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Abstract—Multiuser diversity scheduling in a single-cell sys-
tem is studied. The scheduler chooses a constant size subset
of users with best short term fading gains and coordinates
transmissions using superposition coding. Rate allocation is
performed according to users’ channel states assuming equal
power allocation over users. Asymptotic analysis of system
capacity is applied to study system behavior at low and high
spectral efficiencies. It is found that if users have non-symmetric
channel distributions, i.e. path loss is present, with large enough
user population it becomes beneficial in the sum rate sense to
schedule more than one user at a time.

I. INTRODUCTION

We consider the uplink of a wireless communications
system with K users. Each user k experiences a propagation
channel gain dk that is the product of two random variables:
the short term fading fk and the path loss sk. Short term
fading is assumed fixed over the signaling interval but i.i.d.
across users and signaling intervals. Path loss is assumed
i.i.d. across users and fixed in time for all users. Throughput
optimal scheduling [1] in a system with path loss results often
in a severely unfair result: only the user with the best channel
quality, usually very close to the access point, is scheduled.
As a result, alternative scheduling methods providing fairness
of scheduling decisions have been proposed. One of these is
the proportional fairness scheduler (PFS) [2], [3], [4]. In [5] it
is proved that in the limit of infinite time window PFS gives
the channel to whatever user has the best short term channel
realization. Each user is then transmits with equal power, i.e.
no power control optimization is applied [6] and as a result,
the system does not provide any explicit rate guarantees to
the users.

Based on the infinite time window interpretation of PFS,
we devise a scheme where the KA users with largest short
term fading gains are scheduled simultaneously and transmit
with optimal multiuser signaling. Rate allocation is performed
assuming equal power allocation while the total transmitted
power is normalized. We use tools from [7], [8] to analyze the
behavior of system capacity as a function of total transmitted
energy at low and high spectral efficiencies. Dependencies
between the size of user population, the number of simulta-
neously scheduled users and channel statistics are found.

The paper is organized as follows. The scheduling principle
and the utilized performance metrics are defined in Section
II. In Sections III and IV the system is analyzed for van-

ishingly small and asymptotically high spectral efficiencies,
respectively. Numerical examples are presented in Section V.

The elements of a vector or a sequence ~x are xi. We
denote by xi:j the ith smallest variable of j variables and
the distribution of a random variable y by Fy . Expectation
with respect to a random variable x is denoted by Ex[·] and
with respect to a sequence of variables by E~x[·]. The base of
logarithm is explicitly marked except for natural logarithms.

II. GROUP SCHEDULING

PFS allows the user with the relatively best channel to
transmit without considering the resulting rate provided. In
effect, the fairness is restricted to the scheduling decisions,
and does not consider fairness in transmitted rate. Generaliz-
ing this approach to allowing KA users with best short term
fading channel realizations transmitting simultaneously, we
come to the following formulation.

Let SNR = 1/N0. At any given time t, the system capacity
is expressed as a function of the channels of the set of
scheduled users A as

C(t) = log
(

1 + SNR

∑
k∈A dk

KA

)
. (1)

If we now define y =
∑
k∈A dk/KA, we can express the

average system capacity and the corresponding system energy
per bit, by

C(SNR) =
∫ ∞

0

log (1 + ySNR) dF (y) (2)(
Eb
N0

)
sys

=
SNR

C
log(2) (3)

Since the selection of the set of scheduled users A is
performed so that the KA users with the best relative channels
are scheduled, the short term fading statistic follows the
order statistic of KA largest samples of the short term fading
distribution. Note that the normalization of the transmitted
power by KA merely has the effect of holding the total
transmitted power unchanged w.r.t. KA.

Increasing the number of simultaneously scheduled users
has the following effect. In terms of short term fading,
users with relatively poorer channel conditions are scheduled
causing the expected value of y decrease with increasing
KA. In terms of path loss, however, the distribution of y
will concentrate nearer the expectation with increasing KA.
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The former will bring a loss, and the latter, due to the
concavity of logarithm, a gain in expected system capacity.
The effective change in system capacity will thus depend on
the distributions of short term fading and path loss, in addition
to the SNR.

