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Abstract—In this paper, we consider the uplink of a single
cell network with K users simultaneously communicating with a
base station using OFDM modulation over N carriers. In such
a scenario, users can decide their power allocation based on
three possible Channel State Information (CSI) levels, which are
called complete, partial and statistical. The optimal solutions for
maximizing the average capacity with complete and statistical
knowledge are known to be the water-filling game and the
uniform power allocation respectively. We study the problem in
the partial knowledge case. We formulate it as a strategy game,
where each player (user) selfishly maximizes his own average
capacity. The information structure that we consider is such that
each player, at each time instant, knows his own channel state, but
does not know the states of other players. We study the existence
and uniqueness of Nash equilibrium. We find the optimal solution
for the symmetric case considering two positive channel states,
and we show the optimization problem for any L states.

I. INTRODUCTION

The extension of OFDM [1] to allow simultaneous commu-
nication with multiple users is called OFDMA (Orthogonal
Frequency Division Multiple Access) [2]. For this setting,
efficient scheduling algorithms to optimize the users’ rate exist
and are based on multi-user diversity schemes [3] (only users
with the best carrier to noise ratio (CNR) conditions access
the network). This procedure is centralized: the scheduler
(generally the base station) assigns to each mobile the carriers
it is allowed to use. It requires an estimation by the scheduler
of the N carriers of the K users, and hence an important
feedback load. However, the uplink and downlink signalling
used in the estimation do not only consume system resource
but also increase the complexity. Moreover, for high mobility,
the channel conditions vary and the algorithm becomes inaccu-
rate. To reduce the feedback load, selective multiuser diversity
algorithms have been introduced: only the users that have a
CNR above a threshold send feedback to the scheduler [4] .
Multiple feedback thresholds can be used [5] and are generally
found numerically.

A way to avoid the constraints of a centralized procedure
is to implement a decentralized one. Unlike centralized pro-
cedure, few signalling consumption is the main advantage of
a decentralized scheme. Indeed, centralized schemes gener-
ally require complete information (all channels of all users)
whereas in a decentralized one, each user is able to make

decision based on partial information (e.g. only his own chan-
nel information), and this knowledge can be easily obtained
by using few downlink signalling (e.g. a downlink training
sequence). The potential gain of a decentralized procedure
therefore lies in the fact that we can get rid of the signalling
needed for a user to obtain other users’ channel information,
while a great amount of signalling is needed in a centralized
system to get all users’ information. Especially when the num-
ber of users increases or when the channel rapidly changes,
this signalling consumption becomes non-negligible or even
unacceptable. A natural framework to model decentralized
schemes where users interact is game theory, which studies
competition (as well as cooperation) between independent
actors. Tools of game theory have already been frequently
used as a central framework for modeling competition and
cooperation in networking, see for example [6] and references
therein.

In a fading multiple-access channel context, a game theo-
retic framework has been used in [7]. Users compete with rates
as utility and powers as moves in the game, in what the authors
call the water-filling game. They show that the unique Nash
equilibrium in this game corresponds to the maximum Sum-
Rate point of the capacity region [8]. However, their results
rely on the fact that each user has a nearly complete knowledge
of the system (at least the knowledge of global interference and
the condition to apply water-filling), and in particular, perfect
channel state information (CSI) of all users in the cell. This is
a necessary requirement in order to use the theory of games
with complete information, and an usual assumption in many
papers in the field, as the authors point out. Nevertheless, it is
rarely possible in practice and one can usually only satisfy at
best the requirements knowing only its own channel.

Power allocation problem has to be reconsidered with the
assumption that one user only knows its own channel. In
this paper, we show that power allocation problem can be
modelled as a strategic non-cooperative game where each user
only has partial knowledge and finds power levels maximizing
his own utility. We study the existence of Nash equilibria
in such context. We analyze the feasibility and practicability
of applying decentralized schemes. Our main objective is to
design a decentralized power allocation scheme modelled as
a strategic game under some reasonable assumptions.
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Fig. 1. Illustration of the uplink an OFDM system

The paper is organized in the following form: the system
model is introduced in section II. In section III, we present
the problem and its solution when complete and statistic
information is considered at the transmitter. In section IV,
we provide a strategy game model to solve the problem with
partial information. Finally, numerical results are provided in
section V followed by conclusions in section VI.

