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Abstract— We analyze the statistical properties of the k-
coverage of a point-target moving in a straight line in a
dynamic, nonstationary sensor field. The availability of each node
is modeled by an independent, {0, 1}-valued continuous time
Markov chain. Sensor locations form a nonhomogeneous spatial
Poisson process. The sensing areas of the sensors are circles of
i.i.d. radii. We first describe the induced nonstationary Markov-
Boolean model and obtain k-coverage of the target at an arbitrary
time instant. We then obtain k-coverage statistics for the time
interval [0, T ]. A pointwise stationary approximation that yields
a limit theorem is also discussed. Numerical results illustrate the
analysis.

I. INTRODUCTION

Coverage is a canonical problem in the design and analysis
of wireless sensor networks. If the sensor locations and their
sensing areas are known, a deterministic coverage analysis
typically based on computational geometry techniques can be
performed. If the sensor locations and the sensing areas are
known only via their statistical properties, e.g., distributions,
a stochastic analysis based on techniques from stochastic
geometry is performed. In this paper, our interest is in the
latter. Most stochastic coverage analysis e.g.,[1], [2], [3], is
based on the techniques developed in [4], a classic introduction
to the theory of coverage processes.

Let P = {ζ1, ζ2, . . .} be a countable collection of points in
d-dimensional Euclidean space and {C1, C2, . . .} a countable
collection of nonempty d-dimensional sets. Then, C = {ζi +
Ci : i = 1, 2, . . .} is a coverage process [4]. If P is a stationary
Poisson point process and the Ci’s are i.i.d. random sets,
independent also of P, then C is called a Boolean model.

It is now a standard practice in coverage analysis of sensor
networks to model the sensor field as a Boolean model: the
sensor locations form a Poisson point process and the sensing
areas are the random sets. Our first point of departure from the
standard assumptions is that we allow P to be a nonstationary
Poisson process. Of course, we can also allow the Ci to depend
on ζi. This leads us to define the following three types of
nonstationary Boolean models. If P is a nonstationary Poisson
point process, and the Ci are i.i.d. then C will be called a type-
A nonstationary or nonhomogeneous Boolean model. If P is
a stationary Poisson point process and the Ci are independent
but not identically distributed (the distribution depending on
the location of ζi), then C will be called a type-B nonstationary
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Boolean model. The type-AB nonstationary Boolean model is
now obvious: P is a nonstationary Poisson point process and
the Ci are not identically distributed. In this paper we will be
concerned with type-A and type-AB nonstationary Boolean
models.

Our second point of departure from the usual analyses is
that we consider a dynamic coverage process. At any time, a
sensor may or may not be available for coverage. This can be
due to many reasons.

1) A sensor can alternate between active and sleep (a low
power operational state) to conserve energy. A sleep
scheduling algorithm determines the transitions between
the two states. The schedule could be based on relative
power levels at the sensor nodes or to provide a specified
coverage characteristic.

2) A sensor might be outside the communication range of
its neighbours due to channel fading.

3) In a mobile sensor network, the sensor might move to a
different location.

A {0, 1}-valued continuous time stationary Markov chain is
used to model the availability of each sensor—a ‘1’ indicating
that it is available and a ‘0’ indicating that it is not available.
The availability of a sensor is independent of the availability
of the other sensors. Thus, our interest is in the coverage
process Ct := {Y t

i (ζi + Ci) : i = 1, 2, . . .} where, {Y t
i }t∈<,

i = 1, 2, . . . , are independent, {0, 1}-valued, continuous time
stationary Markov chains. The process Ct will be called the
Markov-Boolean model of Type-A nonstationarity. In [7],
a similar model has been used for a homogeneous sensor
network with uncoordinated power saving mechanisms and is
called the blinking Poisson Boolean model. It is shown that
any message generated by a sensor will reach the sink node
in time proportional to the distance between the sensor and
the sink, using dynamic percolation theory.

