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Abstract—A statistical mechanical framework for analyzing
random linear vector channels is presented in a large system
limit. The framework is based on the assumptions that the left
and right singular value bases of the rectangular channel matrix
H are generated independently from uniform distributions over
Haar measures and the eigenvalues of HTH asymptotically
follow a certain specific distribution. These assumptions make it
possible to characterize the communication performance of the
channel utilizing an integral formula with respect to H , which is
analogous to the one introduced by Marinari et. al. in J. Phys. A
27, 7647 (1994) for large random square (symmetric) matrices.
A computationally feasible algorithm for approximately decoding
received signals based on the integral formula is also provided.

I. INTRODUCTION

In a general scenario for linear vector channels, multiple
messages are transmitted to the receiver, being linearly trans-
formed to multiple output signals by a random matrix and
degraded by channel noises. This yields a complicated depen-
dence on message variables, which ensures that the problem
of inferring the transmitted messages from the received output
signals is non-trivial. In general, inference problems of this
kind can be mapped to virtual magnetic systems governed
by random interactions [1]. This similarity has promoted a
sequence of statistical mechanical analyses of linear vector
channels in a large system limit from the beginning of this
century [2], [3], [4], [5], [6], [7], [8].

In the simplest analysis, each entry of the channel matrix
is regarded as an independent and identically distributed (IID)
random variable. However, such a treatment is not necessar-
ily adequate for describing realistic systems, in which non-
negligible statistical correlations across the matrix entries are
created by spatial/time proximity of messages/antennas or ma-
trix design for enhancement of communication performance.
Therefore, the development of methodologies that can deal
with correlations in the channel matrix is of great importance
to research in the area of linear vector channels.

It is intended that the present article should contribute such a
methodology for application to these communication channels.
More precisely, we develop a statistical mechanical framework
for analyzing linear vector channels so that the influence of
the correlations across the matrix entries can be taken into
account. The developed framework is applicable not only to
Gaussian channels of Gaussian inputs [9], but also general

memory-less channels of continuous/discrete inputs, which are
characterized by a factorizable prior distribution.

This article is organized as follows: In the next section, the
model of linear vector channels that we focus on herein is
defined. In section III, which is the main part of the current
article, an integral formula with respect to large random
rectangular matrices is introduced. A scheme to assess the per-
formance of the linear vector channel and a computationally
feasible approximate decoding algorithm are developed on the
basis of this formula. The utility of the developed schemes is
examined in section IV by application to an example system.
The final section summarizes the present study’s findings.

II. MODEL DEFINITION

For simplicity, we here assume that all the variables relevant
to the communication are real; but extending the following
framework to complex variables is straightforward [10]. Let
us suppose a linear vector channel in which an input message
vector of K components, x = (xk), is linearly transformed
to an M dimensional sequence, Δ = (Δμ), by a K × N
channel matrix, H = (Hμk), as Δ = Hx. For generality and
simplicity, we assume a general memory-less channel, which
implies that an N dimensional output signal vector, y = (yμ),
follows a certain factorizable conditional distribution as

P (y|x; H) = P (y|Hx) =
N∏

μ=1

P (yμ|Δμ). (1)

In addition, we assume a factorizable prior distribution

P (x) =
K∏

k=1

P (xk), (2)

for x, which may be continuous or discrete.
An expression of the singular value decomposition of H

H = UDV T, (3)

is the basis of our framework. Here, the superscript T de-
notes the transpose of the matrix to which it is attached,
D = diag(dk) is an N × K diagonal matrix composed of
the singular values dk (k = 1, 2, . . . ,min(N, K)), where
min(N, K) denotes the lesser value of N and K . The values
dk are linked to the eigenvalues of HTH , λk , as λk = d2
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k = 1, 2, . . . ,min(N, K). U and V are orthogonal matrices
of order N × N and K × K , respectively. In order to handle
correlations in H analytically, we assume that U and V
are independently generated from uniform distributions of the
Haar measures of N × N and K × K orthogonal matrices,
respectively, and that the empirical eigenvalue distribution of
HTH , K−1

∑K
k=1 δ(λ − λk) = (1 − min(N, K)/K)δ(λ) +

K−1
∑K

k=1 δ(λ − d2
k) converges to a certain specific distri-

bution ρ(λ) in the limit as N and K tend to infinity while
keeping the load β = K/N ∼ O(1). Controlling ρ(λ) allows
us to express various second-order correlations in H .

