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Abstract— In this paper, we propose a general expression of the

peak-to-average power ratio (PAPR) distribution in orthogonal

frequency division multiplexing (OFDM) systems with unequal

power allocation strategy, which is based on the extreme value

theory for Chi-squared-2 process. The proposed general distri-

bution of the PAPR depends on the number of the subcarriers,

distribution of the power allocation and the amount of the total

transmission power. To validate the analytical results, we conduct

extensive experiments and the numerical results also show that

the proposed distribution of the PAPR has a good agreement with

that of OFDM systems with unequal power allocation strategy.

Finally, we show an example of that the proposed distribution of

the PAPR could be directly applied to design the OFDM systems

with selective mapping technique to reduce the PAPR.

I. INTRODUCTION

Recently, orthogonal frequency division multiplexing

(OFDM) techniques are playing more and more important

role in wireless broadband transmission over multi-path fad-

ing channels due to significant improvement of system per-

formance [1]. However, as one of challenges, large peak-

to-average power ratio (PAPR) will distort the transmitted

signals if the transmitter contains nonlinear components such

as digital-to-analog converters (DAC), mixers, high power

amplifiers (HPA), which results in spectral spreading, inter-

modulation distortion and changing of the signal constellation.

Recently, various approaches have been proposed to reduce

the PAPR for OFDM systems, including clipping [2]–[5], cod-

ing schemes [6]–[12], phase optimization [13], [14], nonlinear

companding transforms [15]–[23], tone reservation and tone

injection [24], [25], constellation shaping [26]–[28], partial

transmission sequence (PTS) and selective mapping (SLM)

[29]–[46] and other techniques such as pre-scrambles proposed

in [47]. Among these schemes, PTS and SLM techniques

are two of the most attractive schemes due to their good

system performances without the limitation of the subcarriers

number. For the SLM method, the input data sequences are

multiplied by each of the phase sequences to generate some

alternative input symbol sequences. Each of these alternative

input data sequences is made the inverse fast Fourier transform

(IFFT) operation, and then the one with the lowest PAPR

is selected for transmission [39]. Therefore, the ability of

the PAPR reduction of the SLM method depends on both

the number of phase factors and the design of the phase

factors. However, for example, if we only know the type

of high power amplifier (HPA) and the desirable probability

of clipping is less than 10−4 when the saturation point of

the HPA is 8.0dB, how many phase factors do we need

for the design of OFDM systems with unequal transmission

power allocation strategy? Therefore, it is very significant to

examine the PAPR characteristic of the transmitted OFDM

signals in OFDM systems. More importantly, it is essential to

accurately identify the PAPR distribution in OFDM systems.

Commonly, complementary cumulative distribution function

(CCDF), which denotes the probability that the PAPR of a

data block exceeds a given threshold, is often used to express

the statistical PAPR distribution of the OFDM signals [24].

It has been widely accepted that the CCDF is one of the key

parameters in the design of OFDM systems, such as predicting

the impact of nonlinearities [48]. For HPA, we can select the

clipping ratio according to both the saturation point of the HPA

and the PAPR distribution in adaptive OFDM systems [49].

We also can warrant the minimum of the total degradation of

the HPA by selecting its appropriate output back-off (OBO)

according to the PAPR’s CCDF of the transmitted signals [50].

Moreover, the PAPR distribution can be directly applied to

calculate the bit error rate (BER) [51] and to provide limits

on achievable information rates [52]. In practice, we usually

adjust these design parameters according to simulation results.

However, as indicated in [48], if we can use an analytical

expression to accurately calculate the PAPR distribution, it

can simplify the produce of the OFDM system design.

