
Impact of Selfish Packet Forwarding on
Energy-Efficient Topology Control

Ramakant S. Komali and Allen B. MacKenzie
Virginia Polytechnic Institute and State University; Blacksburg, Virginia 24061

Email: {rskomali, mackenab}@vt.edu

Abstract— Wireless topology control attempts to harness the
programmability of radios to build efficient network structures.
This paper addresses energy minimization in an ad hoc network
of selfish nodes by jointly considering packet forwarding and
packet sourcing—two main sources of energy consumption in
multi-hop networks. Specifically, we examine how energy-efficient
topologies can be established through non-cooperative power
control taking into account the possibility of selective and partial
packet forwarding in the network.

The topology control game, where each node is attempting
to minimize its energy consumption while maintaining network
connectivity, is shown to be a potential game. This establishes
the existence of a Nash Equilibrium (NE). Additionally, the
NE is shown to be unique and globally energy-efficient—the
nodes transmit at just enough power necessary to maintain all
the minimum energy routes in the network. From simulations
we observe that when nodes forward a small percentage of
packets directed through them, the resulting NE topologies that
minimize energy are more densely connected and consume more
energy than the topologies that emerge when nodes forward a
large portion of incoming packets. From the energy viewpoint,
this result is particularly interesting as it quantifies the energy
efficiency gains obtained by cooperation and corroborates the
need for encouraging nodes to forward packets in a decentralized
network.

I. INTRODUCTION

Ad hoc networks hold promise not only because of their
immense potential to aid military applications, emergency
disaster rescue-and-relief operations, pervasive computing, au-
tomotive networks, and home networking, but also because
of their ease and speed of deployment. These networks can
be established on-the-fly when heterogeneous devices (such
as PDAs, laptops, cellular phones etc.)—distributed over a
geographical region—communicate with each other wirelessly,
in a multi-hop manner without any “fixed” infrastructure.
With the devices moving around the network or changing
their transmission parameters, the resulting dynamic network
topology needs to be efficiently managed. This, coupled with
the vulnerability and limitations of the wireless medium, poses
a significant challenge to efficient network design.

Ad hoc network nodes are typically portable and are
equipped with radios, memory, and processors, all powered
by a battery. Hence, it is imperative that the protocols be
energy-efficient; this not only increases the operational life-
time of the network, but also contributes to better network
performance. Designing energy-efficient algorithms is thus
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of paramount importance in ad hoc networks [1]. Topology
Control—the study of how to assign transmission parameters
so as to achieve certain network-wide goals—is one such
design technique used to enhance global network performance.
Topology Control (TC) algorithms strive to deliver energy-
efficient networks while achieving certain end-to-end network
objectives (such as minimizing latency, maximizing lifetime
etc.).

Ad hoc networks are expected to be fully distributed and
controlled by end-users. From a user’s perspective, nodes are
either competing for network resources (e.g. bandwidth) or
conserving their own limited resources (e.g. battery energy).
Given that modern radios are increasingly autonomous and
reconfigurable, it seems likely that nodes may behave in way
so as to conserve their resources and act in their self-interest.

In this work, we address the issues of energy minimization,
topology control, and selfish node behavior. From a topology
control perspective, nodes consume energy in transmitting
their own packets as well as in forwarding packets for other
nodes. In this sense, nodes may selfishly minimize their energy
consumption by limiting not only their transmit power levels
but also by regulating the portion of packets which they for-
ward for others. In literature, these two issues—power control
and packet forwarding—have largely been studied in isolation.
For instance, [2], [3] examine the impact of selfish power
control on steady state topologies; likewise, [4], [5] analyze
the role of selfish packet forwarding on network performance.
Here, we consider the effect of packet forwarding levels1

on power control for energy-efficient topology design. In
particular, our work addresses two questions related to distrib-
uted topology control: in selecting their operating parameters,
should nodes be programmed to optimize their own “selfish”
objectives, or a network-wide objective function?; and, how
much packet forwarding is necessary to make a decentralized
selfish network energy-optimal?

We develop a game-theoretic framework for studying the
above problems in the context of energy minimization. Un-
der this framework, we propose a notion of expected en-
ergy consumption to characterize the energy consumed by
routes containing nodes that selectively forward packets with
a certain probability. The Topology Control Game (TCG),

1The term “level” is taken to mean the fraction of packets that nodes
forward among those that are directed through them. We measure this
level as a probability and sometimes use the terms probability and level
interchangeably in this manuscript.
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with each node controlling its transmit power to minimize
its energy consumption locally while maintaining network
connectivity, is shown to be a potential game. Potential games
(over compact action spaces) automatically guarantee the
existence of at least one pure strategy NE [6]. We show
that the TCG admits a unique NE. We also establish that
the NE is globally efficient, i.e., given the forward levels,
it minimizes the aggregate energy consumed by the network
by preserving the minimum energy paths between every node
pair. We propose a simple best response (BR) algorithm for
the selfish nodes, to ensure convergence to these energy-
efficient states. Using simulations, we characterize the NE
topologies for various packet forwarding levels. Specifically,
we observe that at higher forwarding levels, the resulting
topologies that minimize energy get sparser, and the average
path length increases. We also observe that the NE topologies
containing low forwarding nodes consume much more energy
than those containing nodes that forward a higher fraction of
packets directed through them. This result substantiates the
need for incentivizing selfish nodes to cooperate and forward
packets in energy-limited networks. Note that, incentivizing
and stimulating nodes to forward packets by means of a
reputation-based mechanism often involves large overhead
costs. Using our analysis on network performance in partially
forwarding networks and accounting for the overhead costs
associated with stimulating node cooperation, an optimum
level of forwarding can be determined as a design decision.