III. ANALYSIS

A. An integral formula for large random rectangular matrices

With knowledge of H , the receiver decodes y in order to
infer x, which is performed on the basis of the Bayes formula

P (x|y; H) =

∏N
μ=1 P (yμ|Δμ)

∏K
k=1 P (xk)

P (y; H)
. (4)

Here, the probability

P (y; H) = Tr
x

N∏
μ=1

P (yμ|Δμ)
K∏

k=1

P (xk), (5)

expresses the marginal probability with respect to y, where
Trx denotes summation or integration over the all possible
states of x. Eq. (5) also serves as the partition function
concerning the message vector x in statistical mechanics.

Let us examine statistical properties of Eq. (5) prior to
analyzing Eq. (4). The expression

P (y; H) = Tr
u,x

exp
(
iuTHx

) N∏
μ=1

P̂ (yμ|uμ)
K∏

k=1

P (xk), (6)

is useful for this purpose, where i =
√−1, u = (uμ) and

P̂ (yμ|uμ) = (2π)−1
∫

dΔμ exp (−iuμΔμ)P (yμ|Δμ) denotes
the Fourier transformation of likelihood P (yμ|Δμ). We substi-
tute H in Eq. (6) by Eq. (3) and take an average with respect
to U and V . For this assessment, it is noteworthy that for
any fixed set of u and x, ũ = UTu and x̃ = V Tx behave
as continuous random variables that satisfy strict constraints
N−1|ũ|2 = N−1|u|2 = Tu and K−1|x̃|2 = K−1|x|2 = Tx.
In the limit N, K → ∞ keeping β = K/N ∼ O(1), which we
will hereafter assume if necessary, this yields an expression

1
N

ln
(
exp (iuTHx)

)
= F (Tx, Tu), (7)

where · · · denotes the average with respect to U and V , and

F (ξ, η) = Extr
Λξ,Λη

{
−β

2
〈ln(ΛξΛη + λ)〉ρ − 1 − β

2
ln Λξ

+
βΛξξ

2
+

Ληη

2

}
− β

2
ln ξ− 1

2
ln η− 1 + β

2
, (8)

where 〈· · ·〉ρ denotes the average with respect to ρ(λ), while
Extrθ {· · ·} represents extremization with respect to θ [11].
This formula is analogous to the one known for ensembles of
random square (symmetric) matrices [12], [13], [14], which

is closely related to the R-transformation developed in free
probability theory [15], [9], [16]. Several integral formulae
for large random matrices related to Eq. (7), but for different
large system limits, are presented in [17].

Eq. (7) implies

1
N

ln
(

Tr
y

P (y; H)
)

= Extr
Tx,Tu

{F (Tx, Tu) + βAx(Tx) + Au(Tu)} , (9)

where Ax(Tx) = Extr
bTx

{
T̂xTx/2+ln

(
Trx P (x)e− bTxx2/2

)}
and Au(Tu) = Extr

bTu

{
T̂uTu/2+ln

(
Try,uP̂ (y|u)e−bTuu2/2

)}
.

The normalization constraint Try P (y; H) = 1, in con-
junction with the extremization in Eq. (9), yields Tx =
Trx x2P (x), T̂x = 0, Tu = 0 and T̂u = β 〈λ〉ρ Tx. The
physical implication of these results is that components of
Δ = Hx behave as IID Gaussian variables of zero mean and
variance T̂u in the large system limit when x is drawn from
Eq. (2), while U and V are independently generated from the
Haar measures.