II. SYSTEM MODEL

We consider a flat-fading multiple access channel (MAC)
in a single cell network, where K users are simultaneously
communicating with a base station using OFDM modulation
over N carriers. At each time instant, each carrier i of
each user k is characterized by a channel gain g

(i)
k , k =

1, . . . ,K, i = 1, . . . , N . It is distributed according to some
(known) distribution function. We will denote by G ∈ R

K×N
+

a random variable having this distribution.
In the context, users should decide how to allocate their

power across time and subcarriers, based on some knowledge
and information they may have, which may be complete,
partial or only statistical CSI. More precisely, complete CSI
means that, at each time instant, one user knows his fading
as well as others’ fadings; partial CSI means that one user
knows only his fading and in the third case, each user only
has a statistical knowledge of all channels. In this paper, we
focus on the case of partial CSI, and we always assume that
users have at least statistical knowledge of the fading and know
the power budgets of the other users, which is expressed as

N
∑

i=1

EG

[

p
(i)
k

]

≤ P̄k. (1)

On each carrier i, user k sends the information x
(i)
k =

√

p
(i)
k s

(i)
k , where s

(i)
k is the transmitted data such as

E

[

|s
(i)
k |2

]

= 1. Note that a set Mi ⊆ {1, . . . ,K} of users
can select the same frequency carrier i, which introduces
interference. As a consequence, the received signal on carrier
i at the base station is given by:

y(i) =
∑

k∈Mi

h
(i)
k x

(i)
k + n(i) (2)

where h
(i)
k represents the complex channel gain of the ith

carrier between user k and BS, and we have g
(i)
k = |h

(i)
k |2.

n(i) is a zero mean Gaussian noise with variance σ2.
At the base station, the SINR of user k on carrier i is

therefore:

SINR(i)
k =

p
(i)
k g

(i)
k

σ2 +
∑K

j=1
j 6=k

p
(i)
j h

(i)
j

. (3)

The corresponding ergodic capacity of user k is given by:

Ck = EG







N
∑

i=1

log2






1 +

p
(i)
k g

(i)
k

σ2 +
∑K

j=1
j 6=k

p
(i)
j g

(i)
j












. (4)

In a game theoretic context, the purpose of each user is to
maximize selfishly its capacity.

III. BACKGROUND

First, we present the existing solutions correspond to the
two scenarios: complete and statistical knowledge at the trans-
mitter that we previously mentioned, and are also inherently
associated to particular implementation. We show that the
complete knowledge scheme requires a centralized (or semi-
distributed) implementation whereas the other two (partial
and statistical) can be implemented in a fully decentralized
way. For simplicity of presentation, we consider a single cell
network with two users simultaneously communicating with
a base station in a single carrier setting. Each user k = 1, 2
chooses a strategy pk ∈ R+.

A. Complete knowledge at Tx

With complete CSI, the case of a single carrier is studied in
the first part of [7]. Let us denote by p1(g1, g2) and p2(g1, g2)
the strategies of the two users. For a fixed strategy p2(g1, g2),
finding the optimal strategy p1(g1, g2) for user 1 requires
solving the following optimization problem

max C1 = max
p1(g1,g2)

Eg1,g2

[

log2

(

1 + p1(g1,g2)g1

σ2+p2(g1,g2)g2

)]

s.t. Eg1,g2
[p1(g1, g2)] ≤ P̄1

p1(g1, g2) ≥ 0
(5)

and similarly for the second user. The solution of the opti-
mization problem is the waterfilling power allocation [9]

p1(g1, g2) =

(

λ1 −
σ2 + p2(g1, g2)g2

g1

)+

(6)

where (x)+ = max{x, 0} and λ1 is chosen in order to satisfy
the constraint

Eg1,g2

(

λ1 −
σ2 + p2(g1, g2)g2

g1

)+

= P̄1. (7)

