
Evaluating a bound for MANETs routing protocols
performance using graphs with activation windows

David Soler, Jose Albiach and Eulalia Martinez
Polytechnic University of Valencia

Dept. Applied Mathematics
Camino de Vera, s/n, 46071 Valencia, SPAIN

Email: dsoler@mat.upv.es

Pietro Manzoni
Polytechnic University of Valencia

Dept. Computer Engineering
Camino de Vera, s/n, 46071 Valencia, SPAIN

Email: pmanzoni@disca.upv.es

Abstract—In this paper we present an algorithm called STPA
(Shortest Time Path Algorithm) which aims at providing a
comparison tool for the evaluation of a bound for Mobile Ad
Hoc Networks (MANETs) routing protocols performance.

STPA provides an exhaustive evaluation of an ideal routing
protocol. Based on the current position and state of the nodes it
can determine factors like: how many complete messages get to
the destination, which is the smallest amount of time required
by a packet to get to the destination, which path followed each
packet, and so on. This values would allow a protocol designer
to improve or fine tune his proposal.

We demonstrate that the complexity of the algorithm is
O(σ2), that is polynomial with respect to parameter σ; where σ
corresponds to the sum of all the instants of time during which
all nodes are active.

I. INTRODUCTION

Mobile ad-hoc networks (MANETs) are networks where
mobile nodes can roam around at will and communicate with
each other without any preexisting communication infrastruc-
ture.

A routing path has to be established in a multi-hop manner,
requiring each mobile host to serve as a router. This fact
creates many challenging research issues since collaborating
nodes might have different capacities, like processing power,
memory availability or willingness to be part of a route. This
last factor, the willingness to be part of a route might depend
on aspects such as the need for a node to be left physically
turned off to save energy [1], or to simply make this node
invisible, i.e., logically turned off, to certain other nodes for
security reasons [2]. The effect of the presence of nodes in
the off-state must therefore be thoroughly evaluated.

The evaluation of a new proposal is usually performed with
the aid of a network simulator, like for example the ns-2 [3].
Anyway, the need for a formal model to describe a MANET
has been approached in many other different ways. In [4]
the author use games theory to evaluate cooperation in ad
hoc networks for energy optimization. In [5] a framework
called MERIT is described that can be used to assess routing
protocols in MANETs. It uses the novel concept of a shortest
mobile path (SMP) in a mobile graph, a generalization of
the shortest path problem for mobile environments. Finally,
in [6] the authors propose a novel graph-based mobility model,
which provides a more realistic movement than the random

walk model by reflecting the spatial constraints in the real
world.

In this work we propose an analytical model based on
graphs with activation windows. Our proposal provides an
exhaustive evaluation of an ideal routing protocol. This values
will allow a protocol designer to improve or fine tune his
proposal. An activation window indicates when a node is
considered active or inactive. A node is active, i.e., it can
either send or receive messages, during certain time windows
inside [0, T].

We describe an algorithm, called STP algorithm (STPA),
that based on the current position and state of the nodes
determines factors like: how many complete messages get to
the destination, which is the smallest amount of time required
by a packet to get to the destination, which path followed each
packet, and so on.

We show that the complexity of the algorithm is O(σ2),
that is polynomial with respect to parameter σ; where σ
corresponds to the sum of all the instants of time during which
all nodes are active.

The rest of this paper is organized as follows. Section II
describe the proposed network model. Section III defines
the objectives and presents the details of the STP algorithm.
Finally, some conclusion and the description of the future work
are presented.

II. MODEL DEFINITION

We represent an ad hoc network as a set of n nodes, W =
{vi}n

i=1, each referring to a device placed on the R2 plane.
We define a coordinate function:

coi : [0, T] → R2, coi(t) = (xi(t), yi(t))

where [0, T] is the total interval of time during which there is
network activity. The coordinate function provides the position
of node vi at any instant of time t ∈ [0, T].