Recently, several researchers (for example, see [24], [53],

[54], [58], [59] and the references therein) have studied the

PAPR distribution/bounds of the OFDM signals. However,

existing results were obtained just based on the assumption
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that an equal transmission power is allocated to each sub-

carrier. In other words, these results may not be valid in

OFDM systems when the transmission power allocated to

each subcarrier is unequal, which considerably can improve

the BER performance according to different subchannel con-

ditions. For example, the water-pouring technique has been

proposed to maximize the channel capacity [60]. In [61],

a general approach to identify PAPR distribution in OFDM

systems has been proposed, which is based on extreme value

theory, to produce a more accurate analytical expression of the

PAPR distribution in OFDM systems, where the transmission

power is only allocated to active subcarriers and no power is

allocated to inactive subcarriers. Power allocation is an integral

part of MAC protocol design in communication systems and

it has been well studied [60], [62], [63]. For example, to

save the power effectively in adaptive OFDM system, less

transmission power is allocated to the subcarriers with lower

received signal-to-noise ratios (SNRs) [64]. Therefore, we feel

that it is indeed needed to identify a CCDF expression of

the PAPR in OFDM systems with unequal power allocation

strategy.

In this paper, we are motivated to derive a general CCDF

expression of the PAPR in OFDM systems with unequal power

allocation strategy, where we employ the extreme value theory

for the envelope of a complex Gaussian random Chi-squared-2
process in OFDM systems. The derived CCDF expression of

the PAPR is mainly dependent on the number of subcarriers,

and the distribution of the power allocated to subcarriers,

which can provide more useful insight for the design of OFDM

systems.

The rest of this paper is organized as follows. In Section

II, we briefly introduce a typical OFDM system with unequal

power allocation strategy. In Section III, we analyze and derive

out a general CCDF expression of the PAPR using extreme

value theory in OFDM systems. In Section IV, extensive

simulation results are conducted to validate the tightness of the

derived theoretical CCDF expression of the PAPR in OFDM

systems. One application of the proposed CCDF expression is

shown in Section V for the design of OFDM systems, followed

by conclusions in Section VI.

II. OFDM SYSTEM WITH UNEQUAL TRANSMISSION

POWER ALLOCATION STRATEGY

It is known that the error probability is dominated by the

subcarriers with the highest attenuation since the channels fad-

ing on different subchannels are different when a fixed strategy

is used to allocate equal transmission power to all subcarriers

in OFDM systems. Therefore, commonly, OFDM systems

employ adaptive strategies to allocate unequal transmission

power to each subcarrier, which depends on the condition of

each subchannel. Note that, the goal of all adaptive techniques

including bit and power loading algorithms is to find the best

performance, so that the overall transmission power could be

minimized when the rates and the quality-of-services (QoS)

requirements are given in OFDM systems. To simplify the
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Fig. 1. OFDM system with unequal power allocation strategy.

analysis, we only consider a single user in OFDM systems in

this paper.

As shown in Figure 1, the encoder and modulation types

are controlled by the transmission power allocation strategy

according to the amplitude response of the channel transfer

function and other parameters. In other words, the transmission

power allocated to each subcarrier is adaptively controlled

according to the known channel state information (CSI). In this

paper, we assume that each subcarrier has a bandwidth that is

much smaller than the coherence bandwidth of the channel,

and thus the instantaneous channel gains on all the subcarriers

are known to the transmitter.

The complex data at the output of the modulator are

transformed into the time domain samples by IFFT operation.

Without loss of generality, we consider one symbol interval

t ∈ [0, Ts]. Therefore, the equivalent complex baseband signal

in OFDM system is expressed as

sN (t) = xN (t) + jyN (t)

=
1√
N

N−1∑
k=0

Ak exp

{
j2π(k − N − 1

2
)

t

Ts

}
,

(1)

where xN (t) and yN (t) denote the real and imaginary parts of

the output signal after the IFFT operation, respectively. N is

the number of subcarriers. Ak (k ∈ Ω = {0, 1, ..., N − 1})
is the complex symbol modulated by phase shift keying

(PSK) or quadrature amplitude modulation (QAM) in a block

of N information symbols. Generally speaking, it is often

desirable to allocate different amounts of the transmission

power E{|Ak|2} to different subcarriers k in OFDM systems,

namely, Pi �= Pj when i �= j (i, j ∈ Ω).