The remainder of this paper is organized as follows: we
begin by providing a brief overview of game theory as
applicable to our work in Section II. We discuss the system
model, framework and assumptions in Section III. We then
analyze the TCG and discuss its implications in the context of
energy efficiency in Section IV. We present simulation results
in Section V. We review the related work on non-cooperative
topology control in Section VI. We conclude in Section VII.

II. GAME THEORY AND POTENTIAL GAMES

In this section, we present a brief overview of important
elements and notations of non-cooperative, strategic form
game theory. For a rigorous treatment of these and other topics
in game theory, refer to [7]. Here, we specifically focus on
potential games.

The main object of game-theoretic study is the game, which
is a formal model of an interactive decision-making situation.
A strategic non-cooperative game Γ = 〈N,A, ui〉 has three
components:

1) Player set N : N = {1, 2, . . . , n} where n is the number
of players in the game.

2) Action set A : a ∈ A = ×n
i=1Ai is the space of all

action vectors (tuple), where each component, ai, of the
vector a belongs to the set Ai, the set of actions of player
i. Often we denote action profile a = (ai, a−i) where
ai is player i’s action and a−i denotes the actions of the
other n − 1 players. Similarly, A−i = ×j 6=iAj is used
to denote the set of action profiles for all players except
i.

3) For each player i ∈ N , utility function ui : A → R,
models players’ preferences over action profiles. u =
(u1, . . . , un) : A → Rn denotes the vector of such utility
functions.

The most common solution concept for such games is the Nash
Equilibrium, which, in some sense, is a consistent predictor of
possible outcomes of a game. A NE is a stable point because
no player has any incentive to unilaterally change his action
from it.

Definition An action profile a∗ =
(
a∗i , a

∗
−i

)
is a Nash

Equilibrium if, ∀i ∈ N and ∀ai ∈ Ai,

ui (a∗) ≥ ui

(
ai, a

∗
−i

)
(1)

A game may possess a large number of Nash equilibria or
none at all. Some classes of games are known to possess at
least one NE.

Definition A strategic game Γ = 〈N,A, ui〉 is an Ordinal
Potential Game (OPG) if there exists a function V : A → R
such that ∀i ∈ N,∀a−i ∈ A−i, and ∀ai, bi ∈ Ai

V (ai, a−i)−V (bi, a−i) > 0 ⇔ ui (ai, a−i)−ui (bi, a−i) > 0
(2)

V is called the Ordinal Potential Function (OPF) of Γ.

In essence, an OPG requires payoffs that exhibit the same “di-
rectional” behavior, when that individual unilaterally deviates.

Potential games with compact action spaces are known to
possess at least one NE in pure strategies [6]. The following
lemma due to [6] establishes how Nash equilibria of the game
can be identified.

Lemma 1: Let Γ be an OPG and V its corresponding OPF.
If a ∈ A maximizes V , then it is a NE.

Thus, potential maximizers form a subset of the NE of a
potential game. If we can identify potential functions for a
game, we can immediately identify some NE of the game
by solving for the potential maximizers. Potential games also
exhibit certain convergence properties that are often useful
when dealing with algorithmic analysis. Rather than delving
into these technical details, we simply refer to [6] and [8] for
a primer.

III. SYSTEM MODEL AND ASSUMPTIONS

A. Network Model

We model the network as consisting of nodes equipped with
omnidirectional antennas with isotropic transmission patterns;
the transmission range is modeled as a disc. The topology
created by the connections is modeled as a communcation
graph G = (N,E) where N is the set of nodes and E is
a set of directed arcs representing unidirectional connections.
(Equation (3) shows the set of connections: a connection exists
if the transmission power (pi) is greater than the thermal noise
(σj) and Signal to Noise Ratio (SNR) requirement (γj) at
the receiving radio, given the gain (loss) factor between the
two (contained in the matrix [gij])). We only consider thermal



noise and disregard interference by assuming the existence of
a MAC protocol to de-conflict transmissions.

E =
{

~ij | pigij

σj
≥ γj

}
(3)

The term σjγj/gij will be referred to as ω(i, j), which is the
threshold transmission power required to close a connection
from radio i to radio j. As the exact threshold ω(i, j) is
a function of channel attenuation and inter-nodal separation,
our model is quite generalized to accomodate varying channel
characteristics. Once ω is specified, the condition pi ≥ ω(i, j)
determines all the feasible transmissions. The induced topol-
ogy G is connected if and only if there exists a path—a
collection of contiguous edges from E—between every node
pair in N . In a slight abuse of notation, we will sometimes use
p to represent G (noting that p induces G). We also represent
by Gmax the topologies induced when all nodes transmit at
their maximum power level pmax

i .