III. LOW SPECTRAL EFFICIENCY BEHAVIOR

Direct analysis of the behavior of capacity is difficult due
to the received energy being the mean of ordered statistics
weighted with a random path loss. We can still analyze the
behavior of the system at high and low spectral efficiency
regions as defined in [7], [8]. In the low SNR region the
system behavior is characterized by the wideband slope S0

and the minimum system Eb/N0, (Eb/N0)min, such that [7]

(
Eb
N0

)
sys

∣∣∣∣∣
dB

=
(
Eb
N0

)
min

∣∣∣∣
dB

+
C

S0
10 log10 (2) + o(c),

(4)
where the capacity C is given in bits. By the results of [7],
we have directly from (2) that(

Eb
N0

)
min

=
log(2)
C′ (0)

(5)

=
log(2)

∞∫
0

y
1+SNRydFy(y)

∣∣∣∣
SNR=0

(6)

=
log(2)
E [y]

(7)

=
log(2)

E[s] 1
KA

K∑
i=K−KA+1

E[fi:K ]
. (8)

Note that due to

E[fi:K ] > E[fj:K ]

when i > j, the minimum system energy per transmitted bit
increases as KA grows while K remains fixed. Let us analyze
the difference between scheduling one or KA users. The ratio
of the corresponding minimum system energies is then

(
Eb
N0

)KA
min

/

(
Eb
N0

)1

min
=

K∑
i=K−KA+1

E[fi:K ]

KAE[fK:K ]
. (9)

In the special case of Rayleigh fading short term channel
statistics with exponential received energy distribution, we
have [9]

E[fi:K ] =
K∑

j=K−i+1

j−1,

and (9) can be expressed as

(Eb/N0)KAmin
(Eb/N0)1min

= 1−

KA−1∑
j=1

j−1
(

1− j
KA

)
K∑
j=1

j−1

(10)

= 1− Ψ(KA) + γ − 1 + 1/KA

Ψ(K) + γ
(11)

where Ψ() is the digamma function and γ ≈ 0.5772 is the
Euler-Mascheroni constant. The digamma function has the
limit limK→∞Ψ(K) = ∞. In case of finite KA the second
term of (11) vanishes as K grows to infinity. As a result, in
terms of (Eb/N0)min, the loss of scheduling multiple users
diminishes as the user population grows.

Also the wideband slope can be obtained by using the
results of [7] and (2) as

S0 =
2C′ (SNR)2

−C′′ (SNR)
(12)

=
2
(∞∫

0

y
1+SNRydFy(y)

∣∣∣∣
SNR→0

)2

∞∫
0

(
y

1+SNRy

)2

dFy(y)
∣∣∣∣
SNR→0

(13)

=
2E [y]2

E [y2]
(14)

= 2

(
K∑

i=K−KA+1

E[fi:K ]

)2/
K∑

i=K−KA+1

(
E[s2]
E[s]2

E[f2
i:K ] +

K∑
j=K−KA+1,j 6=i

E[fi:Kfj:K ]

)
. (15)

Note for the exponential path loss model detailed in Appendix
A the ratio E[s2]/E[s]2 is an increasing function of the path
loss exponent, which makes the behavior of the wideband
slope depend on the first two moments of the path loss
distribution. For Rayleigh fading, we have [9]

E[f2
i:K ] = E[fi:K ]2 +

K∑
j=K−i+1

j−2,

and for any i, j,

E[fi:Kfj:K ] = E
[
f2
min(i,j):K

]
+ E [fi:K ] E [fj:K ] .

With the above, it is straightforward to demonstrate that in
Rayleigh fading, the wideband slope increases with KA.

It is also useful to analyze the behavior of the minimum
energy and wideband slope when the number of scheduled
users is asymptotically large. In such a case, we let KA =



γK → ∞. Taking the value of (1) at the limit of KA → ∞
we get

C∞ (SNR) = lim
KA→∞

log

(
1 + SNR

1
KA

KA∑
i=1

di

)
= log (1 + SNR E [d])
= log (1 + SNR E [s] E [f ]) , (16)

where the expectation over short term fading is taken over
the scheduled users. At the limit of infinite KA, the principle
of scheduling KA out of K users is identical to scheduling a
constant fraction of the user population. This is effectively the
same as choosing a short term fading threshold above which
the users are scheduled.