Commonly, we define that the PAPR of one baseband

symbol sN (t) in OFDM systems as

PAPR = 10 log10

⎧⎨
⎩

max
0≤t≤Ts

[|sN (t)|2]
Pav

⎫⎬
⎭ (dB), (2)

where Pav is the average power of transmitted signals and it

is expressed as follows [24]

Pav =
1

N
Ptotal =

1

N

N−1∑
k=0

Pk, (3)
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where Pk = E[|Ak|2] denotes the transmission power allo-

cated to the k-th subcarrier and E{·} is the expectation.

It is well known that the peak factor of an OFDM output

signal s(t) grows linearly with the number of subcarriers in

an OFDM system [53]. Moreover, it has been discovered that

the PAPR can not give a good measure of the peak power

problem when the number of subcarriers N is large, and it

is better to use probabilistic analysis, namely, the statistical

distribution of the PAPR, i.e., the CCDF of PAPR, in OFDM

systems [24], [53].

Recently, some theoretical CCDF approximations of the

PAPR have been established in the literature [24], [48], [53],

[54], [59]. However, we found that all these existing analytical

results have been derived for usual OFDM systems. In other

words, they are based on that a constant transmission power is

allocated to all subcarriers in OFDM systems, namely, Pi = Pj

for ∀i, j ∈ Ω. Obviously, this assumption can not be valid in

practical OFDM systems since the available quota of trans-

mission energy is distributed to the different bits according

to different bit importance to provide optimal unequal error

protection in OFDM systems. For example, “water filling” has

been widely used in adaptive OFDM systems [62]. Therefore,

we feel that it is indeed needed to derive out a theoretical

CCDF expression of the PAPR in OFDM systems.

III. DERIVED DISTRIBUTION OF PAPR IN OFDM

SYSTEMS WITH UNEQUAL POWER ALLOCATION

STRATEGY

A. Convergence to a Gaussian Random Process

It has been proven that the bandlimited OFDM signal sN (t)
with its real part xN (t) and imaginary part yN (t) coverage

weakly to Gaussian random processes for any closed and finite

interval Ts ⊆ R with equal power Pi = Pj (∀i, j ∈ Ω)

allocated to each subcarrier when N → ∞ [54], [57], namely

{sN (t), t ∈ Ts} D−→ {s(t), t ∈ Ts}, (4)

where
D−→ implies the convergence in distribution and s(t)

is a zero-mean stationary complex Gaussian random process

defined over the symbol duration Ts with its autocorrelation

function R(sN ,sN )(τ) = E[sN (t)s∗N (t + τ)] as follows

R(sN ,sN )(τ)

=
1

N

N−1∑
k=0

(Ak · A∗
k) exp

{
j2π(k − N − 1

2
)

τ

Ts

}
)

=
1

N

N−1∑
k=0

Pk exp (jωkτ),

(5)

where ωk = π(2k − N + 1)/Ts. It has been proven that

sN (t) are uncorrelated with each other. Moreover, when τ =
0,±Ts, R(sN ,sN )(τ) always equals Pav for any value of Pk,

which means that sN (t) always converges to an independent

stationary Gaussian process whatever the strategy of the power

allocation to subcarriers is.

Similarly, when Pi �= Pj (∀i, j ∈ Ω) in OFDM systems,

it has been established in [24] that the modulated signals can

be considered as the sum of N independent and identically

distributed (i.i.d) random processes when ∀k ∈ Ω, Ak = AR
k +

j · AI
k satisfies ⎧⎪⎨

⎪⎩
E[AR

k ] = E[AI
k] = 0,

E[AR
k AI

k] = 0,

E[|AR
k |2] = E[|AI

k|2].
(6)