B. Energy Model

In order to select an appropriate power level for data trans-
mission, nodes utilize the per-packet power control approach.
Appropriating powers on a per-packet basis has been shown to
be an effective power control strategy in networks where nodes
are non-homogeneously scattered [9]. Additionally, several
variants of 802.11 MAC protocols that use per-packet power
control have been proposed, e.g., PCM [10], MACA [11],
PCMA [12]. The basic idea is that RTS-CTS packets are sent
at the highest power levels whereas DATA-ACK packets are
transmitted at much lower power levels (see [13]). A similar
scheme is employed in [14], where each node maintains a
table that stores the minimum transmit powers needed to reach
each of its neighbors. In all these schemes, the use of per-
packet technique is shown to be effective in reducing energy
consumption and improving network throughput. Besides,
minimum energy routing based on the power threshold metric
is also common among routing protocols, e.g., PARO [13].

In addition to data transmission energy costs, nodes also
consume energy due to all additional overhead traffic such as
periodic exchange of Hello and TOPOLOGY CONTROL mes-
sages. We assume that control traffic makes up a significant
portion of total traffic in the network and therefore cannot be
neglected. This is particularly true in ad-hoc networks where
network conditions are dynamic due to the frequent disruptions
and link instabilities. Similar to the RTS-CTS philosophy, we
assume that these control messages are transmitted at the
highest power level necessary for a node to communicate
with its “farthest” neighbor. The rationale behind such an
assumption is evident: TOPOLOGY CONTROL messages are
typically transmitted as broadcast packets that are usually
exchanged by neighbors to collect information about any
changes in the topology. Given this, control energy consumed
by a node becomes a function of its power level pi; we
represent such energy costs by Ec

i (pi). For the purpose of our
analysis, we only require that Ec

i be a monontonic function.
Using the per-packet model of data transmission, we now

derive an expression for the energy consumed by a node in
transmittng data packets to its destination. In all subsequent
discussions, we base our analysis on the assumption that all
transmissions are unicast. Given that the traffic flows between
all source-destination pairs may traverse multiple hops, inter-
mediate nodes may choose to forward only a portion of the
packets directed through them. We assume that nodes do not
differentiate between flows when forwarding; this allows us to
represent the fraction of traffic forwarded by an intermediate
node i simply as a probability qi. Thus, nodes randomly drop
packets of other flows through them according to its chosen
qi.

To examine energy-efficient topologies when nodes forward
packets sporadically, i.e., the forward levels qi ∈ (0, 1], it
makes sense to consider the expected energy consumption met-
ric. Consider a path Sij containing a set of intermediate nodes
between source i and destination j; without loss of generality,
let the node ids be ordered, i.e., Sij = (i, i + 1, . . . , j − 1, j).
Then, the expected energy consumed in transporting messages
from i to j along Sij is given by:

Eij =
∑

k∈Sij

k 6=j

Ēk (4)

Here, Ēk is the expected energy consumed by node k. To
determine Ēk, we suppose that packets that are dropped at
a certain node are retransmitted by its previous hop node
until they are successfully forwarded on2. This assumption
parallels the strategies used in medium access transmission
schemes that are often used in literature. We believe that
triggering a retransmission due to packet drops can easily be
implemented at the MAC without much modification to it;
this is because, the packet drops due to selfish behavior are
functionally similar to the packet losses due to channel errors.
The link-level retransmission strategy is also well-motivated
from an energy efficiency standpoint [15]. Due to the additive
construct of (4), the model also displays a distributed structure:
the energy of each segment can be separately evaluated and
then summed up.

We derive an expression for Ēk, by calculating the expected
number of transmissions at k. Because k retransmits only when
its next hop node drops packets, it is sufficient to consider
a two-hop path, as shown in Figure 1, to calculate Ēk. For

 

Fig. 1. An arbitrary route from k to m containing one intermediate node
(l).

simplicity of analysis, we set packet transmission durations to

2Because we are studying the effect of selfish packet forwarding, we
consider all other network conditions to be ideal. Therefore, packets are
dropped only due to selfish node behaviour and not because of errors due
to channel conditions, collisions due to contentions at the MAC layer, or due
to congestion issues.



1 time unit assuming that all data packets are of equal length.
Thus, given that l forwards with probability ql, the expected
energy consumed by k can be obtained as:

Ēk = pkE[T ] (5)

where pk is the transmission power of node k, and E[T ] is the
expected number of transmissions at k. In the above example,
pk = ω(k, l) under the per-packet transmission model. Since
T is a geometric random variable, the probability that we have
t transmissions at node k is given by:

P [t] = (1− ql)t−1ql (6)

and E[T ] = 1
ql

.
Thus, the expected energy consumed by k becomes,

Ēk = ω(k, l)/ql (7)

Combining (7) and (4), we obtain the expected energy
consumed by an arbitrary route Sij :

Eij = ω(j − 1, j) +
∑

k∈Sij

k<j−1

ω(k, k + 1)/qk+1 (8)

As a special case, when q = 1, the energy consumed by Sij

becomes:
Eij =

∑
k∈Sij

k 6=j

ω(k, k + 1) (9)