B. Performance assessment

Now, we are ready to analyze the typical communication
performance of the current channel model. This is performed
by assessing the typical mutual information (per output signal)
between x and y, I(X, Y ), based on Eqs. (4) and (5) as

I(X, Y ) =
1
N

Tr
y,x

P (y|x; H)P (x) ln
(

P (y|x; H)
P (y; H)

)
= F + Tr

y

∫
DzP

(
y|

√
T̂uz

)
ln P

(
y|

√
T̂uz

)
, (10)

where

F = − 1
N

Tr
y

P (y; H) ln P (y; H), (11)

represents the conditional entropy of y, and serves as the av-
erage free energy with respect to x. Dz = (2π)−1/2dze−z2/2

denotes the Gaussian measure. The statistical properties of Δ
evaluated in the last paragraph are employed to assess the
second term on the right-hand side of the last line of Eq. (10).
F can be evaluated by means of the replica method.

Namely, we evaluate the n-th moment of the partition function
P (y; H) for n ∈ N as

Tr
y

Pn+1(y; H) = Tr
y,{xa},{ua}

exp

(
i

n∑
a=1

(ua)THxa

)

×
n+1∏
a=1

N∏
μ=1

P̂ (yμ|ua
μ) ×

n+1∏
a=1

K∏
k=1

P (xa
k), (12)

and assess F as

F = − lim
n→0

∂

∂n

1
N

ln
(

Tr
y

Pn+1(y; H)
)

, (13)

analytically continuing expressions obtained for Eq. (12) from
n ∈ N to n ∈ R. Here, {xa} denotes a set of n+1 replicated
vectors x0, x1, · · · , xn, with {ua} defined similarly.



Eq. (13) is generally expressed using F (ξ, η), and the
derivation of the expression can be found in [11]. In particular,
the expression obtained under the replica symmetric ansatz,
which is believed to be correct for the current case since the
inference is performed on the basis of the correct posterior (4)
[18], is given in a compact form as

F = −Extr
qx,qu

{Axu(qx, qu) + βAx(qx) + Au(qu)} , (14)

where

Axu(qx, qu) = F (Tx − qx, qu) +
T̂uqu

2
, (15)

Ax(qx) = Extr
bqx

{
− q̂xqx

2
+

∫
DzP(z; q̂x) lnP(z; q̂x)

}
, (16)

and

Au(qu) = Extr
bqu

{
− q̂uqu

2

+ Tr
y

∫
DzP(y|z; q̂u) lnP(y|z; q̂u)

}
, (17)

in which P(z; q̂x) = Trx P (x)e−bqxx2/2+
√

bqxzx and

P(y|z; q̂u) =
∫

DsP

(
y|

√
T̂u − q̂us +

√
q̂uz

)
. The qx and

qu determined by Eq. (14) represent K −1
[| 〈x〉 |2] and

−N−1
[| 〈u〉 |2], respectively, where 〈· · ·〉 denotes averaging

over the posterior distribution (4) while [· · ·] indicates the
average with respect to y, U and V . These averages, 〈· · ·〉
and [· · ·], correspond to the thermal and quenched averages
in statistical mechanics, respectively. The quantities q̂x and
q̂u appearing in Eqs. (16) and (17) can be used for assessing
performance measures other than Eq. (10), such as the mean
square error (MSE) and the bit error rate (BER).