Thus, the corresponding autocorrelation functions of

xN (t) and yN (t) can be expressed as R(xN ,xN )(τ) =
E[xN (t)xN (t+τ)] and R(yN ,yN )(τ) = E[yN (t)yN (t+τ)], re-

spectively, and their cross-correlation function R(xN ,yN )(τ) =
E[xN (t)yN (t + τ)] as follows

R(xN ,xN )(τ)

=
1

N

N−1∑
k=0

[
σ2

ak cos(t1) cos(t2) + σ2
bk sin(t1) sin(t2)

]
σ2

ak=σ2

bk=====
1

2N

N−1∑
k=0

Pk cos(ωkτ),

(7)

R(yN ,yN )(τ)

=
1

N

N−1∑
k=0

[σ2
ak sin(t1) sin(t2) + σ2

bk cos(t1) cos(t2)]

σ2

ak=σ2

bk=====
1

2N

N−1∑
k=0

Pk cos(ωkτ),

(8)

R(xN ,yN )(τ)

=
1

N

N−1∑
k=0

{
σ2

ak sin(t2) cos(t1) − σ2
bk cos(t2)) sin(t1)

}
σ2

ak=σ2

bk=====
1

2N

N−1∑
k=0

Pk sin(ωkτ),

(9)

where t1 = ωkt, t2 = ωk(t + τ), σ2
ak = E{|AR

k |2}, and

σ2
bk = E{|AI

k|2} for ∀k ∈ Ω.

Therefore, it is clear that the following formulations are

satisfied{
R(sN ,sN )(τ) = 2[R(xN ,xN )(τ) + jR(yN ,yN )(τ)],

R(yN ,xN )(τ) = −R(xN ,yN )(τ) = −R(yN ,xN )(−τ).
(10)

Therefore, xN (t) and yN (t) are irrelevant for each t and

they converge weakly to the stationary processes x(t) and y(t)
as N → ∞, respectively, when E{|AR

k |2} = E{|AI
k|2} and

Pi �= Pj for i �= j (i, j ∈ Ω). Namely, xN (ti) and yN (tj)
asymptotically become Gaussian distribution with zero mean

and variance Pav/2 for large N according to the central limit

theorem, which has been proven in [57].

Similarly, it is easy to prove that the reconstructed signals

{ζ(t) =
√

2xN (t)/
√

Pav, 0 ≤ t ≤ Ts} and {η(t) =√
2yN (t)/

√
Pav, 0 ≤ t ≤ Ts} have continuously differentiable
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sample paths and it can be easily proven that ζ(t) and η(t) con-

verge weakly to an independent stationary Gaussian processes

with zero mean and unit variance, respectively, when t > 0 and

the number of subcarriers N goes to infinity. Therefore, the

identical covariance functions of ζ(t) and η(t) can be written

as r(t) = Cov(ζ(t), ζ(t + τ)) = Cov(η(t), η(t + τ)), namely

r(t) = E

[
2x(τ)x(t + τ)

Pav

]
= E

[
2y(τ)y(t + τ)

Pav

]

=

N−1∑
k=0

Pk cos(ωkt)

N−1∑
k=0

Pk

.

(11)

B. Proposed CCDF expression of the PAPR in OFDM systems

with unequal power allocation

According to the extreme value theory [55]–[57], r(t)
satisfies the following expansion{

r(t) = 1 − λ t2

2 + o(t2), as t → 0,
r(t) log(t) → 0, as t → ∞.

(12)

Therefore, we can get λ with its restriction as follows{
λ = −r

′′

(0) = V ar(η
′

(t)) = V ar(ζ
′

(t)),
o(t2)

t2 → 0 as t → 0.
(13)

where V ar(x) denotes the variance of the random variable x.

Obviously, χ2(t) = ζ(t)2 + η(t)2 is a stationary Chi-

squared-2 process with continuously differentiable sample

paths. Moreover, the conditions stated in (13) are satisfied by

r(t) in (11) with

λ =

π2
N−1∑
k=0

(2k + 1 − N)2Pk

T 2
s ·

N−1∑
k=0

Pk

. (14)

Replacing t → ∞ with t′ = 1/t, we can easily establish

the provable-ness of the second condition stated in (12).