Note that the solution (6) depends on the power allocation
of the second user, which the first user does not know, and
reciprocally for the second user. However, given the game
model, each user is able to adjust his strategy adaptively to its



guess of the strategy of the other user. In [7], the authors
show that this process converges to a unique equilibrium
and that it is time-sharing (i.e. for a given realization of
the fading, the optimal solution p⋆

1(g1, g2) and p⋆
2(g1, g2) can

not be simultaneously strictly positive). It corresponds to the
maximum Sum-Rate point of the capacity region:







p⋆
1(g1, g2) =

(

λ1 −
σ2

g1

)+

, when g1 ≥ λ2

λ1
g2

p⋆
2(g1, g2) =

(

λ2 −
σ2

g2

)+

, when g2 ≥ λ1

λ2
g1.

(8)

with p⋆
1(g1, g2) = 0 and p⋆

1(g1, g2) = 0 in other cases. The
above waterfilling levels λ1, λ2 are obtained by solving the
system of equations















Eg1,g2

[

(

λ1 −
σ2

g1

)+
∣

∣

∣

∣

g1 ≥ λ2

λ1
g2

]

= P̄1

Eg1,g2

[

(

λ2 −
σ2

g2

)+
∣

∣

∣

∣

g2 ≥ λ1

λ2
g1

]

= P̄2.

(9)

Thus, an interesting conclusion is that the result of the selfish
behavior of the users will result in the joint optimization of
the global capacity of the channel.

However, in (8), there exists two conditions to indicate users
whether they should transmit power or not. For instance, the
water-filling condition for user 1 is: g1 ≥ λ2

λ1
g2, where λ1

and λ2 are easily to be known by user 1 (one can find in
(9) that λ1 and λ2 only depend on the distribution of g1 and
g2), but g2 (the channel realization of user 2) may be hardly
obtained. In practice, for such a scenario with multiple users
(e.g. uplink of multi-user OFDM), a certain amount of UL/DL
signallings are needed to be exchanged between the base
station and users so that each user can have the information for
this condition. However, when the number of users becomes
large, the amount of corresponding signalling overheads will
dramatically reduce the global throughput and may become
unacceptable or even unrealistic from the engineering point of
view. It is for this reason that we are motivated to investigate
a novel power allocation scheme such that each user is able
to decide and allocate his power without knowing the channel
states of others, therefore, the UL/DL signalling previously
mentioned are not required any more.

B. Statistical knowledge at Tx

When users have only statistical knowledge of their channel,
as well as of the channels of other users, the strategies of the
two users p1 and p2 can not depend on the realization of
the fading and are necessarily fixed. For a fixed strategy p2,
finding the optimal strategy p1 for user 1 requires solving the
following optimization problem

max C1 = max
p1

Eg1,g2

[

log2

(

1 + p1g1

σ2+p2g2

)]

s.t. p1 ≤ P̄1

p1 ≥ 0

(10)

and similarly for the second user. Since the function to
maximize is an increasing function of p1, the solution of the
optimization problem (10) is obviously:

p1 = P̄1 (11)

and similarly for the second user p2 = P̄2. Since the users do
not have any information about their channels, the best they
can do is always to transmit at the maximal constant power
they can afford. This results in (time domain) uniform power
allocation.

IV. DISTRIBUTED POWER ALLOCATION GAME

Here, we consider a distributed power allocation scheme
with partial knowledge at the transmitter. To be precise, at
each time instant, each user knows the realization of its own
channel and the statistical knowledge of other user’s channel.
In this case, p1 can only depend on g1 and p2 on g2. Let us
denote by p1(g1) and p2(g2) the strategies of the two users.
For a fixed strategy p2(g2), finding the optimal strategy p1(g1)
for user 1 requires to solve the following optimization problem

max C1 = max
p1(g1)