In this paper, we will analyse the coverage process of a point
target moving on a straight line path in a two-dimensional
sensor field modeled by Ct defined above. Most target tracking
applications require that k or more sensors ‘cover’ a target
to estimate its position with k ≥ 3 being common. In this
paper we will be analysing the k-coverage—coverage by
at least k-sensors—of the moving target. Analysis of the
coverage of one-dimensional paths in two-dimensional fields
has been considered in [5], [6]. In [5], P is assumed to be a
homogeneous Poisson process and the Ci are i.i.d. In [6], the
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Fig. 1. Time and space axes for the target moving on the x-axis with velocity
c during the time interval [0, T ]

sensors are assumed to be available continuously while C is a
type-A nonstationary Boolean model.

The rest of the paper is organized as follows. In Section II,
the coverage process of a target moving with constant velocity
is described and the probability of k-coverage of the target
at any time instant is obtained. Then we study k-coverage
of the target in the time interval [0, T ]. The main results
are developed in Section III. We obtain the expectation and
variance of the duration for which the target is not k-covered in
the interval [0, T ]. Next, we provide a simple approximation to
obtain the fraction of time for which the target is not k-covered
during [0, T ]. We then obtain bounds on the k-coverage of the
target over the entire time interval. Numerical illustration of
the key results are provided for the ‘Laplacian’ deployment.
We conclude the paper with a discussion in Section IV.

II. PRELIMINARIES

Consider a target moving on a straight line in <2 with
a constant velocity of c units per second. Without loss of
generality, we will assume that the target is moving on the
x-axis. Let s := c × s be the position of the target on the
x-axis at time s. Thus, the coverage of the target at time s is
essentially the coverage of the target at the location s on the
x-axis by the active sensors at time s (Fig. 1).

Let us now consider the state of a sensor. Let µ0 be the
transition rate from the 0-state (sleep state) to the 1-state
(active state) and µ1 the transition rate from 1-state to the
0-state. The stationary probability of the sensor being in state
j, pj , is given by pj = µ1−j

µ1+µ0
, j ∈ {0, 1}. Define the time-

dependent transition probability between the states as follows:
pt(j, k) := Pr (Y s+t = k|Y s = j) for j, k ∈ {0, 1}. It can be
shown that

pt(j, j) = (1− pj)e−ηt + pj

where η = µ0+µ1 and pt(j, k) = 1−pt(j, j) for j, k ∈ {0, 1}
and j 6= k.

Let us now consider the coverage process on the x-axis by
a two-dimensional, type-A nonhomogeneous Boolean model.
Here we assume that all the sensors are active. Let λ(x, y) be
the two-dimensional Poisson intensity function for the sensor
locations. Sensor i is assumed to cover a circle of random
radius Ri, Ri are i.i.d. with the distribution having support
in [0, 1]. It can be shown that the coverage of the x-axis
by the two-dimensional field can be analyzed by consider-
ing an equivalent one-dimensional type-AB nonhomogeneous
Boolean model [6]. This model is parametrized by λ̄(x), the
intensity function of the one-dimensional nonhomogeneous

Poisson point process and R̄x, the location-dependent random
coverage length. The coverage by a point at x1 on the x-axis
will be the segment (x1 − R̄x1 , x1 + R̄x1) of the x-axis. Let
fR̄x

(r̄) denote the probability density function of R̄x. The
following is shown in [6].

λ̄(x) =
∫ 1

0

∫ r

0

(λ(x, y) + λ(x,−y))dy fR(r)dr (1)

fR̄x
(r̄) =





r̄
a(x)β(x)

∫ 1

r̄
fR(r)√
r2−r̄2 (λ(x,

√
r2 − r̄2)+

λ(x,−√r2 − r̄2)) dr for 0 ≤ r̄ ≤ 1
0 otherwise .

(2)

Here
a(x) :=

∫ 1

−1
λ(x, y) dy and

β(x) := Pr (Ci of sensor with abscissa x intersects x-axis) .
If λ(x, y) can be written as λ1(x)λ2(y), then R̄x is indepen-
dent of x and {R̄i} are i.i.d., otherwise they are independent
but not identically distributed.