Each node vi can be either active or inactive. A node is
active, i.e., it can either send or receive messages, during
certain time windows inside [0, T], where we will suppose
that time takes integer values (discretized time). The set of
time windows is defined as:

twi = {[ti2k−1, t
i
2k]}pi

k=1

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany.

Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9

DOI 10.4108/ICST.WIOPT2008.3166

peri
Typewriter

where 0 ≤ tis < tir ≤ T if s < r with s, r ∈ {1, 2, . . . , 2pi}.
Node vi can only send messages at time t, where t ∈
[ti2k−1, t

i
2k] for some k ∈ {1, . . . , pi}. Outside twi node vi

is inactive and it can neither send nor receive any message.
The transmission range of a node is a function of the node

itself and the sending time t. We use a generic range function,
Ri(t), defined as:

Ri : [0, T] → R+ ∪ {0}
so that Ri(t) = 0,∀t 6∈ ⋃pi

k=1

[
ti2k−1, t

i
2k

]
. This function can

depend on many factors, like the RF technology adopted, the
surrounding environment, the antenna type, and so on. If node
vi sends a message at time t, and node vj is inside vi’s range
at that instant of time, that is, ‖coi(t)− coj(t)‖ ≤ Ri(t), the
message will reach vj at instant t + tij(t).

In this paper we will us the term “packet” to indicate a
message that requires a unit of time to leave a node. A packet
is therefore the message unit and we will suppose that all
messages consist of one or several packets and that at any
instant of time a node can send at the most one packet.

Function tij(t) ∈ Z+ ∪ {0} indicates the units of time
it takes for a message to move from vi to vj . The node
vj will receive this message only if active, that is only if
t+tij(t) ∈ [tj2k−1, t

j
2k] for some k ∈ {1, . . . , pj}. We consider

that tij(t) is small enough so that coj(t) ≈ coj(t + tij(t)),
i.e., that during that period of time vj stays inside the range of
vi, if ||coi(t) − coj(t)|| ≤ Ri(t). We are basically supposing
that, since sending time are so small compared to the nodes
mobility, vertices are practically static during each sending
operation.

The sending of a message from vi at time t and the reception
at node vj at instant t+ tij(t) if vj is in the vi range, implies
a cost cij(t) ≥ 0. We consider in this work that the cost
coincides with the sending time tij(t).

Once node vj receives the message from vi and determines
that it has to forward it, it will do it at time t + tij(t) + rj ,
where function rj ∈ Z+ ∪ {0} represents the processing time
at node vj . The instant of time t + tij(t) + rj must belong to
the same activation window of t + tij(t) and of vj , otherwise
the message will get lost at vj .

We will suppose that in the network the following circum-
stances are verified:
• If a node vi receives more than one packet at the same

instant of time, because of interferences all the packets
will be lost in vi.

• A node does not forward a packet originated by itself nor
resends a packet whose destination is itself, nor resends
a packet sent previously by itself. Basically a packet is
resent by a node only if it comes from different paths,
thus avoiding loops.

• To save energy, a node vi resends a packet at most
gi times, ignoring all packets coming after the gi-th
resending operation.

• If a node vj is about to send a locally generate packet at
instant t, but at the instant t−rj receives one and only one
packet, except in the three cases listed below, it will send

the packet received at instant t and it will send its own
packet in the following available instant t, delaying if it
is required any other own packets. If at instant t− rj vj

receives more than one packet, as explained before these
packets will be lost and therefore the node will send its
own packet at instant t. The three exceptions are:

– If the packet that receives at t− rj is directed to it;
– if a packet was sent by vj in a previous instant of

time;
– if the packet received at instant t−rj is not directed

to vj and it already forwarded it gi times;
in the above three cases it will send its own packet at
instant t.

III. THE STPA ALGORITHM

This section describes the details of the proposed algorithm.
We first formally describe the problem, then we give the details
of the algorithm, and finally we compute its complexity.