Eg1,g2

[

log2

(

1 + p1(g1)g1

σ2+p2(g2)g2

)]

s.t. Eg1
[p1(g1)] ≤ P̄1

p1(g1) ≥ 0
(12)

and similarly for the second user. Note that the term p2(g2) is
unknown to the first user and that its strategy can not depend
on the particular realization of g2. User 1 can only rely on the
assumption of rationality of user 2 to deduce its strategy. For
a fixed strategy p2(g2), via Lagrangian duality, the solution of
the optimization problem (12) is given by the equation:

Eg2

[

g1

σ2 + p1(g1)g1 + p2(g2)g2

]

=
1

λ1
(13)

where λ1 is chosen in order to satisfy

Eg1
[p1(g1)] = P̄1. (14)

Note that the solution of (13) depends on the power allocation
of the second user, which the first user does not know, and
reciprocally for the second user. However, given the game
model, each user is able to adjust his strategy adaptively to its
guess of the strategy of the other user.

For simplicity of presentation, we first consider the scenario
of two positive channel states. We then extend it to the case
of arbitrary number of positive channel states in the end of
this section.

A. Two channel states

In order to simplify the game problem, one assumption has
been used in [10] and [11], where the power levels are assumed
to be discrete. However, we introduce a slightly different
assumption as follows,

Main assumption: channel states are discrete.
Our main assumption is closely related to the way how

feedback channel information are signalled. Once estimated
at the receiver side, channel coefficients are feedback to the
transmitter with a given precision. Since these are represented
on a finite number of bits (e.g. ℓ bits), channels coefficients are
mapped on a finite number of 2ℓ states. When ℓ = 1, channel
coefficient is coded on 1 bit and may take two possible values



(e.g. a1 representing “bad” channel values, and a2 representing
“good” channel values). When ℓ = 8, channel coefficient is
coded on 28 bits. Thus, one can always choose an appropriate
quantization precision that is sufficient to describe a particular
channel.

Assumption 1: Each carrier’s channel gain can be 0 with
probability ρ0, and can also be other two positive values a1 and
a2 (w.l.o.g. a1 < a2) with probability ρ1 and ρ2 respectively.
We have ρ0 + ρ1 + ρ2 = 1.

Assumption 2: Both users have the same power constraint,
define: P̄ , P̄1 = P̄2. We have

ρ1pk(a1) + ρ2pk(a2) = P̄ , k = 1, 2 (15)

where pk(a1) and pk(a2) represents the power that user k

allocates on his carrier when the channel gain is a1 and a2

respectively.
1) Game Formulation: In this part, we focus on the

problem of game modeling. We consider a strategic non-
cooperative game with two players, which completely char-
acterized by three elements as follows,

Γ ,
[

K, {Pk}k∈K , {uk}k∈K

]

• Player set: K , {1, 2}, where K , |K| = 2.
• Action set: {P1,P2}, where P1 , {p1(a1), p1(a2)} and

P2 , {p2(a1), p2(a2)}. Note that Pk can take any
possible value that satisfies power constraint (15).

• Payoff (or utility) function set: {u1 (p∗1, p2) , u2 (p1, p
∗
2)},

where we denote p1, p2 as p1(a1), p2(a1) for simplifying
the following expressions. Note that u1, u2 are the selfish
average capacity as shown in (12). By using (15), we
define

u1(p
∗
1, p2) = ρ2

1 log2

(

1 +
a1p∗

1

σ2+a1p2

)

+

+ ρ1ρ2 log2

(

1 +
a2

P̄−ρ1p∗

1
ρ2

σ2+a1p2

)

+

+ ρ1ρ2 log2

(

1 +
a1p∗

1

σ2+a2
P̄−ρ1p2

ρ2

)

+

+ ρ2
2 log2

(

1 +
a2

P̄−ρ1p∗

1
ρ2

σ2+a2
P̄−ρ1p2

ρ2

)

.

(16)

and

u2(p1, p
∗
2) = ρ2

1 log2

(

1 +
a1p∗

2

σ2+a1p1

)

+

+ ρ1ρ2 log2

(

1 +
a2

P̄−ρ1p∗

2
ρ2

σ2+a1p1

)

+

+ ρ1ρ2 log2

(

1 +
a1p∗

2

σ2+a2
P̄−ρ1p1

ρ2

)

+

+ ρ2
2 log2

(

1 +
a2

P̄−ρ1p∗

2
ρ2

σ2+a2
P̄−ρ1p1

ρ2

)

.