Our interest is in the k-coverage of the moving point target
by the dynamic coverage process on the x-axis described
above with the sensor nodes switching their states. Define
ψk(s) as follows

ψk(s) =
{

1 if target is not k-covered at time s ,
0 otherwise ,

i.e., ψk(s) is the indicator that the point s on the x-axis is
not k-covered by the active sensors at time s. Clearly, the
number of sensors that cover a point s on the x-axis is Poisson
distributed and its mean m(s), is given by

m(s) =
∫ s+1

s−1

λ̄(u)p1γ(s, u) du . (3)

Here γ(s, u) is the probability that point s is covered by a
sensor at location u, i.e., γ(s, u) = Pr

(
R̄u ≥ |s− u|). Hence,

Pr (ψk(s) = 1) =
k−1∑

j=0

m(s)je−m(s)

j!
, (4)

The coverage of the target at time s depends only on the
stationary probability p1 and not on the time dependent
transition probabilities.

Let VT,k be the random variable denoting the duration for
which the target is not k-covered in the time interval [0, T ],
i.e.,

VT,k :=
∫ T

0

ψk(s) ds. (5)

In the next section we obtain the moments of VT,k.

III. k-COVERAGE OF THE TARGET IN TIME INTERVAL [0, T ]

Expectation and variance of VT,k, E (VT,k) and VAR (VT,k) ,
respectively, are obtained as below. E (VT,k) is straightforward
and is given by

E (VT,k) =
∫ T

0




k−1∑

j=0

m(s)je−m(s)

j!


 ds . (6)
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A2,r

(n3)

A3,r
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(n1 − n3) (n2 − n3)

Fig. 2. Coverage of points s1 and s2 by sensors of coverage radius r.
Sensors with radius r in A1,r cover only s1, those in A2,r cover only s2
and those in A3,r cover both s1 and s2. There are (n1 − n3), (n2 − n3)
and n3 sensors with sensing radius r in the regions A1,r, A2,r and A3,r

respectively.

It can be shown that VAR (VT,k) satisfies the relation

VAR (VT,k) =
∫ T

0

∫ T

0

COV (ψk(s1)ψk(s2)) ds1 ds2 . (7)

Since ψk(·) is an indicator variable, we can write

COV (ψk(s1)ψk(s2)) = Pr (s1 and s2 not k-covered)
− Pr (s1 not k-covered)Pr (s2 not k-covered) . (8)

To help us evaluate (8) we use the following informal
argument that can be made rigorous. Consider the sensors with
sensing radius r. Of these sensors, let Ea,r, Eb,r, and Ec,r,
respectively be the set of sensors that cover only s1, only s2

and both. The size of these sets is independent because for
a fixed r, these sensors come from nonoverlapping regions
of <2. Fig. 2 illustrates this. Ea,r is the set of sensors with
sensing radius r and located in the region A1,r in Fig. 2. Let
Ea := ∪0≤r≤1Ea,r. Clearly, |Ea| is Poisson with expectation∫ 1

0

∫
A1,r

λ(u, v) du dv dr. Similarly, |Eb| and |Ec| are also
Poisson. Further, Ea,r1 , Eb,r2 , and Ec,r3 are also independent
for any r1, r2, and r3. Thus Ea, Eb, and Ec are also
independent.

The second term in (8) is determined from (4). To evaluate
the first term we make use of the above argument as follows.