A. Problem statement

We suppose an ad hoc network made of n nodes, W =
{vi}n

i=1. About this network we know all the informa-
tion mentioned in Section II referring to an interval of
time [0, T]. We suppose that during interval [0, T] the sub-
set of nodes {vij}r

j=1, where r < n and ij < ij+1

∀j, generate (i.e., send) messages. That is, node vij send
mij messages M

ij

1 ,M
ij

2 , . . . , M
ij
mij

respectively to nodes
v1ij

, v2ij
, . . . , vmijij

which must not be two disjunct. Each

message M
ij

k has a unique destination and it is made of
p

ij

k packets sent at instants of time t
kij

1 , t
kij

2 , . . . , t
kij

p
ij
k

where

0 ≤ t
kij

1 < t
kij

2 < . . . < t
kij

p
ij
k

< T . Packets related

to different messages can be alternated, like for example,
t
kij

1 < t
hij

1 < t
kij

2 supposing h 6= k, where node vij after
sending the first packet of message M

ij

k send the first packet
of message M

ij

h and afterward the second packet of message
M

ij

k .
The answers that we will give with our approach are all

oriented to offer criteria to determine how effective is the
routing protocol we are proposing with respect to an “ideal”
protocol. More specifically we will obtain:
• how many complete messages get to the destination;
• how many complete in-order messages get to the desti-

nation;
• which packets will be delayed and for how long;
• at which instant of time will each successful packet get

to its destination;
• which is the smallest amount of time required by a packet

to get to the destination;
• which path was followed by each packet.

B. The algorithms details

By default all variables that are not initially set to a different
value must be considered as initialized at 0.

Each vertex vh
m that appears in the graph refers to node vm

at the instant of time h. Associated to each vertex vh
m there is

a 4-component vector teh
m = (m̃, h̃, m̂, h̃′). This vector must

be interpreted as if node vm at instant h forwards the packet
sent for the first time by node vm̃ at instant h̃, and whose
destination is node m̂; this packet was initially scheduled to
be sent by vm̃ at instant h̃′. Note that h̃ > h̃′ means that the
corresponding packet was sent with a delay of h̃− h̃′ units of
time.

The vertexes vh
m that generate packets, will sometime have

a second associated vector, steh
m, similar to the previous one,

and a third one, tteh
m. These two vectors are used to determine

which packet will be eventually sent.
Each vertex vh

m will have another associated vector camh
m,

with at most n− 1 components (where n is the total number
of nodes). The i-th component of camh

m will indicate the i-th
node through which passed the packet that vm will possibly
send at instant h. This vector is used to avoid loops.

Obviously, at the beginning camh
m = ∅ for all m and h.

The first element of camh
m, when created, indicates the node

that generated the packet.
In the algorithm description we will use the symbol ⊕ to

indicate the addition of a component to vector camh
m; e.g.,

(2, 3) ⊕ 4 = (2, 3, 4). Also, c ∈ camh
m will indicate that one

of the components of camh
m is node c; therefore m ∈ camh

m

will alert about the creation of a loop.
Each vertex vh

m will have associated a binary variable etiqh
m

which will be set to 1 if node vm receives 2 or more packets at
instant h−rm. This variable is associated only to vertexes that
do not generate packets. Vertexes vh

m that generate packets will
have associated another variable rech

m which will be set to 0
if node vm does not receive any packet at instant h−rm, or to
1 if it receives a unique packet at instant h− rm, or to 2 if it
receives two or more packets at instant h−rm (interferences).
All the etiq and rec variables will be set to 0 at the beginning.

Using c(vh
m, vh′

m′) we will indicate the cost of arc (vh
m, vh′

m′)
in G; in this work this will always coincide with h′ − h,
that is with tmm′(h) + rm′ . By d+(v) we will understand,
as normal in graph theory, the number of arcs that comes
out from vertex v. Finally a set N will contain all those teh

m

vectors that correspond to packets that could not be sent since
their sending instant were delayed to an instant at which the
node is inactive and will remain inactive until T .

