for which the gain
would be M1− 2

α over any single channel. Since Ki = K ∀i, then
K
′

= M−
2
αK indicating that multiplexing reduces the optimal

contention density, while it linearly increases the per transmission
data rate. This provides an upperbound on the potential improve-
ment in transmission capacity of spatial multiplexing, even with
the optimal power allocation, since the eigenmodes of the channel
have a strict ordering (i.e., they are not equal): Using M modes
must achieve less than an M1− 2

α gain over using only a single
eigenmode.

IV. CHANNEL AWARE ADAPTIVE RATE CONTROL IN A
POISSON FIELD

While the above develops an intuitive relation for the tradeoffs
in terms of per user throughput, contention density, and ASE, the
derivations thus far are for static, network-wide rate control. The
network can perform better, not surprisingly, if each communi-
cating pair is able to adapt to its particular channel conditions.

A. Adaptive Rate Control over a Single Channel

Consider first a transmitter-receiver pair with full CSI and a
single channel over which to communicate with current power
fade level ‖h‖2, yet in the midst of an a priori unknown Poisson
field of interferers1. The following relates the probability of
outage to the current propagation and interference environment:

λ =
‖h‖ 4

α ε

C ′αβ
2
αR2

(36)

where C
′

α = 2π
α Γ( 2

α ). Hence, given information on the current
channel, the optimum target SINR should be

βopt =
‖h‖2

Rα

(
ε

λC ′α

)α
2

(37)

with corresponding spectral efficiency log2(1 + βopt). Note that
‖h‖2
Rα is the actual path loss, and hence is easily measured at the

receiver. The link at all times retains a (1 − ε) probability of
success and so achieves throughput:

(1− ε)E[log2(1 + β)] = (1− ε)
∫ ∞

0

log2(1 + β)fβ(β)dβ (38)

For a Rayleigh fading link, letting γ =
(
λC

′

αR
2ε−1

)α
2

,

E[log2(1 + β)] =
∫ ∞

0

log2(1 + β)γe−γβdβ =
1

ln(2)
eγEi(γ)

(39)

1Note that [11] treated adaptive modulation in a Poisson field numerically for
specific SISO digital modulation schemes without outage constraints.
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Fig. 2. Area spectral efficiency versus contention density for one, two, four, and
eight antennas with optimal adaptive rate control.

for Ei(x) =
∫∞
x

e−t

t dt, a modification of the exponential integral.
This gives the mean data rate over each link, but for a network
of such receivers, the ASE is maximized by:

λ∗ = arg max
λ

λ exp
{

(λC
′

αR
2ε−1)

α
2

}
Ei
(

(λC
′

αR
2ε−1)

α
2

)
(40)

This expression has a nontrivial solution, but can be readily found
numerically.

B. Adaptive Rate Control over Multiple Channels

Now consider a transmitter-receiver pair with full CSI among
a Poisson field of interferers for which:

λ =
Kiρ

2
α
i ε

Cαβ
2
α
i R

2
(41)

for the ith channel available to the communicating pair where ρi
is the fraction of the total power assigned to channel i. Letting

γi =
(
λR2Cα
Kiε

)α
2

(42)

to determine the optimum rate and power for each channel the
algorithm maximizes the expression

∑
i log2(1 + βi) subject to

the constraints ρi = γiβi and
∑
i ρi = 1. Applying Lagrange

multipliers, the optimum target SINR for the ith channel is:

βi =
1
N

1 +
∑
i γi

γi
− 1 (43)

If a βi is found to be negative, the channel is abandoned and
the algorithm is rerun with a smaller set of channels. This is
reminiscent of the waterfilling solution in which better channels
are assigned more power and carry greater information content.
Finally, the ASE of a network composed of many such commu-
nicating pairs of density λ employing this algorithm would be:

ASE = (1− ε)λ · E

[∑
i

log2(1 + βi(λ))

]
(44)
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where the expectation is over all realizations of the βi which for
each realization are the above static function of λ.

C. Optimal Bandwidth Allocation

Equipped with an algorithm for optimal rate and power control
across multiple channels with outage constraints, the optimum
number of channels which should be made available to nodes
in the network becomes a tunable parameter, as in an OFDMA
system. As discussed in [12], an optimal bandwidth partition
exists (for frequency flat, single antenna systems) that balances
between increasing point-to-point spectral efficiency by reducing
spatial reuse. In general, employing a frequency (slow) hopping
scheme over N slots for which each node selects only a single
frequency slot, the contention density is thinned by a factor 1/N .
This modifies the area spectral efficiency to be:

ASE = (1− ε)(λ/N) · E

[∑
i

log2(1 + βi(λ/N))

]
. (45)

As shown in Fig. 4, in which the area spectral efficiency is plotted
versus contention density, for a fixed network density, employing
a frequency hopping scheme merely shifts the network operating
point on the curve. Clearly an optimal partition of the available
bandwidth moves the peak of the curve as near as possible to the
current density of transmitters in the network.

V. CONCLUSION

This paper established a tradeoff between multiplexing and
diversity in the operation of multiple antenna wireless ad hoc
networks. It was shown that spatial diversity increases the tol-
erable density of contending nodes in a network while spatial
multiplexing increases point-to-point throughput at the expense
of contention density. In terms of area spectral efficiency, an
optimal tradeoff for random wireless networks was found. It
was found that good diversity techniques such as maximal ratio

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

log
10

 λ

A
re

a
 S

p
e

ct
ra

l E
ff

ic
ie

n
cy

1 band

2 subbands

10 subbands

Fig. 4. Area spectral efficiency versus contention density for one, two, and
ten subbands with adaptive rate control over 2x2 MIMO Rayleigh channels. The
effect of changing the number of subbands is simply a shift of the curve.

transmission/combining tend to maximize network area spectral
efficiency for smaller numbers of antennas and for lower path
loss, while increased multiplexing is preferred for larger arrays,
larger path loss, and lower density.
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