• Consider the segment of the x-axis [s1, s2] and the set
of sensors that cover both s1 and s2, or equivalently,
the sensors that cover the moving target at time instants
s1 and s2. Let α(s1, s2) be the mean number of such
sensors. Defining γ̂(s1, s2, u) to be the probability that
the moving target is covered by a sensor at u at both the
points s1 and s2, we obtain

γ̂(s1, s2, u) := Pr
(
R̄u ≥ max(|s2 − u|, |s1 − u|)) ,

α(s1, s2) =
∫ s1+1

s2−1

(
λ̄(u)p1ps2−s1(1, 1)

γ̂(s1, s2, u)) du . (9)

• Let m̃(s1, s2) be the mean number of sensors covering
the target at point s1 but not at s2. Defining γ̃(s1, s2, u)
to be the probability that a sensor at u covers the target

at point s1 and not at s2 we get

γ̃(s1, s2, u) := Pr
(|s1 − u| ≤ R̄u < |s2 − u|) ,

m̃(s1, s2) =
∫ s1+1

s1−1

(
λ̄(u)p1γ̃(s1, s2, u)

)
du +

∫ s1+1

s2−1

(
λ̄(u)p1ps2−s1(1, 0)γ̂(s1, s2, u)

)
du .(10)

• Similarly, let m̃(s2, s1) be the mean number of sen-
sors covering the target at point s2 but not at s1 and
γ̃(s2, s1, u) be the probability that a sensor at u covers
the target at point s2 and not at s1. We thus get

γ̃(s2, s1, u) := Pr
(|s2 − u| ≤ R̄u < |s1 − u|) ,

m̃(s2, s1) =
∫ s2+1

s2−1

(
λ̄(u)p1γ̃(s2, s1, u)

)
du +

∫ s1+1

s2−1

(
λ̄(u)p0ps2−s1(0, 1)γ̂(s1, s2, u)

)
du .(11)

We can now obtain the probability that s1 and s2 are not
k-covered as follows.

Pr (s1 and s2 not k-covered) =
k−1∑

n1,n2=0

min(n1,n2)∑
n3=0

(prob(n1 − n3) cover s1, not s2;
(n2 − n3) cover s2, not s1; n3 cover both s1 and s2 )

=
k−1∑

n1,n2=0

min(n1,n2)∑
n3=0(

e−m̃(s1,s2) (m̃(s1, s2))
(n1−n3)

(n1 − n3)!

)
×

(
e−m̃(s2,s1) (m̃(s2, s1))

(n2−n3)

(n2 − n3)!

)
×

(
e−α(s1,s2) (α(s1, s2))

(n3)

(n3)!

)
. (12)

The last step follows as the three component events in the
RHS of the first equality above are independent.

The variance of VT,k can be obtained from (4), (7), (8) and
(12). Note that the effect of transitions of {Y t} is captured
in the variance of VT,k through α(s1, s2), m̃(s1, s2), and
m̃(s2, s1).

We now provide a numerical illustration of the above results.
Let λ(x, y) = κe−θ(|x|+|y|) be the intensity function of the
nonhomogeneous Poisson process with κ > 0 and θ > 0
where θ is the decay parameter. We refer to this as the
‘Laplacian’ deployment because of its similarity with the
Laplacian distribution. We will also assume that Ci are disks
of unit radius. From (1) and (2) we obtain,

λ̄(x) =
2κ(1− e−θ)

θ
e−θ|x|,

fR̄(r̄) =
r̄e−θ(

√
1−r̄2)

(1−e−θ)
θ

√
1− r̄2

.

The expressions for m(x) and the first order statistics
Pr (ψk(s)) (recall that ψk(s) is an indicator variable) and
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E (VT,k) for the ‘Laplacian’ deployment can be easily obtained
as these are the same as that for the static network obtained
in [6] but with the Poisson density thinned by p1, i.e., with
intensity (p1λ(x)) .

The variance of VT,k depends on the transition rates of the
Markov chain determining the availability of a sensor. To study
the effect of transition rates on the variance of VT,k, we scale
the transition rates of the Markov chain by 1/δ. The stationary
probability of the Markov chain is independent of the scaling,
i.e., pi(δ) = pi∀δ and the scaled time-dependent transition
probabilities will be pδ

s(j, j) = (1 − pj)e−(η/δ)s + pj . The
variance is plotted as a function of T for different δ in Figs. 3
(for k = 1) and 4 (for k = 2) where µ1 = 4, µ0 = 6, θ = 2
and κ = 100 so that the expected number of sensors to be
deployed is kept constant. Recall that η = µ1 + µ0 which is
equal to 10 and is also scaled by the factor 1

δ .