C. Computationally feasible approximate decoding

Let us suppose a situation which requires evaluation of the
posterior average

mx = Tr
x

xP (x|y; H), (18)

where mx = (mxk), with similar notation used for other
vectors below. Eq. (18) serves as the estimator that minimizes
the MSE in general, and can be used to minimize the BER
for binary messages. Exact assessment of such averages is,
however, computationally difficult for large systems, which
motivates us to develop computationally feasible approxima-
tion algorithms [19], [3], [20]. A generalized Gibbs free energy

Φ̃(mx, mu; l) = Extr
hx,hu

{hx · mx + hu · mu

− ln (Z(hx, hu; l))
}

, (19)

where Z(hx, hu; l) = Trx,u
∏N

μ=1 P̂ (yμ|uμ) × ∏K
k=1 P (xk)

× exp
(
hx · x + hu · (iu) + (iu)T(lH)x

)
, offers a useful

basis for this purpose since Eq. (18) is characterized as the
unique saddle point of Eq. (19) for l = 1 [21], [22].

MPforPerceptron{
Perform Initialization;
Iterate H-Step and V-Step alternately sufficient times;

}
Initialization{

χx ← 1

K

KX
k=1

x2
kP (xk); bχx ← 0; Λx ← 1

χx
− bχx;

mxk ← Tr
xk

xkP (xk) (k = 1, 2, . . . , K);

hu ← Hmx; mu ← 0;

}
H-Step{

Search (χu, Λu) for given (χx, Λx) to satisfy conditions

χx =

fi
Λu

ΛxΛu + λ

fl
ρ

and χu =
1 − β

Λu
+

fi
βΛx

ΛxΛu + λ

fl
ρ

;

bχu ← 1

χu
− Λu;

hu ← hu − bχumu;

muμ ← ∂

∂huμ
ln

„Z
DxP (yμ|

pbχux + huμ)

«
(μ = 1, 2, . . . , N);

hx ← HTmu;

χu ← − 1

N

NX
μ=1

∂2

∂h2
uμ

ln

„Z
DsP (yμ|

pbχus + huμ)

«
;

Λu ← 1

χu
− bχu;

}
V-Step{

Search (χx, Λx) for given (χu, Λu) to satisfy conditions

χx =

fi
Λu

ΛxΛu + λ

fl
ρ

and χu =
1 − β

Λu
+

fi
βΛx

ΛxΛu + λ

fl
ρ

;

bχw ← 1

χx
− Λx;

hx ← hx + bχxmx;

mxk ← ∂

∂hxk
ln

“
Tr
x

P (x)e−
1
2 bχxx2+hxkx

”
(k = 1, 2, . . . , K);

hu ← Hmx;

χx ← 1

K

KX
k=1

∂2

∂h2
xk

ln
“
Tr
x

P (x)e−
1
2 bχxx2+hxkx

”
;

Λx ← 1

χx
− bχx;

}
Fig. 1. Pseudocode of the message-passing algorithm MPforPerceptron
[23]. The symbols “;” and “←” represent the end of a command line and
the operation of substitution, respectively. The quantities Λx and Λu are the
counterparts of Λξ and Λη in Eq. (8) for ξ = χx and η = χu, respectively.

Unfortunately, the evaluation of Eq. (19) is also computa-
tionally difficult. One approach to overcoming this difficulty
is to perform a Taylor expansion around l = 0, for which
Φ̃(mx, mu; l) can be analytically calculated as an exceptional
case, and substitute l = 1 in the expression obtained [21].
However, the evaluation of higher-order terms, which are not
negligible in general, requires a complicated calculation in this



expansion, which sometimes prevents the scheme from being
practically feasible. In order to avoid such difficulty, we take
an alternative approach here, which is inspired by a derivative
of Eq. (19),

∂Φ̃(mx, mu; l)
∂l

= − 〈
(iu)T Hx

〉
l
, (20)

following a strategy proposed by Opper and Winther
[22]. Here, 〈· · ·〉l represents the average with respect to
the generalized weight