(17)

In such a non-cooperative game, each player tries to maxi-
mize its own payoff function, given the other player’s strategy
and regardless of the consequence his strategy’s choice may
have on the other player and thus on the overall performance.
This means that players play selfishly: they do not communi-
cate before play, and have independent objectives.

2) Nash Equilibrium: It is well known that a Nash equi-
librium for a game is a set of strategies such that no single
player can improve its utility by deviating. In general, such
a equilibrium does not necessarily exist [15]. In our setting,
{p⋆

1, p
⋆
2} is a Nash equilibrium if given any other strategies

p1 ∈ P1 and p2 ∈ P2,
{

u1(p
⋆
1, p

⋆
2) ≥ u1(p1, p

⋆
2)

u2(p
⋆
1, p

⋆
2) ≥ u2(p

⋆
1, p2).

(18)

First, we investigate the existence of the Nash equilibrium
in our game model.

Theorem 1: A Nash equilibrium exists in game Γ =
[

K, {Pk}k∈K , {uk}k∈K

]

.
The proof of Theorem 1 can be found in appendix A.
Second, we investigate the uniqueness of such an equilib-

rium in our game model.
Theorem 2: The game Γ =

[

K, {Pk}k∈K , {uk}k∈K

]

has a
unique equilibirum.

Proof. From Theorem 1, we know that there exists at least
one Nash equilibrium in the game. Let p

⋆ = {p⋆
1, p

⋆
2} denote

this Nash equilibrium. By definition (18), p
⋆ has to satisfy

p
⋆ = r(p⋆), where r(p⋆) = (r1(p

⋆), r2(p
⋆)), more pricisely,

it has to satisfy the following two equations






p⋆
1 = r1(p

⋆
2) = max

p∗

1

u1(p
∗
1, p

⋆
2)

p⋆
2 = r2(p

⋆
1) = max

p∗

2

u2(p
⋆
1, p

∗
2)

(19)

Note that rk(p⋆
−k) and rk(p⋆) are equivalent, which are called

player k’s best-response function.
Now we assume that Nash equilibrium is not unique and

apart from p
⋆ there exists at least another one, e.g. p

† =
{p†1, p

†
2}, and p

† 6= p
⋆. From definition, p

† should also
satisfy (19). However, since utility function uk is concave and
differentiable, for a fixed strategy p2, there is a unique best
strategy p′1 that satisfies p′1 = r1(p2); for a fixed strategy p1,
there is also a unique best p′2 that satisfies p′2 = r1(p1). So
the solution to the equation group (19) is unique and given by
equation group

{

∂u1

∂p∗

1
= 0

∂u2

∂p∗

2
= 0

(20)

It contradicts to our assumption that p
† 6= p

⋆, therefore, p† =
p

⋆. We proved Theorem 2.�
3) Symmetric Case: In this part, we consider the game with

the following assumption,
Assumption 3: Both users apply the same power strategy if

their observations on the channel state(s) are symmetric. Both
user do not allocate any power when the carrier’s channel gain
is 0.

Note that it is a realistic assumption for many practical
reasons. For example, in a regular cellular system, the power
allocation policies embedded in all the mobile devices are
usually designed in the same way. This means that they will
choose the same action when they face the same corresponding
scenario. Therefore, we define

{

p(a1) , p1(a1) = p2(a1)

p(a2) , p1(a2) = p2(a2)
(21)



Now, due to the same design, both users should have
an “agreement” on applying the power allocation strategy
{p(a1), p(a2)}. The decision of applying p(a1) or p(a2) only
depends on their own channel realization. From (15), we have
ρ1p(a1) + ρ2p(a2) = P̄ . And we can rewrite the original
optimization problem (12) as

max C1 = max
p(a1)

ρ2
1 log2

(

1 + a1p(a1)
σ2+a1p(a1)