Sij is called a minimum energy path if it consumes the least
amount of energy to transport packets from i to j, among all
such paths between i and j. This minimum energy is given
by:

Emin
ij = min

∀Sij

Eij (10)

An energy-efficient protocol is said to have the minimum
energy property if it preserves the minimum energy paths be-
tween every source-destination pair [16]. Using this definition,
the objective of our distributed topology control algorithm is
to derive a subgraph Gmin of Gmax that has the minimum
energy property. Gmin is induced by a power vector which we
denote by pmin = (pmin

1 , . . . , pmin
n ), where n is the number of

nodes in the networks.
Our model for energy consumption (Ei) takes into account

the energy consumed in transmitting data packets (Ed
i ) and

in transmitting control packets (Ec
i ). In the following section,

we introduce the node utility function that specifies the exact
contributions from these two components and, how Ed

i can be
determined from (8) and (10).

C. Game-Theoretic Model

In our framework, each node takes a selfish view of
minimizing its energy expenditure, possibly at the expense
of other nodes’, and even the network, performance. One
way of modeling these interactions between selfish network
nodes is as a non-cooperative game. Specifically, a topology
control process can be viewed as normal form game: individual
nodes form the player set, N ≡ {1, 2, . . . , n}, of the game.

Each node can autonomously set its transmit power level
pi ∈ [0, pmax

i ]. The individual power levels can be collected
into a power vector p = (p1, p2, . . . , pn), which forms the
action space, A, for the game. Each node perceives a trade-off
between the benefit it derives from a connected topology and
the cost incurred in establishing it. A utility function captures
these tradeoffs and maps the power vector to a payoff for each
node.

To enable multi-hop routing, the underlying topology must
not only be connected, but also contain paths where interme-
diate nodes are willing to forward packets for others. In this
work, we assume that packet forwarding levels, qi, are selected
exogenously. A node can decide to cooperate intermittently,
forwarding packets for others with some probability qi ∈
(0, 1]. The subject of how to spur nodes to cooperate and
forward packets for others is a research thread in itself; we
refer interested readers to [5], [17] (and references contained
therein). Given the packet forwarding levels, we are interested
in analyzing what topologies emerge in steady state when
nodes optimize their performance with respect to connectivity
and energy minimization goals.

Because of their energy constraint (let Emax
i be the max-

imum energy of each node), each node faces a temptation
to conserve its total energy Ei by reducing its power level
and selecting only closeby neighbors for relaying transmis-
sions. Additionally, because certain nodes forward packets
with low probabilities, it may necessitate other nodes to
increase their transmission power to circumvent these non-
cooperating nodes. It stands to reason that an appropriate
power level selection depends not only on other nodes’ power
level but also on their packet forwarding levels. We cast these
interdependencies in a utility function, which for each node is
given by:

ui(p) = αifi(p)− βiEd
i (p)− κiEc

i (pi) (11)

where fi is the number of nodes that can be reached (possibly
over multiple hops) by node i. The last two terms collectively
represent Ei, the total energy consumed by i. The terms βi

and κi are fractional scalars and are chosen such that no node
will try to lower its control energy at the cost of increased
data energy. Thus, no node reduces its power lower than that
required to keep all its minimum energy routes. In some sense,
βi is the dominant term and the total energy is dictated by the
data energy term. Finally, by picking αi ≥ Emax

i , we cast
network connectivity as a constraint in our model.

Without a priori knowledge of traffic requirements, each
node acts under the premise that all destinations are equally
likely. This allows us to express the energy consumed for data
transmissions as Ed

i (p) =
∑

j 6=i Emin
ij (p), where Emin

ij is given
by (10). Note that, even though (8) doesn’t contain the pi

terms explicitly, Eij is specified only for the existing routes,
which are defined by the power assignment vector p. The
expression for Ed

i implicitly suggests that nodes that initiate
a packet forwarding request are responsible for the entire
cost associated with transporting messages to the destination.



This technique is similar to mechanism design approaches and
credit/debit schemes used in energy-efficient topology design
[18], [19]. Additionally, the model also allows us to reduce the
complexity by decoupling the problems of regulating packet
forwarding and power control for energy minimization3.

Henceforth, the above game-theoretic framework will be
referred to as the TCG. In the following sections, we study
the impact of packet forwarding levels on transmit power
selections in the context of energy-efficient TC. In particular,
we analyze what topologies emerge in a TCG, and how well
they perform in terms of energy efficiency.

IV. GAME-THEORETIC ANALYSIS

We begin by identifying some useful properties that analyze
the effect of power adaptations in the TCG Γ = 〈N,A, ui〉,
where the individual utilities are given by (11). For the sake
of brevity, we represent ω(i, j) by a more compact notation
ωij in the following discussions.

Lemma 2: Every node i that lowers (increases) the energy
of a path Sik also lowers (increases) the energy of all its longer
paths Sid ⊇ Sik.