Basically the algorithm starts from an initial set Q with all
the vertexes vh

m so that vm belongs to the subset of nodes
that generate their own messages and h is the instant of time
at which vm wants to send one of its packets; therefore Q
will initially have as much vertexes as many locally generated
packets that the nodes want to send in the interval [0, T].

At each iteration the algorithm searches in strict increasing
time order a vertex vb

a in Q, and it eliminates it from Q,
looking for all nodes vm and instants of time b+tam(b) where,
given the network conditions, it is guaranteed that the message
sent from va at instant b will get to vm.

For the cases where this guarantee exists, the algorithm adds
the vertexes v

b+tam(b)+rm
m to V and Q with their respective

Algorithm 1: STPA Algorithm: First Phase
Initialization();
while Q 6= ∅ do

vb
a := vh

m so that vh
m ∈ Q and h = min{l | vl

s ∈ Q};
Q ← Q ∼ {

vb
a

}
;

if teb
a(1) = a and teb

a(2) = b then
if (recb

a 6= 1) or (recb
a = 1 and steb

a(3) = a) or
(recb

a = 1 and steb
a(1) = a) or (recb

a = 1 and
|{vl

a ∈ V | l < b and tel
a = steb

a}| = ga) or
(recb

a = 1 and a ∈ camb
a) then

Forward();
else

tteb
a = teb

a and teb
a = steb

a ; Forward();
delay the sending of va at b′ > b, where b′ is
the first avail. inst. that va is active at b′;
if vb′

a /∈ Q then
Q ← Q ∪

{
vb′

a

}
; V ← V ∪

{
vb′

a

}
;

recb′
a = 0 and

teb′
a = (a, b′, tteb

a(3), tteb
a(4));

if vb′
a ∈ Q then
if (teb′

a (1) 6= a) or (teb′
a (1) = a and

teb′
a (2) < b′) then

if etiqb′
a = 1 then

recb′
a = 2, steb′

a = teb′
a ,

teb′
a = (a, b′, tteb

a(3), tteb
a(4));

A ← A ∼{
(u, vb′

a) | (u, vb′
a) ∈ A

}
and

camb′
a = ∅;

if etiqb′
a = 0 then

recb′
a = 1, steb′

a = teb′
a ;

teb′
a = (a, b′, tteb

a(3), tteb
a(4));

if teb′
a (1) = a and teb′

a (2) = b′ then
tteb′

a = teb′
a and

teb′
a = (a, b′, tteb

a(3), tteb
a(4));

Delay(va)

if (teb
a(1) 6= a) or (teb

a(1) = a and teb
a(2) < b) then

if (etiqb
a = 1) or (etiqb

a = 0 and teb
a(1) = a) then

V ← V ∼ {
vb

a

}
;

A ← A ∼{
(u, vb

a) | (u, v
b+tam(b)+rm
m) ∈ A

}
;

if (etiqb
a 6= 1 and teb

a(1) 6= a) then
if teb

a(3) 6= a then
if |{vl

a ∈ V | l < b and tel
a = teb

a}| = ga

or a ∈ camb
a then

V ← V ∼ {
vb

a

}
; A ← A ∼ {

(u, vb
a)

}
being (u, vb

a) the unique arc entering
in vb

a;
else

Forward();

SecondPhase();

Procedure Initialization
begin

Q := {vh
m | so that vm belongs to the subset of

nodes that generate local messages and h is the
instant of time when vm should send one of its
packets};
V := Q;
A := ∅;
teh

m = (m,h, m̃, h) ∀vh
m ∈ Q, where vm̃ is the

destination node of the packet that vm wants to send
at instant h;

end

vectors te
b+tam(b)+rm
m , and the arcs (vb

a, v
b+tam(b)+rm
m) to

A, or it properly mark them if they already belong to Q,
depending on node vm receives at instant b + tam(b) two or
more packets and therefore, due to interferences, it loses the
information of those packets or it generate a local packet at
instant b + tam(b) + rm.