For δ = ∞, the sensors are either in active or sleep state
and do not have state transitions. This corresponds to the static
sensor network with Poisson density p1λ(x). Notice that this
has the highest variance for VT,k. As δ → 0, the variance
decreases monotonically and has a nonzero limit. The limit
can be obtained with α(s1, s2), m̃(s1, s2), and m̃(s2, s1) given
by

α(s1, s2) =
∫ s1+1

s2−1

(
λ̄(u)p2

1γ̂(s1, s2, u)
)

du ,

m̃(s1, s2) =
∫ s1+1

s1−1

(
λ̄(u)p1γ̃(s1, s2, u)

)
du +

∫ s1+1

s2−1

(
λ̄(u)p1p0γ̂(s1, s2, u)

)
du ,

m̃(s2, s1) =
∫ s2+1

s2−1

(
λ̄(u)p1γ̃(s2, s1, u)

)
du +

∫ s1+1

s2−1

(
λ̄(u)p1p0γ̂(s1, s2, u)

)
du .(13)
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A. An Approximation and a Scaling Law for the k-coverage

We have obtained exact expressions for the first and second
moments of VT,k. However, the expressions are messy and
do not have closed forms. We seek a ‘pointwise stationary
approximation’ (PSA) [9] for φk(T ) := VT,k/T. PSA has been
used in the analysis of queueing systems with nonstationary
arrival and service processes. Let χ(s1, s2) be a time average
coverage statistic of interest in the interval (s1, s2), s1 < s2,
in the nonstationary Markov-Boolean model. The PSA of
χ(s1, s2), denoted by χ(PSA)(s1, s2) is defined as

χ(PSA)(s1, s2) :=
1

s2 − s1

∫ s2

s1

χ̃(s) ds

where χ̃(s) is the stationary statistic χ when the point process
is a stationary process with the intensity, λ̄(s) and the cover-
age radii, R̄(s). This is an attractive approximation because,
typically χ̃(s) has a closed form and the above can be easily
evaluated. For example, for (φk(T ) the PSA can be written as

φk(T ) ≈ φk(T )(PSA) =
1
T

∫ T

0

φ̃k(ds) ,

where φ̃k(ds) is the fraction of time for which the target is
not being covered in a stationary Markov-Boolean model with
Poisson process λ̄(s) and coverage radius distribution as that
of R̄(s).

In [10] it has been shown that the PSA is asymptoti-
cally exact for the one-dimensional nonhomogeneous Boolean
model of type-AB. This provides us with a weak law of large
numbers for the fraction of the segment on the x-axis that is
k-covered. We now derive a similar scaling law for the one-
dimensional Markov-nonhomogeneous Boolean model (type-
AB) that shows that the PSA for the fraction of time the target
is not k-covered is also asymptotically exact.

Let Ct(δ) be the process Ct with Poisson intensity (λ̄(s)/δ),
the random coverage radius δR̄(s) and the transition rates of
the Markov chain µi/δ.

Theorem 1: For the scaled nonhomogeneous one dimen-
sional Markov-Boolean process, Ct(δ), the fraction of time in



the time interval [0, T ], for which the target is not k-covered,
denoted by φδ

k(T ), converges to the PSA in probability, i.e.,
as δ → 0,

φδ
k(T )

p−→
k−1∑

l=0

1
T

∫ T

0

((
λ̄(s)p1E

(
R̄(s)

))l

l!

e−λ̄(s)p1E(R̄(s))
)

ds (14)
Proof: The arguments are similar to that for the non-

homogeneous Boolean model derived in [10] and we only
provide a sketch of the proof.