Proof: The proof follows from the additive structure
of (8). Without loss of generality, consider two paths Sik =
{i, j, k} and S ′ik = {i, l,m, k}. Let i lower Eik by reducing
its power from pi to p′i to remove ~ij, and selecting a different
route S ′ik instead. This means, ωil/ql + ωlm/qm + ωmk <
ωij/qj + ωjk, implying, ωil/ql + ωlm/qm − ωij/qj < ωjk −
ωmk ≤ (ωjk − ωmk)/qk. Rearranging the above inequality
(and adding ωkd to both sides) we get, ωil/ql + ωlm/qm +
ωmk/qk + ωkd < ωij/qj + ωjk/qk + ωkd. This means, any
other path going through k, S ′id = {i, l,m, k, d} also has lower
energy than Sid = {i, j, k, d}.

Now, let i increase Eik. Using the same argument as above,
ωij/qj+ωjk < ωil/ql+ωlm/qm+ωmk. This implies, ωij/qj <
ωil/ql +ωlm/qm+ωmk−ωjk ≤ ωil/ql +ωlm/qm+ωmk/qk−
ωjk/qk. Rearranging the terms and adding ωkd to both sides,
we get ωij/qj +ωjk/qk +ωkd < ωil/ql +ωlm/qm+ωmk/qk +
ωkd. This means, energy Eid of path Sid ⊇ Sik increases.

For the reverse direction of the above lemma, the following
lemma does holds.

Lemma 3: Every node i that increases the energy of a path
Sid also increases the energy of all its shorter paths Sik ⊆ Sid.
We omit the proof, which is similar to the one given above.

Lemmas 2 and 3 underscore the coupling between the
route costs Eij associated with a particular node i. Lemma
4 specifies how a node’s decision may impact another node’s
route cost.

Lemma 4: If node i removes connections on a route Sjk

and increases (decreases) Ejk for some node j, it also in-

3Under this energy model, it may seem counter-intuitive to consider the
q 6= 1 cases. However, because of the bandwidth limitations posed by ad-
hoc networks, nodes may choose not to share such resources and therefore
not forward packets. Note that forwarding levels are chosen exogenously; the
rationale for choosing such levels in the context of energy minimization is
a subject of future work. Interestingly, however, the steady state topologies
under q = 1 case consume the least energy among all other topologies that
emerge under various q’s (we show this in the next section).

creases (decreases) energy of its own route Sik ⊆ Sjk to
k. Alternately, if node i reduces (increases) its energy Eik

consumed on a route Sik, it also reduces (increases) the energy
Ejk consumed on the route Sjk ⊇ Sik for some j.

Proof: Consider the case when q = 1: For i to be
able to remove connections from a Sjk for j, i must be an
intermediate node on this route, i.e. i ∈ Sjk. From the additive
cost structure, it follows that if Sjk has the minimum Ejk, then
Sik ⊆ Sjk must also minimize Eik. Thus, when i removes a
connection on Sjk to increase Ejk, Eik also increases.

Now consider the case when q 6= 1: Without loss of
generality, let Sjk = {j, i, k} be the minimum cost path
from j to k. Let there exist another path Sik = {i, m, k}
from i to k. Let i reduce its power from p′i to pi to remove
connection ~ik from Sjk, and increase Ejk. This implies,
ωji/qi + ωim/qm + ωmk > ωji/qi + ωik. In turn, this implies
ωim/qm + ωmk > ωik, meaning that Eik also increases. For
the decrease part the inequalities are reversed, and the result
follows.
The following lemma quantifies the cause-effect relationship
specified by Lemma 4.

Lemma 5: If node i changes the energy of a route Sik by
δi, energy of route Sjk ⊇ Sik also changes by δi.

Proof: Let i increase (likewise, decrease) energy of a
route Sik from Eik to E ′ik = Eik + δi. From the additive
structure of energy consumption, the original energy of a route,
Sjk, going through i, is given by: Ejk =

∑
m∈Sji;m6=i Ēm +

Eik. Therefore, E ′jk = Ejk + δi.

A. Analysis of the TCG

Having discussed the dynamics and implications of altering
routes and changing routing costs, we now analyze the TCG
Γ and its NE outcomes. We first show that when a node uni-
laterally decreases (or increases) its utility, the utility of other
nodes either remains unaffected or decreases (or increases).
For the ease of exposition of the following results, we recast
(11) as:

ui(p) = αifi(p)− Ei(p) (12)

Theorem 6: The TCG Γ, where the individual utilities given
by (11) and (12), is an OPG. The OPF is given by:

V (p) =
∑

i

ui(p) (13)

Proof: We prove by applying the definition of OPGs.
First,

∆V (p) =
∑

j ∆uj(p)
= ∆ui(p) +

∑
j 6=i ∆uj(p)

• Consider the case ∆ui(p) > 0. This implies ∆fi(p) > 0
or ∆fi(p) = 0 and ∆Ei(p) < 0 (or both hold true).
When the former holds, it is straightforward to see that
∆fj(p) ≥ 0 (equality holds when j is not connected to
i), which then implies that, for every j, ∆uj(p) ≥ 0.
The latter case is more interesting to analyze. Observe
that ∆fi(p) = 0 ⇒ ∆fj(p) = 0, ∀j. From our
discussion on the choice of βi and κi in Section III.C,
∆Ei(p) < 0 ⇒ ∆Ed

i (p) ≤ 0, which in turn implies



∃j for which Emin
ij (p) is reduced. (This may occur if a

new minimum energy route is created by i by virtue of
increasing its pi. Adding a new route is also consistent
with Lemma 2.) From Lemma 4, it follows that the
energy of path Skj ⊇ Sij , Emin

kj (p) either decreases or
remains the same (if k doesn’t route through i). This
implies, Ed

j (p) and therefore, Ej(p) doesn’t increase.
Thus, ∆Ei(p) < 0 ⇒ ∆Ej(p) ≤ 0 ∀j. We have therefore
shown that, ∆ui(p) > 0 ⇒ ∆V (p) > 0.