Now, we can find the parameters of the asymptotic system
as (

Eb
N0

)
min

=
log(2)

E[s]E[f ]
(17)

S0 =
2 (C ′(0))2

−C ′′(0)
= 2. (18)

IV. HIGH SPECTRAL EFFICIENCY BEHAVIOR

In the high spectral efficiency region, when C → ∞, the
analysis is based on the spectral efficiency (high SNR) slope
S∞ and horizontal dB penalty L∞ so that the energy-spectral
efficiency function is approximated by [8](

Eb
N0

)
sys

∣∣∣∣∣
dB

=
C

S∞
10 log10 (2)− 10 log10 (C) +

L∞10 log10 (2) + o(1), (19)

where the capacity C is given in bits. The spectral efficiency
slope is given by [8]

S∞ = lim
SNR→∞

SNR C′(SNR) (20)

= lim
SNR→∞

SNR

∞∫
0

y

1 + SNRy
dFy(y) (21)

= 1, (22)

which is consistent with all schemes that uses all degrees of
freedom of the system. The horizontal dB penalty is a more
interesting measure of performance, and is given by

L∞ = lim
SNR→∞

(
log2 SNR

−
∫ ∞

0

log2 (1 + ySNR) dFy(y)
)
.

= −Ey [log2(y)] .

(23)

We can develop a simple upper bound on L∞ to analyze the
effects of multiuser scheduling on system capacity. We begin

by noting that since fi:K < fj:K for any i < j, we have

y ≥ 1
KA

K∑
i=K−KA+1

sifK−KA+1:K ,

with equality when KA = 1. Thus, due to the fact that
logarithm is a monotonically increasing function, we can
bound L∞ as

L∞ ≤− Es

[
log2

(
1
KA

KA∑
i=1

si

)]
− EfK−KA+1:K [log2(fK−KA+1:K)] .

(24)

The horizontal dB penalty upper bound is thus the sum of
two terms. The first term signifies the near-far gain and for
a given path loss distribution a function of the number of
scheduled users KA. It is denoted as a gain since an increase
in KA will reduce the Jensen penalty of the logarithm. Note
that due to the path loss being i.i.d. accross users we can
change the indexing to that in (24).

The second term in the bound signifies the multiuser
diversity loss due to the scheduling of users with relatively
poorer instantaneous channel as KA is increased. We can
further analyze the this loss by analyzing the difference in
this term between the cases of arbitrary KA and KA = 1.
This will give us the upper bound of the multiuser diversity
loss of scheduling more than one user as

EfK:K [log2(fK:K)]− EfK−KA+1:K [log2(fK−KA+1:K)]

= EfK:K ,fK−KA+1:K

[
log2

(
fK:K

fK−KA+1:K

)]
,

which for Rayleigh fading can be further developed as fol-
lows. Let {zi, i ∈ N+} be exponentially distributed i.i.d.
random variables with mean one. Then for Rayleigh fading

EfK:K ,fK−KA+1:K

[
log2

(
fK:K

fK−KA+1:K

)]

= E~y

log2

1 +

KA−1∑
i=1

zi/i

K−KA+1∑
j=1

zj/j




≤

(
KA−1∑
i=1

zi/i

)
E~y

 1
K−KA+1∑

j=1

zj/j



≤

KA−1∑
i=1

zi/i

K−KA+1∑
j=1

zj/j

=
Ψ (KA) + γ

Ψ (K −KA + 2) + γ
.

This upper bound on the multiuser diversity loss vanishes
asymptotically as K →∞ revealing that there exists a system
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Fig. 1. Low spectral efficiency behavior when scheduling 1 to 5 users with
system size 10 (solid) or 1000 (dashed).

size K above which it is beneficial to schedule more than one
user. It also shows the bound (24) is tighter as K increases.
On the other hand, the near-far gain is bounded from above,
since as KA →∞

E~s

[
log2

(
1
KA

KA∑
i=1

si

)]
→ log2(E [s]).