It is clear that p1 is invariant to the scaling of µ0 and µ1.
From (3), the expected number of sensors sensing the target
at time s (at location s), depends only on p1 and not on the
time-dependent transition probabilities; hence it is invariant to
the scaling of transition rates.

Consider the coverage of target during the interval [s−ε, s+
ε]. Let χδ

k(s, ε) be the fraction of time in [s−ε, s+ε], for which
the target is not k-covered. Let λ̄sup(s, ε) be the supremum of
λ̄(x), x ∈ [s−ε, s+ε] and R̄sup(s, ε) a ‘stochastic supremum’
of R̄(x), x ∈ [s−ε, s+ε]. (A stochastic supremum of a set of
random variables is a random variable that dominates all the
elements of the set.) Let χk,sup(s, ε), denotes fraction of time
for which the target is not k-covered in a stationary Markov-
Boolean model with Poisson intensity λ̄sup(s) and coverage
radius R̄sup(s). Let χδ

k,sup(s, ε), be the corresponding statistic
in the scaled process Ct(δ). It can be shown that

lim
δ→0

χδ
k,sup(s, ε) =

k−1∑

l=0

(
e−λ̄sup(s,ε)p1E(R̄sup(s,ε))×

(
λ̄sup(s, ε)p1E

(
R̄sup(s, ε)

))l

l!

)
.

We can similarly define χk,inf(s, ε), and χδ
k,inf(s, ε). We

have defined χk,sup(s, ε), and χk,inf(s, ε), so that they form
stochastic upper and lower bounds on χδ

k(s, ε).
When ε → 0, δ → 0 such that ε

δ →∞ we can show that

χδ
k(s, ε) d−→

k−1∑

l=0

(
λ̄(s)p1E

(
R̄(s)

))l
e−λ̄(s)p1E(R̄(s))

l!
.(15)

From the definition of χδ
k(s, ε) and since χδ

k(s, ε) ≤ 1, by
using dominated convergence theorem we can write,

lim
δ→0

φδ
k(T ) =

1
T

∫ T

0

lim
δ→0
ε→0

χδ
k(s, ε) ds. (16)

From (15), (16) we get

lim
δ→0

φδ
k(T ) =

k−1∑

l=0

1
T

∫ T

0

((
λ̄(s)p1E

(
R̄(s)

))l

l!
×

e−λ̄(s)p1E(R̄(s))
)

ds , (17)

in distribution. As convergence in distribution to a constant
implies convergence in probability the theorem follows. ¤

Let us now discuss what happens to the process Ct(δ) as δ
goes to zero.

1) When δ is large, the state transitions of the sensors
have no effect on the coverage process. This is because
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Fig. 5. Variance of VT,1 for the target moving on the x-axis with unit
velocity i.e., c = 1 is plotted as a function T for different values of δ with
θ = 2, κ = 100, µ1 = 4, µ0 = 6. This plot is for the scaled process
Ct(δ) i.e. Poisson intensity, random coverage radius, and transition rates of
the Markov chain are scaled.

the scaled transition rates µ1
δ and µ0

δ are small. The
sensors in the area A3,1 do not change state as the
target moves from s1 to s2. This is similar to the
case of large δ studied earlier in the section. Thus
α(s1, s2), m̃(s1, s2), m̃(s2, s1), and hence the variance
depend only on p1.

α(s1, s2) =
∫ s1+1

s2−1

(
λ̄(u)p1γ̂(s1, s2, u)

)
du ,

m̃(s1, s2) =
∫ s1+1

s1−1

(
λ̄(u)p1γ̃(s1, s2, u)

)
du ,

m̃(s2, s1) =
∫ s2+1

s2−1

(
λ̄(u)p1γ̃(s2, s1, u)

)
du .(18)

2) As δ becomes small only the stationary probability of a
sensor being active matters. There is a further thinning
of the Poisson density by p1. This corresponds to the
nonzero limit for the variance which can be obtained
using (13).