)

+

+ρ1ρ2 log2

(

1 + a1p(a1)

σ2+a2·
P̄−ρ1p(a1)

ρ2

)

+

+ρ1ρ2 log2

(

1 +
a2·

P̄−ρ1p(a1)
ρ2

σ2+a1p(a1)

)

+

+ρ2
2 log2

(

1 +
a2·

P̄−ρ1p(a1)
ρ2

σ2+a2·
P̄−ρ1p(a1)

ρ2

)

s.t. p(a1) ≤
P̄
ρ1

p(a1) ≥ 0
(22)

In general, the convexity of function C1(p(a1)) depends on
the relationship between the parameters a1, a2, ρ1, ρ2, P̄ and
σ2. However, in the low noise regime (σ2 → 0), the above
optimization problem can be easily solved. We define

C̃1(p(a1)) , lim
σ2→0

C1(p(a1))

= ρ2
1 + ρ2

2 + ρ1ρ2

[

log2

(

1 + a1p(a1)

a2·
P̄−ρ1p(a1)

ρ2

)

+

+ log2

(

1 +
a2·

P̄−ρ1p(a1)
ρ2

a1p(a1)

)]

(23)
Theorem 3: Function C̃1(p(a1)) is decreasing on

(

0, a2P̄
a1ρ2+a2ρ1

)

and increasing on
(

a2P̄
a1ρ2+a2ρ1

, P̄
ρ1

)

. The so-

lution of the maximization problem max
p(a1)

C̃1 is given by

p⋆(a1) =

{

0, a2ρ1 ≥ a1ρ2
P̄
ρ1

, a2ρ1 < a1ρ2
(24)

which gives the best power strategy

{p⋆(a1), p
⋆(a2)} =

{

0, P̄
ρ2

}

, a2ρ1 ≥ a1ρ2
{

P̄
ρ1

, 0
}

, a2ρ1 < a1ρ2

(25)

The proof of Theorem 3 can be found in appendix B.
Thus, an interesting result is that the choice of the best power
strategy depends not only on the channel states but also on
the probability that each state happens. In general, the optimal
solution will focus all the energy to the channel state that has
better condition but with less probability to appear.

B. More channel states

In this part, we still assume user index k = 1, 2, but
each channel gain has L (L > 2) possible values. We keep
assumption 2 and 3 above, and reclaim assumption 1 as:

Assumption 4: Each carriers channel gain can be 0 with
probability ρ0, and can also be L positive values {a1, . . . , aL}
(w.l.o.g. a1 < . . . < aL), each happens with probability
ρ1, . . . , ρL respectively. We have

∑L
l=0 ρl = 1.

Based on the assumption 3, we define p(al) as

p(al) , p1(al) = p2(al), l = 1, . . . , L

Now, let us denote the power strategy set with L channel states
as p = {p(a1), . . . , p(aL)}. And we rewrite the optimization
problem (12) as

max
p

∑L
n=1

∑L
m=1ρmρn log2

(

1 + anp(an)
σ2+amp(am)

)

s.t.
∑L

l=1 ρlp(al) = P̄

p(al) ≥ 0, l = 1, . . . , L

The objective function of this optimization problem is non-
convex. We propose an Zero Interference Searching (ZIS)
algorithm as follows,

Algorithm 1 Zero interference searching (ZIS)
initialize c = 0
for l = 1 to L do

c′ = ρl log2(1 + alP̄
ρlσ2 )

if c′ > c then
ξ = l

c = ρl log2(1 +
aξP̄

ρξσ2 )
end if

end for

Finally, the output of this algorithm can be shown as
(p(a1), . . . , p(aL)) = (0, . . . , 0, P̄

ρξ
, 0, . . . , 0). Each step

insists in searching among the cases that all the energy is
dedicated to only one best channel state (depends on both
al and ρl), where no interference is allowed. The algorithm
complexity is O(L).