If the third vector component of the selected vertex vb
a is

a (i.e., teb
a(3) = a), means that va is the destination of the

received packet, then vb
a will be eliminated from Q without

any further search, unless va generates at the same instant of
time a local packet at t = b. Iteration stops when Q = ∅.

Finally, to reduce as much as possible the size of G we
eliminate from V in strict decreasing time order all those
vertexes vh

m without leaving arcs (d+(vh
m) = 0) where vm does

not generate any local packet at instant t = h and teh
m(3) 6= m,

which means that vm is not the destination of the received
packet at instant h − rm, eliminating at the same time its
input arc of A, which can generate more vertexes without any
leaving arc in G at previous instant. The resulting directed
graph G = (V, A) will be acyclic and will be formed by:
• Maximum paths, they are not part of a longer path, which

go from vertexes vh
m so that vm belongs to the subset

of nodes the generate their own messages and h is the
instant of time at which vm send one of its packets, to
vertexes vh′

m′ so that vm′ is the destination node of the
packet originally send by vm at t = h.

• Various of the previous paths concatenated among them,
if it happens that vh′

m′ is at the same time generator of a
local packet.

• Isolated vertexes that correspond to packets sent which
did not get to their final destination.

Two paths corresponding to two different packets will be
vertex-disjoint, except in the case that they are concatenated.
In this last case they will have in common the last vertex of
the former and the first vertex of the latter.

Thanks to how the algorithm is designed and to some
basic properties of graph theory it is easy to demonstrate the
following statements, which we have included in the following
unique theorem:

Theorem 1: Given an ad hoc network, described with all
the parameters of Section II and given the graph G and the

Procedure Forward
begin

forall vm with m 6= a, ‖coa(b)− com(b)‖ ≤ Ra(b),
vm active during the interval
[b + tam(b), b + tam(b) + rm] and
b + tam(b) + rm ≤ T do

if v
b+tam(b)+rm
m ∈ Q then
if (teb+tam(b)+rm

m (1) 6= m) or
(teb+tam(b)+rm

m (1) = m and
te

b+tam(b)+rm
m (2) < b + tam(b) + rm) then

A ← A ∪
{

(vb
a, v

b+tam(b)+rm
m)

}
;

etiq
b+tam(b)+rm
m = 1;

if te
b+tam(b)+rm
m (1) = m and

te
b+tam(b)+rm
m (2) = b + tam(b) + rm then

if rec
b+tam(b)+rm
m = 0 then

ste
b+tam(b)+rm
m = teb

a;
rec

b+tam(b)+rm
m = 1;

A ← A ∪
{

(vb
a, v

b+tam(b)+rm
m)

}
;

cam
b+tam(b)+rm
m = camb

a ⊕ a;
c(vb

a, v
b+tam(b)+rm
m) := tam(b) + rm;

if rec
b+tam(b)+rm
m = 1 then

rec
b+tam(b)+rm
m = 2,

cam
b+tam(b)+rm
m = ∅;

A ← A ∼
{

(u, v
b+tam(b)+rm
m)

}
being

(u, v
b+tam(b)+rm
m) the unique arc

entering in v
b+tam(b)+rm
m ;

if rec
b+tam(b)+rm
m = 2 then

do nothing

if v
b+tam(b)+rm
m /∈ Q then
Q ← Q ∪

{
v

b+tam(b)+rm
m

}
;

V ← V ∪
{

v
b+tam(b)+rm
m

}
;

A ← A ∪
{

(vb
a, v

b+tam(b)+rm
m)

}
;

cam
b+tam(b)+rm
m = camb

a ⊕ a;
c(vb

a, v
b+tam(b)+rm
m) := tam(b) + rm;

te
b+tam(b)+rm
m = teb

a;
end

set of vectors N obtained applying the STPA algorithm, it is
verified that:

a) A packet generated and sent by vs at instant t will not get
to its destination if and only if vt

s ∈ V and d+(vt
s) = 0.