A crucial question is what are the resulting user rates of
the devised scheme. A partial answer can be found examining
the rate achieved by the user with the worst path loss (denote
here as k∗). This user is scheduled whenever fk∗ is one of
the KA largest short term fading coefficients. The average
rate of the user is then given as the expectation over fading
realization and user ordering.

V. NUMERICAL RESULTS

The following numerical results correspond to a single-cell
system where users are randomly placed on a unit disc with
a forbidden region with radius δ = 0.01 around the access
point. Path loss is assumed exponential with loss exponent 2,
while Rayleigh fading is assumed for short term fading. The
details of the channel statistics can be found in the appendix
A.

Figure 1 presents the low spectral efficiency linear approx-
imation for system behavior as given by (4) and demonstrates
the increase in wideband slope when scheduling more than
one user simultaneously. Also the increase in required energy
is readily visible. Changing the group size from 1 to 5 shows a
significant increase in the wideband slope. While the behavior
of the wideband slope across group sizes from 1 to 5 is
similar between user populations of 10 and 1000, the loss
in minimum (Eb/N0)sys is visibly smaller with a larger user
population.
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Fig. 2. System capacity behavior.
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Fig. 3. System capacity behavior.

Figure 2 gives the result of a Monte-Carlo integration of
the exact system capacity behavior wih K = 100. While
scheduling more than one user is an inferior strategy at very
low spectral efficiencies, above a certain spectral efficiency
(here approximately 0.15 b/s/Hz) it is beneficial to do so.

Figure 3 presents the system capacity characteristics of the
scheme for three system sizes and demonstrates the effect
of total system size K to the optimal group size. While it
is almost never beneficial to schedule two or more users
with system size K = 10, it is also almost never optimal
to schedule only one user with system size K = 1000.
One should note, furthermore, that the system capacity char-
acteristic quickly settles to follow an asymptotic behavior.
It is thus expected that beyond a certain spectral efficiency
the relative ordering between scheduled group sizes KA will
remain fixed. Thus, examining the horizontal dB penalty for
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Fig. 4. Horizontal dB loss with varying KA.

different group sizes will provide a meaningful optimization
criterion for all but the smallest spectral efficiencies.

Figure 4 presents the horizontal dB loss of group sizes
KA up to 20 for different total system sizes K. Its shows
an optimal group size can be found for all system sizes and
that this optimal is larger for larger systems. Furthermore, the
optimum is relatively flat for larger group sizes – one will lose
very little by using an approximately optimal group size.

VI. CONCLUSIONS

An algorithm that schedules multiple users simultaneously
with uniform power allocation was proposed. Asymptotic
results revealed that the losses from scheduling multiple users
instead or merely the user with the strongest short term
fading vanish as the user population grows and the near-far
gain from superposition coded scheduling becomes dominant.
This is due to the fact that given a growing user population,
consecutive ordered random variables become more and more
indistinquishable. On the other hand, the gain from shrinking
the Jensen-penalty of pure time-division scheduling (PFS) is
a function of the number of scheduled users. The asymptotic
horizontal dB penalty can be used to optimize the size of the
scheduled group. For large user populations the optimum is
very flat and a wide range of group sizes will perform close
to optimal.
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APPENDIX

The path loss has the cumulative distribution function

Fs(x) =
0 x < 1

1− x−2/α−δ2
1−δ2 1 ≤ x < δ−α

1 x ≥ δ−α
(25)

with the first two raw moments being

E [s] =

{
2(δ2−α−1)

(1−δ2)(α−2) α 6= 2
−2 ln δ
1−δ2 α = 2

(26)

E
[
s2
]

=
δ2−2α

(1− δ2)(α− 1)
. (27)

The short term fading envelope is modeled as an exponential
distribution with mean one. The channel distribution is given
by

Ff (x) = 1− e−x, x ≥ 0. (28)