3) For is 0 < δ < ∞, the stationary as well as the time-
dependent transition probabilities affect the variance and
α(s1, s2), m̃(s1, s2), m̃(s2, s1) are given by (9), (10),
and (11) respectively.

We numerically study the variance for different δ. It is
observed that the variance of VT,k decreases as δ is decreased.
Decreasing δ effectively increases η (the sum of the transition
rates) and hence the number of transitions per unit time. As δ is
decreased, the behaviour of the variance for the scaled process
Ct(δ) is similar to the case when only the transition rates are
scaled. However, the value of variance is significantly lower
when the transition rates, the Poisson density and coverage
radii are all scaled together, see Fig. 5 where all the three
parameters are scaled and Fig. 3 where only transition rates
are scaled.
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B. Complete k-coverage of the target in time interval [x1, x2]

We now study the probability that the target is k-covered
over the entire time interval [x1, x2] denoted by T, i.e.,
Pr (VT,k = 0) . This is the probability of complete k-coverage
of the segment [x1, x2] on the x-axis traced by the target
during the time interval [x1, x2] as seen from Fig. 1. We obtain
upper and lower bounds on the complete k-coverage of the
target in time interval [x1, x2].

An upper bound on VT,k can be obtained from the expec-
tation and the variance of VT,k from (6) and (7) respectively
and is given by,

Pr (VT,k = 0) ≤ VAR (VT,k)
VAR (VT,k) + (E (VT,k))2

(19)

We now obtain lower bounds using a method analogous to
that in [11]. We first make following definitions.
• Let the point s on the x-axis be covered by m active

sensors. Consider the segments of the x-axis traced by the
target that are covered by these active sensors and label
the endpoints of these segments as Ei, i = 1, . . . , m such
that E1 ≤ E2 ≤ . . . ≤ Em. See Fig. 6 for an illustration.
Define ωk(s) as follows.

ωk(s) =

{
Em−k+1 if ψk(s) = 0 i.e., m ≥ k,

s if ψk(s) = 1 i.e., m < k.

• Consider the sequence Z
(n)
k (x1), parametrized by x1 and

indexed by n, defined as follows.

Z
(1)
k (x1) := ωk(x1)

Z
(n)
k (x1) := ωk(Z(n−1)

k (x1)), n ≥ 2

Z
(∞)
k (x1) := sup

n≥1
Z

(n)
k (x1)

Observe that Z
(∞)
k (x1) corresponds to the point at which

the k-covered segment starting at x1 ends. (If x1 is not k-
covered then, from the definition, the segment ‘ends’ at x1.)
The distribution of Z

(∞)
k (x1) determines the probability of

complete k-coverage of the segment [x1, x2], i.e.,

Pr (VT,k = 0) = Pr
(
Z

(∞)
k (x1) > x2

)

The distribution of Z
(1)
k (x1) i.e., of ωk(x1), can be obtained

from the probability that there are less than k active sensors
each of which covers the target over the entire segment

[x1, x2]. Let β(s1, s2) be the mean number of active sensors
each of which covers the entire segment [s1, s2] and is given
by

γ̂(s1, s2, u) := Pr
(
R̄u ≥ max(|s2 − u|, |s1 − u|)) ,

β(s1, s2) =
∫ s1+1

s2−1

λ̄(u)p1

(
1−

∫ s2−s1

0

µ1e
−µ1t dt

)

×γ̂(s1, s2, u) du .

The tail distribution of ωk(x1), obtained using β(x1, x2), is
a lower bound as we consider only the sensors covering the
segment [x1, x2] which are active over the entire time interval
[x1, x2].

Pr (ωk(x1) > x2) ≥ 1−



k−1∑

j=0

e−β(x1,x2)
β(x1, x2)

j

j!


 . (20)

Along the lines of the analysis in [12], we obtain the
following lower bound for Pr (VT,k = 0) ,

Pr (VT,k = 0) = Pr
(
Z

(∞)
k (x1) > x2

)

≥ Pr
(
Z

(n)
k (x1) > x2

)
∀ n ≥ 1.