b) A packet that was scheduled to be generated and sent
by vs at instant t to vd, will be definitively sent by
vs at instant t′, where t′ ≥ t if vt′

s ∈ V and tet′
s =

(vs, t
′, vd, t).

c) A packet that was scheduled to be generated and sent

Procedure Delay(va)

begin
Delay the sending of the local packet of va

forecasted for instant b′ to the next instant b′′ > b′ so
that va is active at b′′, doing exactly as with vb

a,
changing b for b′ and b′ for b”, and so successively
until there is no need to delay any local packet of va

that was to be sent after b;
If, as a consequence of this process, a packet that
was to be sent from va, cannot be sent because
delayed too long and va becomes inactive; the vector
corresponding to this packet must be stored in N ;

end

Procedure SecondPhase
begin

P := {vh
m ∈ V | d+(vh

m) = 0,
teh

m(3) 6= m and teh
m(1) 6= m};

while P 6= ∅ do
vb

a := vh
m so that h = max{l | vl

m ∈ P};
P ← P ∼ {

vb
a

}
;

V ← V ∼ {
vb

a

}
;

A ← A ∼ {
(u, vb

a)
}

being (u, vb
a) the unique arc

entering in vb
a;

update P ;
end

by vs at instant t to vd, will not be sent by vs at any
instant of time if a vector (vs, t

′, vd, t) ∈ N for some
t′ ≥ t.

d) If vs generates and sends a packet at instant t to vd, this
packet will get to its destination at instant t′ if it exists
in G a path from vt

s to vt′+rd

d .
e) Given a maximum path in G that starts from vt

s and
ends in vt′

d , then either tet
s(3) = vd or two vertexes exist

inside that path in G, vh
i and vh′

j with t < h ≤ h′ < t′

(possibly i = j and h = h′) so that tet
s(3) = vi and

teh′
j (3) = vd.

Thanks to the information stored into vectors tet
d we know

which, if any, packet gets at each instant to vd. For example,
if we want to know at which instant the packet sent from
vs at instant m will get to vd, we will have to look for the
vertex vh

d in V , if it exists, so that h = min{l | vl
d ∈ V

and tel
d = (s, m, d, m′)}. This packet will get to vd at instant

h−rd. The time required by the packet since it left vs at instant
m will be h − rd − m time units. It was initially scheduled
to be sent at m′, where m > m′, meaning that the packet
suffered a delay of m−m′ time units. The information about
the path followed by the packet is stored in camh

d . By applying
a simple method of graph theory to compute the unique path
from vm

s to vh
d in G and checking the super-indexes of the

vertexes in the path we can determine at which instant of time
the packet has been forwarded by each node in the path.

Item e of the previous theorem means that given a maximum
path in G that starts from vt

s and ends in vt′
d , two situations

can occur: either vs generates and send a packet at instant t
to vd, which will receive it at t′−rd, or this maximum path is
made of various concatenated paths, as if for example node vi

receives a packet being the final destination at instant h − ri

and at the same time it generates and send a packet at instant
h (vertex vh

i inside the path).

C. Complexity computation of STPA

In this section we determine the upper bound for the
complexity of the STPA algorithm. We will not minimize
this upper bound but we will show that the complexity of
the algorithm is polynomial with respect to parameter σ. This
parameter corresponds to the sum of all the instants of time
during which all nodes are active, that is:

σ =
n∑

i=1

pi∑

j=1

(ti2j − ti2j−1)

If we define σi =
∑pi

j=1(t
i
2j − ti2j−1) where i ∈

{1, 2, . . . , n}, we can redefine the previous definition of σ as:
σ = nσ̄ where σ̄ is the average value of all σi, that is of the
instants of time at which each node is active in [0, T].