∏N
μ=1 P̂ (yμ|uμ)× ∏K

k=1 P (xk)×
exp

(
hx · x + hu · (iu) + (iu)T(lH)x

)
, in which hx and hu

are determined so as to satisfy 〈x〉l = mx and 〈(iu)〉l = mu,
respectively. The right-hand side of this equation is an average
of a quadratic form composed of many random variables.
The central limit theorem implies that such an average does
not depend on the details of the objective distribution, but is
determined only by the values of the first and second moments.
In order to construct a simple approximation scheme, let us
assume that the second moments are characterized macroscop-
ically by

〈|x|2〉
l
− | 〈x〉l |2 = Kχx and

〈|u|2〉
l
− | 〈u〉l |2 =

Nχu. Evaluating the right-hand side of Eq. (20) using a
Gaussian distribution, the first and second moments of which
are constrained to be identical to those of the generalized
weight, and integrating from l = 0 to l = 1, we have

Φ̃(χx, χu, mx, mu; 1) − Φ̃(χx, χu, mx, mu; 0)
	 −mT

u Hmx − NF (χx, χu), (21)

where the function F (ξ, η) is provided as in Eq. (8)
by the empirical eigenvalue spectrum of H TH , ρ(λ) =
K−1

∑K
k=1 δ(λ − λk) and the macroscopic second moments

χx and χu are included in arguments of the Gibbs free
energy because the right-hand side of Eq. (20) depends on
these moments. Eq. (21) offers a computationally feasible
approximation of Eq. (19) for l = 1, since assessment of
Φ̃(χx, χu, mx, mu; 0), in which one can perform summa-
tions with respect to relevant variables independently, can be
achieved at a reasonable computational cost.

Although evaluation of Eq. (21) is computationally feasible,
searching for saddle points of this function within a practical
time is still a non-trivial problem. In Fig. 1, we present a
message-passing type algorithm, which was recently proposed
for a classification problem of single layer perceptrons [23],
as a promising heuristic solution for this problem.

The efficacy of this method under appropriate conditions
was experimentally confirmed for the perceptron problem, and
to the extent to which it has been applied to several ensembles
of linear vector channels, this algorithm has also been shown
to exhibit a reasonable performance for the current inference
task as well. However, its properties including convergence
conditions have not yet been fully clarified, and, therefore
further investigation is necessary for the theoretical validation
and improvement of the performance of this method.

IV. EXAMPLE: WELCH BOUND EQUALITY SEQUENCES

In order to demonstrate the utility of the proposed approach,
let us apply the current methodologies to the analysis of

the matrix ensemble that is characterized by ρ(λ) = (1 −
β−1)δ(λ) + β−1δ(λ− β) under the assumption β > 1, which
corresponds to the case of Welch bound equality sequences
(WBES) [24]. We focus on the case of the Gaussian channel
P (y|Δ) = (2πσ2)−1/2 exp

(−(y − Δ)2/(2σ2)
)

and binary
inputs x ∈ {+1,−1}K, since this constitutes a simple, yet
non-trivial problem. Under these assumptions, the developed
framework has a higher capability than is required for the
assessment of the typical communication performance with
respect to the matrix ensemble, which can be carried out by
a simpler method developed by the author and his colleagues
[25], [10], as was recently shown by Kitagawa and Tanaka
[26]. Nevertheless, the framework is still useful as one can
derive a computationally feasible approximate decoding algo-
rithm of good convergence properties based on the procedure
shown in Fig. 1.

For Gaussian channels, Λu in Fig. 1 can be fixed as Λu = σ2

in general. This yields an algorithm

mt+1
u =

1
σ2 + χ̂t

u

(
y − Hmt

x + χ̂t
umt

u

)
, (22)

mt+1
xk = tanh

(
N∑

μ=1

Hμkmt+1
uμ + χ̂t+1

x mt
xk

)
(23)

(k = 1, 2, . . . , K),

for WBES, where t denotes the number of iterations. χ̂ t
u in

Eq. (22) is provided as χ̂t
u = β/Λt

x, where Λt
x is determined

so as to satisfy χt
x = (1−β−1)/Λt

x +β−1σ2/(σ2Λt
x +β) for

given χt
x = 1 − K−1|mt

x|2. Utilizing the identical Λt
x, χ̂t+1

x

in Eq. (23) is evaluated as χ̂t+1
x = 1/χt

x − Λt
x.