According to the extremal theory [55] and Theorem 3.5.1 in

[56], then

Prob{ max
0≤t≤Ts

χ2(t) ≤ γ} γ,Ts→∞−→ e−u. (15)

If

Ts · μ(γ) = Ts · e
−γ
2

√
λγ

2π

γ,Ts→∞−→ u, (16)

where

u ≈ Ts · μ(2γ) = Ts · e−γ

√
λγ

π
. (17)

Substituting (14) into (17), we have

u ≈ e−γ

√√√√√√√√
πγ

N−1∑
k=0

(2k + 1 − N)2Pk

N−1∑
k=0

Pk

. (18)
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Fig. 2. Comparisons of the PAPR CCDFs with different power allocation

strategies in OFDM system with N = 1024 and N = 4, respectively.

Hence, as N → ∞, the cumulative distribution function

of the PAPR of the baseband OFDM signal in one symbol

interval has the following asymptotic characteristic

Prob{PAPR ≤ γ}

= Prob

{ |s2
N (t)|2
Pav

≤ γ

}

∼= Prob

{
max{|ζ2(t) + η2(t)|2}

Pav
≤ γ

}
.

(19)

Therefore, the PAPR CCDF of the OFDM signals can be

written as

Prob{PAPR > γ} ∼=

1 − exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−e−γ

√√√√√√√√
πγ

N−1∑
k=0

(2k + 1 − N)2Pk

N−1∑
k=0

Pk

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.
(20)

for large N . Thus, this yields a PAPR distribution of the

OFDM symbols with unequal transmission power allocation

strategy through a fully analytic derivation.

IV. NUMERICAL RESULTS

To get insight into the accuracy of the proposed CCDF

expression of the PAPR in OFDM systems with unequal

transmission power allocation strategy, extensive computer

simulations are conducted, in which 106 independent OFDM

symbols are randomly generated with an oversampling factor

of 4. The curves labeled by “ Simulation result” in all figures

are obtained by Monte Carlo searching, and the curves labeled

by “Proposed result” in all figures are obtained from the

proposed equation (20).

In Figure 2, some results of the PAPR CCDFs are shown

when different transmission power allocation strategies are

employed in OFDM system with 16-QAM modulation, where
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N = 1024 and N = 4, respectively, and only parts of subcar-

riers are allocated by transmission power. From Figure 2, it is

clear that the shapes of the PAPR CCDFs are different when

distributions of the transmission power allocation are different.

For example, when the Prob{PAPR > PAPR0} = 10−4

in the case of N = 1024, the PAPR0 are 12.01dB and

12.49dB, respectively, for the corresponding cases: 1) The

distribution of transmission power allocated to P1, · · · , PN/4

is Possion distribution and the energy allocated to the left

subcarriers is 0; 2) Randomly allocate transmission power

to PN/2+1, · · · , P5N/8 and the transmission power of the

left subcarriers is 0. Note that,
∑N

i=1 = Ptotal in both

cases. Therefore, we can make a conclusion that the PAPR

CCDFs are different when the distributions of the powers

allocated to subcarriers are different in OFDM systems with

unequal power allocation strategies. Obviously, the curve of

the proposed approximation (20) is tight to that of simulation

result. Moreover, it is distinct that the proposed (20) also

agrees well with the simulation result in the case of N = 4
although the derived (20) is based on large N from Figure 2.