• Now consider the case ∆ui(p) < 0. In this case,
∆Ei(p) > 0 or ∆fi(p) < 0 (or both hold). Similar to
the reason mentioned in the previous case, ∆Ei(p) >
0 ⇒ ∆Ed

i (p) > 0. If j is connected to i (before and
after the power level change), ∆Ed

i (p) > 0 implies
Emin

ij (p) increases for at least one j by definition, which
in turn implies Emin

kj (p) increases by virtue of Lemma 4,
meaning that Ed

k (p) doesn’t decrease. Thus, ∆Ek(p) >
0 ⇒ ∆uk(p) < 0. In the latter case when ∆fi(p) <
0 ⇒ ∆fj(p) ≤ 0, meaning that ∆uj(p) ≤ 0. Thus, we
have shown that ∆ui(p) < 0 ⇒ ∆V (p) < 0.

Combining the above two cases, we have that sgn(∆ui) =
sgn(∆V ), ∀i, meaning that the game is an OPG.

One of the overaching consequences of being a potential
game is the possible relationship between a potential function
and a social welfare function. In the context of our TCG,
the social welfare function is an energy-efficiency metric.
Alternately, potential maximizing NE of the game can be
interpreted as the optimal power assignment vectors, i.e.,
steady-state topologies that minimize the aggregate network
energy consumption. This result builds upon the following
lemma.

Lemma 7: The potential maximizing NE of the TCG pre-
serves network connectivity.

Proof: We prove by contradiction. Let p∗ be a po-
tential maximizer and p any other NE that induces a
connected network. Because V (p∗) > V (p), we have∑

i [αifi(p∗)− Ei(p∗)] >
∑

i [αifi(p)− Ei(p)]. Since p∗

results in a network that is not connected, fi(p∗) = ki < n−1
and fi(p) = n − 1. Thus we obtain,

∑
i αi(n − 1 − ki) <∑

i [Ei(p)− Ei(p∗)]. Clearly, LHS is larger than Emax
i and

RHS is smaller than Emax
i . We thus obtain a contradiction.

Theorem 8: Minimum energy topologies Gmin are the po-
tential maximizing NE states.

Proof: From Lemma 7, the potential maximizing NE
topology is always connected. Therefore, the potential function
in the NE state becomes V (p∗) = Mi ·n(n−1)−

∑
i Ei(p∗).

This implies,

p∗ = arg min
p

{
∑

i

[
βiEd

i (p) + κiEc
i (pi)

]
} (14)

From the choice of βi and κi, it can be deduced that
every node keeps all the minimum energy links and therefore
minimizes Ei. Thus, pmin satisifies (14). Hence, the minimum
energy topologies maximize the potential function.

Through potential game formulation we have established the
existence of at least one NE—the potential maximizer. When
multiple NE exist, the task of eliminating the undesirable
ones can be non-trivial. Besides, when one considers the
convergence properties of the game, the problem is further
compounded when multiple NE exist. Assuming that the
threshold powers ωij are all distinct for distinct node pairs, the
NE for the TCG is unique. We establish this via the following
theorem, noting that the minimum energy topology is uniquely
determined when ωij’s are distinct.

Theorem 9: Every NE of the TCG Γ is a minimum energy
topology.

Proof: Suppose that the NE topology doesn’t contain
a minimum energy path. This means, either some node has
removed one of its minimum energy link or has removed a
link on a minimum energy path for some other node. The
former case violates the rationality principle, because a node
can only increase its total energy cost by removing a minimum
energy link. In the latter case, again, rationality principle is
violated due to Lemma 4. Thus, in every iteration of a selfish
algorithm4, all minimum energy paths are preserved. Hence,
every NE is a minimum energy topology.

Corollary 10: In NE, the power level of every node is at
the minimum level required to maintain Gmin.

Proof: We prove by contradiction. Suppose p∗i in NE is
not at the minimum required to maintain Gmin. This means,
node i can further reduce its power without disconnecting
any of the minimum energy connections (if it does, then
Theorem 9 is violated). Therefore, the original state is not
a NE and we obtain a contradiction. The NE is given by
p∗ = {(p∗1, p∗2, . . . , p∗n) | p∗i = arg minpi≥pmin

i
κiEc

i (pi)}.