Fig. 2 compares the BER for the theoretical assessment by
the replica method with the experimental evaluation obtained
by the algorithm of Eqs. (22) and (23). In the experiments,
the estimates of the binary messages are computed as x̂k =
sign(mxk) for k = 1, 2, . . . , K , where sign(a) = a/|a| for
a 
= 0. This decoding scheme is optimal for minimizing BER
if mx represents the correct posterior average (18) [27]. The
excellent agreement between the curves and markers in this
plot validates both the performance assessment based on the
replica method and that based on the developed algorithm. A
characteristic feature of Eqs. (22) and (23) is the inclusion
of macroscopic variables χ̂t

u and χ̂t+1
x , which are expected

to act to cancel the self-reactions from previous states. [28].
Fig. 3 plots the influence of this operation, indicating that
the cancellation acts to maintain the quality of the converged
solution up to larger β under a condition of fixed SNR.

V. SUMMARY

In summary, we have developed a framework to analyze
linear vector channels in a large system limit. The frame-
work is based on the assumptions that the left and right
singular value bases of the channel matrix can be regarded
as independently drawn from Haar measures over orthogonal
(unitary, if the number field is defined over the complex
variables) groups, and that the eigenvalues of the cross corre-
lation matrix of the channel matrix asymptotically approach
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Fig. 2. BER vs. signal-to-noise ratio (SNR) for binary inputs for the case
β = 1.1. The SNR plotted on the horizontal axis is given by −10 log10(2σ2)
while the vertical axis denotes the BER. The curves indicate theoretical
predictions, which correspond to the scalar Gaussian channel, WBES and
the basic matrix ensemble (BASIC) from the bottom. Sample matrices of
BASIC are composed of IID entries of zero mean and 1/N variance Gaussian
random variables. Values for WBES and BASIC are assessed by the replica
method. The markers indicate experimental estimates of the BER obtained
from 500 sample systems with K = 2048 and N = 1862 on the basis of
the algorithm shown in Fig. 1. Excellent agreement between the curves and
markers validates both the performance analysis based on the replica method
and that of the developed approximation algorithm.

a certain specific distribution in the limit of large matrix
size. These modeling assumptions allow a characterization of
the system in terms of an integral formula in two variables,
which is fully determined by the eigenvalue distribution. Upon
applying this formula in conjunction with the replica method,
we have derived a general expression for the typical mutual
information of general memory-less channels with factorizable
priors of continuous/discrete inputs. We have further proposed
a computationally feasible decoding algorithm based on the
formula, and have found that numerical results obtained from
this algorithm are in excellent agreement with the theoretical
predictions evaluated by the replica method.

Future research directions include the application of the
developed framework to various models of linear vector chan-
nels, and further improvement of the computationally feasible
decoding algorithm.

ACKNOWLEDGMENTS

The author thanks Jean-Bernard Zuber for useful discus-
sions concerning Eq. (8). This research was supported in part
by Grants-in-Aid MEXT/JSPS, Japan, Nos. 17340116 and
18079006.

REFERENCES

[1] H. Nishimori, Statistical Physics of Spin Glasses and Information
Processing (Oxford: Oxford University Press), 2001.

[2] T. Tanaka, Europhys. Lett. 54, 540, 2001; IEEE Trans. on Infor. Theory
48, 2888, 2002.

[3] Y. Kabashima, J. Phys. A 36, 11111, 2003.
[4] R. R. Müller, IEEE Trans. on Signal Processing 51 2821, 2003.
[5] A. L. Moustakas IEEE Trans. on Infor. Theory 49, 2545, 2003.
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