Tighter lower bounds can be obtained by using larger values
of n. In [11], the sequence Z

(n)
k (x1) is shown to have Markov

property for the static nonhomogeneous Boolean model with
k = 1. For the Markov nonhomogeneous Boolean model
with, k ≥ 1, we can see that the sequence does not have
the Markov property. Thus for Markov nonstationary Boolean
model Pr

(
Z

(n)
k (x1) > x2

)
is difficult to obtain for general n

and the approach in [11] cannot be used. However, we can
obtain the distribution of Z

(2)
k (x1) as follows [12].

Pr
(
Z

(2)
k (x1) > x2

)
= Pr

(
Z

(1)
k (x1) > x2

)
+

∫ x2

x1

(
Pr

(
Z

(2)
k (x1) > x2|Z(1)

k (x1) = z1

)
×

Pr
(
Z

(1)
k (x1) ∈ dz1

))
.

We can obtain only a lower bound on Pr
(
Z

(2)
k (x1) > x2

)

using (20). Thus the lower bounds obtained for the Markov
nonhomogeneous Boolean model are loose compared to that
for the static model [12].

We numerically study the upper and lower bounds for the
’Laplacian’ deployment. Fig. 7 shows upper and the lower
bounds obtained with n = 1 and n = 2 from transition rates
of µ1 = 4, µ0 = 6. Observe that the lower bound with n = 2
is loose. This bound can be improved by decreasing the state
transition rates. For example with µ1 = 0.04, µ0 = 0.06 the
lower bound is tighter as shown in Fig. 8. This is because
the RHS of (20) approaches the tail distribution on LHS as
µ1 → 0. The lower bound with n = 2 is quite tight for the
static (µ1 = 0) nonhomogeneous Boolean model [12].
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Fig. 7. Bounds on the probability of complete 2-coverage of the target in the
time interval [0, x2] is plotted as a function x2 with θ = 2, κ = 100, µ1 =
4, µ0 = 6, c = 1.
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IV. DISCUSSION

We have presented the analysis of k-coverage of the target,
moving in a straight line with a constant velocity, by a Markov-
nonhomogeneous Boolean (type-A) sensor field. Two reasons
motivate this analysis. First, non homogeneity can be a natural
consequence of the deployment process. Second, like in the
‘Laplacian’ density example, the expected number of sensors
can be made finite. Thus, this analysis can be a proxy to
analyse the coverage when a finite number of nodes are
deployed.

We have obtained the probability of k-coverage of the target
at a time instant s, the expected duration of for which the
target is not k-covered over [0, T ] and its variance. Since
these expressions are rather messy and do not have closed
form, we also consider the simple pointwise stationary approx-
imation. A scaling law shows that the PSA for the Markov-
nonhomogeneous Boolean model is asymptotically correct.
The effect of scaling of the time-dependent transition rates on
the variance is studied as the effect of such scaling is captured
only in the variance. We have also obtained bounds on the k-

coverage of the target over the entire time interval [0, T ].
We have used a simple two state Markov chain to model

temporal behaviour of sensors. This can be extended to a three
state Markov chain with an absorbing state called failure cor-
responding to the failure of a sensor node. Every sensor node
will eventually die because of complete loss of battery power.
This feature is captured by the model with the absorbing state.
Thus the coverage analyses using this model should essentially
cover the network evolution over the entire time horizon. We
need to solve the absorbing Markov chain to obtain transition
probabilities which is quite involved.

The state transition rates µ1, µ0 are dictated by the sleep
scheduling algorithm implemented in the sensor network. The
rates essentially determine the temporal behavior of the target
coverage. Thus it is interesting to determine the transition rates
for the desired expected coverage time of the target i.e., to
provide a sleep scheduling algorithm for the random sensor de-
ployment under the Markov-nonhomogeneous Boolean model.
One of the methods to obtain the transition rates is estimation
of the rates using observations of the induced coverage on a
straight line.
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