B. A TC Algorithm

A NE is a consistent predictor of the likely outcomes of
a game. For the TCG, the NE states are stable, efficient
and unique. Consequently, the task of constructing a selfish
algorithm that will converge to the NE is greatly simplified.
This algorithm specifies which actions are rational from a
node’s perspective, and thus are likely to be chosen, given the
state of the network. Because the TCG is a potential game,
a simple BR construct ensures convergence to the NE. For
the ease of exposition, we assume that all nodes initialize
their power levels to pmax

i at the start of the algorithm such
that the induced topology is Gmax (this assumption, however,
is not necessary for the correctness of the algorithm). In a
BR algorithm, nodes make selfish adaptations, revising their
selections according to:

p∗i = arg max
pi∈[0,pmax

i ]
ui(p) (15)

When each node executes (15), a BR dynamic evolves, with
nodes taking turns in making their optimum selections. We

4Without loss of generality, we may assume all nodes initialize their power
levels to pmax

i , such that the induced topology Gmax contains the minimum
energy topology Gmin.



assume that only one node makes a selection (in a round-
robin manner) at any given instant5. The BR dynamic defines
an improvment sequence; because each node essentially has to
optimize over a finite set of power level choices (one for each
of its potential neighbor) to select its minimum power, the
improvement sequence is finite and guaranteed to converge
to NE [6]. In the next section, we analyze and characterize
the topologies that emerge when nodes employ the greedy BR
strategy.

V. SIMULATION RESULTS

To determine the effectiveness of our model, we developed
a simulation consisting of |N | radios placed according to a
uniform random distribution within a unit square. The power
thresholds ω(i, j) required to close a link between nodes i and
j were assumed to be equal to d2(i, j) (we choose a path loss
exponent of 2, although our basic conclusions remain the same
for other channel models as well), where d is the euclidean
distance metric. Based on our system model, a node could
transmit reliably to all neighbors within its transmission range
(determined by the power level).

The initial topologies of the network are connected, meaning
that there exists a directed path from every radio to every other
radio. The initial power pmax

i was chosen such that the induced
network was 1-connected with 90% probability, adjusting
the value for finite networks (see [20] for this formula).
We consider only the connected instances of Gmax in our
simulations. The packet forwarding levels were exogenously
selected; for the ease of exposition, the forwarding levels were
kept constant across all nodes. We varied the levels from 0.1 to
1, in steps of 0.1. Similar results can be drawn for non-uniform
forwarding levels across the nodes.

Each node implemented the BR algorithm (15), selecting
power levels that maximized (11). Nodes were selected in a
round robin manner to make their decisions in each iteration.
Other nodes are made aware of this adaptation through control
messages. The traditional Dijkstra’s algorithm was modified
to a minimum energy routing algorithm for selecting optimal
paths between node pairs. The modification is needed because
the energy expression in (8) is not strictly additive because
of q term in the denominator, i.e. Eik 6= Eij + Ejk. However,
Dijkstra’s algorithm can still be applied in principle by storing
and updating both the energy cost terms in (8) in every
iteration of the minimum cost path computation.

We begin by evaluating the effect of packet forwarding
levels on the emergent topologies. At low forwarding levels,
the expected energy consumed by long routes would be high,
owing to greater number of retransmissions. To circumvent the
high forwarding cost, we would expect nodes to transmit at
higher powers inorder to reduce the number of hops to reach a
destination. Consequently, the resultant steady state topologies
will be highly connected, with nodes densely connected by
greater number of routes. Figure 2 illustrates this result for a 25

5This can be implemented by embedding a random timer within each node,
which can then make its selection every time its timer expires.

node network by computing the path lengths of the resulting
NE topologies, averaged over 1000 different instances, with
nodes randomly placed at different locations in each case.
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Fig. 2. Illustrating the impact of packet forwarding levels on the average
path length of NE topologies in a 25 node network.

To determine the energy efficiency performance, we evalu-
ated the total energy consumed by the NE topology obtained
for various forward levels. At each level, the topologies were
optimized to minimize the expected energy consumption. We
compare each of the NE topology in Figure 3.
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Fig. 3. Average energy consumed by a NE topology under various packet
forwarding levels for a 25 node network.

A few insights can be drawn from Figure 3. The total energy
consumed decreases montonically with increasing forwarding
levels. This is because, at low forward levels, nodes use
higher transmit power to offset the high cost of retransmission
incurred by using the relay services. We see a gradual decrease
in energy consumed because, with increasing forward levels, it
costs less to transmit via a relay node than transmitting directly
(even if retransmissions are involved). At high forward levels,
the cost of direct transmissions dominates; therefore, it is more
cost effective to transmit via intermediate nodes.

By quantifying the energy consumption in partially forward-
ing networks, Figure 3 also illuminates the performance gains
achieved through cooperation in such networks. This result is
particularly important when using reputation-based constructs



to stimulate nodes to cooperate by forwarding packets for
one another. Such schemes typically incur large overhead
costs as they strive to steer the network towards cooperation.
Choosing an optimum level of cooperation by balancing the
cost performance tradeoff then becomes a design decision.