V. NUMERICAL RESULTS

In this section, the simulation results are given and analyzed
by using the following parameter sets:

a1 a2 ρ1 ρ2 P̄ σ2

set 1 1 1.2 0.5 0.5 1 0.5
set 2 1 3 0.5 0.5 1 0.1
set 3 1 10 0.5 0.5 1 0.1
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Fig. 2. The non-convexity of function C1(p(a1)) (left: set 1; right: set 2)

In Fig. 2, we show the behavior of function C1(p(a1)) (22)
in the symmetric case. In the left figure, we use the parameters
from set 1. We find that function C1(p(a1)) is obviously not



convex in p(a1), and the solution p⋆(a1) that maximizes C1

is comprised between 0 and 0.1. In the right figure, we use
the parameters from set 2. In this setting, function C1 shows
the behavior of decreasing and increasing (not strictly convex)
and we have p⋆(a1) = 0. It is consistent with the result of (24)
in the case of a2ρ1 ≥ a1ρ2.
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Fig. 3. Illustration of Nash equilibrium (left: set 2; right: set 3)
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Fig. 4. Average capacity comparison among three different information levels
(left: set 2; right: set 3)

In Fig. 3, we show the Nash equilibrium (NE) given by (20).
In the left figure, we use the parameters from set 2; in the right
figure, we use the parameters from set 3. As expected, there
always exists a unique NE for both cases, and it is symmetric,
i.e. the NE for set 2 and set 3 are (0.6,0.6) and (0.5,0.5)
respectively. It is also interesting to note that when the values
of a1 and a2 are relatively close (set 2), the NE is close to the
uniform power allocation, which is (1,1) in this case; when
a1 and a2 are relatively far (set 3), the NE slightly goes away
from (1,1).

In Fig. 4, we compare the average capacity by using
the parameters from set 2 and set 3 (except the value of
σ2) obtained in the three different information level cases
considering: complete, partial and statistical knowledge at the
transmitter side. The SNR is defined as the ratio between the
power constraint P̄ and the noise variance σ2.

• For the case of complete knowledge, recall (9), we have

λ , λ1 = λ2 =
1

3

[

4P̄ + σ2

(

1

a1
+

2

a2

)]

,

and the results of waterfilling in (8) gives the best power
strategy (for set 2 and 3)


















p⋆
1(a1, a1) = p⋆

2(a1, a1) = λ − σ2

a1

p⋆
1(a2, a2) = p⋆

2(a2, a2) = p⋆
2(a1, a2) = p⋆

1(a2, a1) =

= λ − σ2

a2

p⋆
1(a1, a2) = p⋆

2(a2, a1) = 0

• For the case of partial knowledge, the NE is given by
equations (20). In the low noise regime, the optimal
operation point of the symmetric case is given by (25).
However, in general, if the convexity condition does
not hold, since the objective function is differentiable,
one can always obtain the best strategy by applying the
following two steps:

– Find all the solutions satisfying ∂C1

∂p(a1)
= 0.

– Compare these solutions together with two borders
p(a1) = 0 and p(a1) = P̄

ρ1
, the one that maximizes

C1(p(a1)) is the best strategy p⋆(a1).

In this simulation, with our parameter settings, the best
strategy is p⋆(a1) = 0 within the range of SNR (0-30dB).

• For the case of statistical knowledge, the best strategy is
UPA given by (11).

From Fig. 4, the curves with complete knowledge at Tx
provides the capacity upper bound while the curves with
statistical knowledge at Tx provides the capacity lower bound.
In the case of partial knowledge, the average capacity gain
of the optimal operation point in the symmetric case is much
higher than Nash equilibrium. In fact, they do not have the
same slope. Moreover, we find that the efficiency of Nash
equilibrium depends on the relationship between two channel
states a1 and a2. The efficiency becomes lower/higher when
the values of two channel states are close/far.

VI. CONCLUSION

In the case of uncertain topology when only local
information is available, we have provided a power allocation
strategy, which depends only on the number of channel states.
This strategy was shown to outperform classical uniform
power allocation scheme and was not far from the complete
CSI in the low SNR regime. Moreover, from a game theoretic
view, we have shown the existence and uniqueness of Nash
equilibrium. Extension is being studied for the case of MIMO
and correlated equilibrium.