Theorem 2: The STPA algorithm has complexity O(σ2).
Proof:

The number of iterations made by the algorithm in the first
phase is bounded above by σ since at each iteration it sets
a different vt

s and it eliminates it from Q. At each iteration,
the number of comparisons required to look for the selected
vertex is also bounded above by σ, since |Q| ≤ σ.

Once vb
a is selected, the procedures that impact the com-

plexity of the algorithm are:

• Compute |{vl
a ∈ V | l < b and tel

a = steb
a}|, with a

number of basic operation O(σa) (we have to check a
number of instants l bounded by σa).

• The process of, if it is the case, delaying the sending
of a locally generated packet, requires also O(σa) basic
operations. These operations will be done at an instant of
time after b when va is active.

• The subroutine FORWARD requires just a few operations
for each node vm where m 6= a, basically checking if it
is active over the interval [b + tam(b), b + tam(b) + rm].
The value rm should be very small, we consider the
bound for this interval width equal to σm, and therefore
the complexity of this subroutine is O(σ).

Regarding the second phase, a few checks must be done
for each vertex V , where |V | ≤ σ to determine P . P will
have less vertexes than |V |, vertexes which will require just a
few basic operations. Therefore the complexity of this second
phase is O(σ) and the total complexity of the algorithm is
O(σ2).

IV. CONCLUSIONS

In this paper we presented an algorithm called STPA
(Shortest Time Path Algorithm) which aims at providing a
comparison tool for the design of routing algorithm for Mobile
Ad Hoc Networks (MANETs).

Instead of validating new proposals by using simulation with
typical tools like ns2, what STPA provides is an exhaustive
evaluation of an ideal routing protocol. Based on the current
position and state of the nodes it can determine factors like:
how many complete messages get to the destination, which is
the smallest amount of time required by a packet to get to the
destination, which path followed each packet, and so on. This
values would allow a protocol designer to improve or fine tune
his proposal.

We demonstrate that the complexity of the algorithm is
O(σ2), i.e., polynomial with respect to parameter σ; where
σ corresponds to the sum of all the instants of time during
which all nodes are active.

This is anyway a preliminary work. We are currently de-
signing a software tool that will exhaustively evaluate a given
scenario and that will provide all the characterizing parameters
of an ideal routing protocol.

Mobility will also be introduced to completely evaluate
MANETs scenarios.

V. ACKNOWLEDGMENTS

This work was partially supported by FEDER and the Min-
isterio de Educación y Ciencia, Spain, under Grant TIN2005-
07705-C02-01.

REFERENCES

[1] Juan Carlos Cano and Pietro Manzoni. Evaluating the energy-
consumption reduction in a MANET by dynamically switching-off net-
work interfaces. Proceedings of the 6th IEEE Symposium on Computers
and Communications, Hammamet, Tunisia, July 2001.

[2] Hao Yang, James Shu, Xiaoqiao Meng, and Songwu Lu. Scan: Self-
organized network-layer security in mobile ad hoc networks. IEEE
Journal on Selected Areas in Communications, 24(2):261–273, 2006.

[3] K. Fall and K. Varadhan. ns notes and documents. The VINT Project. UC
Berkeley, LBL, USC/ISI, and Xerox PARC, February 2000. Available at
http://www.isi.edu/nsnam/ns/ns-documentation.html.

[4] Sonja Buchegger and Jean-Yves Le Boudec. Performance analysis of
the CONFIDANT protocol: Cooperation of nodes fairness in distributed
ad-hoc networks. In Proceedings of IEEE/ACM MobiHOC, 2002.

[5] A. Faragó and V. R. Syrotiuk. Merit: a scalable approach for protocol
assessment. Mob. Netw. Appl., 8(5):567–577, 2003.

[6] Jing Tian, Joerg Haehner, Christian Becker, Illya Stepanov, and Kurt
Rothermel. Graph-based mobility model for mobile ad hoc network
simulation. In 35th Annual Simulation Symposium, April 14 - 18, 2002,
San Diego, California.