These results corroborate the well-established fact that it is
better to relay messages when nodes are forwarding packets
because of the exponential radio signal attenuation property.
From a node viewpoint, we observe that if nodes act under the
pretext that all destinations are equally likely, they benefit the
most by forwarding. In some sense, if one could exchange
packet forwarding services for real currency, nodes would
incur minimum cost when they all forward packets for one
another. These observations provide compelling evidence that
aligning the individual selfish goals to the network objective
is an important characteristic of a self-organizing network.

VI. BACKGROUND AND RELATED WORK

Broadly, our work belongs to the body of research that
addresses the impact of selfish node behavior on network
performance. It is generally perceived that even if nodes act
selfishly, some amount of cooperation is required to sustain an
autonomous ad-hoc network (see [5] and references contained
therein). The crux of the problem is how to stimulate the
nodes to cooperate—by using reputation-based or pricing-
based frameworks—when they are driven by self-interested
objectives. The need for cooperation is a fundamental problem,
which manifests in various forms at all layers of the protocol
stack in a communication system [17].

The research efforts to address the problem of topology
control in the presence of selfish nodes are fairly recent.
Game theory and mechanism design are the commonly used
approaches to address this problem. We now discuss the
related work that uses these two approaches.

Eidenbenz et al. are the first to pose the TC problem as
a non-cooperative game and study connectivity games [3].
Much of their work is devoted to the analysis of algorithmic
complexity in finding a NE, when it exists, and deriving
bounds on the price of anarchy. In [21], the authors formulate
TC games as potential games. Potential games guarantee the
existence of at least one NE. In addition, if the nodes employ
any selfish algorithm to choose an appropriate power setting,
convergence to these equilibria is also guaranteed.

In [3], existence of NE is not guaranteed. Furthermore, the
authors do not provide energy-efficiency characteristics of the
topologies that emerge. In [21], the steady state topologies
that emerge are power-efficient but are not necessarily energy-
efficient. In contrast, we prove the existence as well as
convergence results pertaining to globally energy-efficient NE
topologies.

Mechanism design seeks to achieve global efficiency by
aligning the selfish objectives of individual users with the
socially desirable outcome. In the context of topology control,
mechanism design is employed to provide the adequate incen-
tives to individual users so that they maximize their objective

function when the network minimizes total energy consump-
tion, subject to connectivity constraints. This approach has
been adopted in [19] and [18] by engineering a payment
system that leads selfish nodes to forward packets for others.
The utility function proposed in [18] requires that each node
declare the per-edge price that it intends to charge in exchange
for forwarding packets.

These studies assume upfront that incentivizing the nodes
to cooperate and forward packets is the optimal policy, and
then determine the appropriate payment structure that achieves
this end goal. Our approach is different in that we make
no assumptions that forwarding packets for one another is
optimal. In our model, we allow the nodes to select and
fix their forwarding levels, and then determine which topolo-
gies minimize the energy consumption, both from node and
network perspectives. In the process, we also determine the
optimal routing policy for nodes, from an energy minimization
viewpoint.

While some similarities can certainly be drawn between our
work and the other works in the literature, we believe that
our approach of jointly considering packet forwarding and
power control has not been addressed before in the context
of topology control. In literature, most studies on energy
efficiency in ad-hoc networks have dealt with these two issues
separately.

VII. CONCLUSION

Ad hoc networks are decentralized and their control is
distributed to the independent and autonomous radios in the
network. Such an “open” network philosophy leaves open
the possibility that nodes can “game” the system in order to
garner a greater share of network resources and achieve better
performance. Selfish node behavior thus adds another layer of
complexity to the traditional problems in distributed wireless
networks in particular. Under this scenario, conventional pro-
tocols that are based on cooperation and truthful compliance
can no longer be assumed to operate correctly. To effectively
cope with these new dimensions in the problem, protocols may
need to be redesigned.

We address the problem of topology control taking into
account the presence of selfishly motivated nodes in the
network. Specifically, we examine the impact of these nodes on
the overall network energy efficiency. In multi-hop networks,
nodes expend energy in sourcing as well as in forwarding
packets. This may induce nodes to conserve their own en-
ergy and not adhere to a protocol that optimizes the overall
network energy consumption. We cast this problem as a non-
cooperative game, where nodes attempt to select an optimum
power level taking into account partial packet forwarding in
the network; the objective of each node is to minimize its
energy consumption while maintaining network connectivity.

We showed that the above TCG is a potential game. Through
the potential game formulation we showed the uniqueness
of the NE, which helps align the selfish objectives of the
nodes with the overall network objective. In other words, when
nodes selfishly minimize their energy expenditure, the network



minimizes the aggregate energy consumption. We showed that
a simple BR algorithm is sufficient to steer the nodes towards
these globally efficient minimum energy topologies. Through
simulations, we observed that when nodes are forwarding
packets with high probabilities, the minimum energy topology
is much sparser and consumes lesser energy than the NE
topology containing low forwarding nodes. From an energy
perspective, this result supports the philosophy of stimulating
nodes to forward packets for one another in a decentralized,
multi-hop network.

Our work presupposes that forwarding probabilities are
selected exogenously. In future, we plan to address the energy
minimization problem in a game-theoretic setting where the
packet forwarding levels are also controlled selfishly. This will
give rise to a multi-dimensional objective function that is a
joint function of both transmit powers and packet forwarding
levels.
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