APPENDIX

A. Proof of Theorem 1
In order to prove Theorem 1, we introduce Theorem 4,

which is obtained from [12]-[15].
Theorem 4: A Nash equilibrium exists in game Γ =

[

K, {Pk}k∈K , {uk}k∈K

]

if the following two conditions are
satisfied, for all k = 1, . . . ,K:

1) Pk is a nonempty, convex, and compact subset of some
Euclidean space R

K .
2) uk(P) is continuous in P and quasi-concave in Pk.

From (15), we know p1(a1), p2(a1) ∈ [0, P̄
ρ1

], condition 1
is obviously true. For condition 2, first we prove that uk is
a concave function in Pk, then we show that any concave
function is quasi-concave.

Let gi (p∗k (a1)) , i = 1, . . . , 4 be the expressions that inside
four log functions in (16). It is easy to see that each gi (.) ∀i



is a linear function of p∗k(a1), and so it is concave and also
positive. Now, we introduce Theorem 5,

Theorem 5: f(g1(x), . . . , gm(x)) =
∑m

i=1 αi log gi(x),
αi > 0 is strictly concave in x if gi are strictly concave and
positive.

Proof. Function f and gi ∀i are continuous and differen-
tiable. The second derivative of function f is

∂2f

∂x2
= αi

[

1

gi

∂2gi

∂x2
−

1

g2
i

(

∂gi

∂x

)2
]

Since gi are strictly concave and positive, we have gi > 0 and
∂2gi

∂x2 < 0. Therefore, we have ∂2f
∂x2 < 0. So, function f is strict

concave in x. �

From Theorem 5, we showed that uk is a concave function
in Pk. Then, we give the definition of quasi-concave,

Definition 1: Function uk : Pk → R is quasi-concave if for
any pk, p′k ∈ Pk, we have

uk(λpk + (1 − λ)p′k) ≥ min {uk(pk), uk(p′k)}

for all λ ∈ (0, 1).
Theorem 6: A concave function is quasi-concave.
Proof. The theorem follows immediately from the observa-

tion that if uk is quasi-concave, then for all pk, p′k ∈ Pk, we
have

uk(λpk + (1 − λ)p′k) ≥ λuk(pk) + (1 − λ)uk(p′k) ≥
≥ min {uk(pk), uk(p′k)}

Function uk is concave and also quasi-concave, therefore, we
proved condition 2 in Theorem 4. �

Thus, from Theorem 4-6, we complete the proof for
Theorem 1. We can confirm the existence of Nash equilibrium
in our game model.�

B. Proof of Theorem 3.
Function C̃1(p(a1)) is continuous and differentiable. From

its first derivative

∂C̃1(p(a1))
∂p(a1)

=
a1a2ρ1ρ2

2P̄

ln 2[a1ρ2p(a1)+a2(P̄−ρ1p(a1))]
·

·
[

1
a2(P̄−ρ1p(a1))

− 1
a1ρ2p(a1)

] (26)

We find that it is decreasing on
(

0, a2P̄
a1ρ2+a2ρ1

)

and increasing

on
(

a2P̄
a1ρ2+a2ρ1

, P̄
ρ1

)

. Then we compare C̃1(0) and C̃1(
P̄
ρ1

)

when σ2 → 0

C̃1(0) = lim
σ2→0

[

ρ2
1 + ρ2

2 + ρ1ρ2 log2

(

1 + a2P̄
ρ2σ2

)]

C̃1(
P̄
ρ1

) = lim
σ2→0

[

ρ2
1 + ρ2

2 + ρ1ρ2 log2

(

1 + a1P̄
ρ1σ2

)]

(27)
From (27), we find that when a2

ρ2
> a1

ρ1
, C̃1(0) > C̃1(

P̄
ρ1

);

when a1

ρ1
> a2

ρ2
, C̃1(

P̄
ρ1

) > C̃1(0). Since a1, a2, ρ1, ρ2 are
positive, we have (24), therefore (25). �
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