As the frequency domain fading deteriorates the SNR of

certain subcarriers, but improves other subcarriers above the

average SNR value, the potential loss of throughput due to the

exclusion of faded subcarriers can be mitigated by employing

higher order modulation modes on the subcarriers exhibiting

high SNR values. Therefore, in OFDM system, the goal of

adaptive power allocation strategy is to choose the appropriate

mode including type of modulation and the number of bits

for transmission in each subcarrier when the local SNR is

given to achieve a optimal tradeoff between throughput and

overall BER. For example, the criterion of modulation decision

for each subcarrier has been given in [65] for optimal

performance as follows

Em
i =

σ2
nΓi

|Hi|2 (2m − 1), (21)

where m ∈ B is the number of bits assigned to subcarrier by

adaptive modulation algorithm, and B = {0, 2, 4} corresponds

to no modulation, QPSK and 16-QAM, respectively. When

m = 0, it means that no bit (no modulation) is needed

to be assigned to the subcarrier, i.e., no transmission power

is allocated to the subcarrier. When m = 2, it means that

QPSK modulation has been assigned to the subcarrier and

m = 4 means that 16-QAM modulation has been used by the

adaptive modulation algorithm. Em
i is the needed threshold

of the energy for the modulation of the i-th subcarrier. σ2
n

is the variance of the Gaussian noise and Hi is the channel

gain coefficients for the i-th subcarrier. Γi is the SNR gap.

For simplicity, we set Γi = 1 for all subcarriers that gives

Shannon’s famous formula for the channel capacity in this

paper.

Figure 3 depicts some results about the CSI and its cor-

responding transmission power allocated to each subcarrier in

adaptive OFDM system with N = 64, in which the bandwidth

is 5.0 × 106Hz, the total transmit power is P = 32mw, and

the noise power density is 1.0 × 10−8. Figure 4 shows the
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results of the PAPR CCDF with unequal transmission power

allocation strategies given in Figure 3(b), where 16-QAM is

used to modulate the kth subcarrier when its power allocation

is larger than or equal to E4
i , and the QPSK is selected

to modulate the kth subcarrier when its transmission power

allocation is less than E4
i but large than or equal to E2

i . If

there is no transmission power allocated to subcarrier, there is

no modulation selected to subcarrier. Moreover, we have con-

ducted some simulations with the amount of total transmission

power of 10P and 100P , respectively, but the proportion of

the transmission power allocated to each subcarrier is the same

as that of Figure 3(b) and the corresponding results also have

been shown in Figure 4. From Figure 4, we find that: (1)

It is evident that the proposed approximation of (20) agrees

well with the simulation results; (2) When the amount of the

total transmission power allocation is different for a given

channel state information, the distribution of the PAPR CCDF
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Fig. 5. Comparisons of different PAPR CCDF theoretical and simulated

results in OFDM system with unequal power allocation strategies but the

same total transmission power (N=256).

is still different although the percentage of the transmission

power allocated to each subcarrier is constant. Therefore, we

can provide the desirable PAPR CCDF by varying the total

transmission power in OFDM systems with unequal power

allocation strategies.

Moreover, when the total transmission power is the same

but the percentage of the transmission power allocated to each

subcarrier is different in OFDM systems, some results are

shown in Figure 5, where 16-QAM modulation and N =
256 are deployed. Obviously, the PAPR of the transmitted

symbols in OFDM system with the Rayleigh transmission

power allocation strategy is much better that of the Possion

transmission power allocation strategy, but it is less than that

of the Random transmission power allocation strategy.

V. APPLICATIONS OF THE PROPOSED PAPR CCDF

It is well known that all the transmitted OFDM signals are

input a high power amplifier (HPA), which is peak-power

limited, before being transmitted out in a practical OFDM

system. In other words, the sN (t) will be clipped if its power

is larger than the saturation point of the HPA.

As one of promising techniques, the SLM method takes

advantage of the fact that the PAPR of an OFDM signal is only

sensitive to phase shifts in the frequency-domain data since

its PAPR reduction is achieved by multiplying independent

phase sequences with the original data and determining the

PAPR of each phase sequence combination. The PAPR CCDF

of the OFDM signals with the SLM scheme is simple since M
time-domain signals are independent, where M is the number

of independent phase sequences. With the independence as-

sumption, the PAPR CCDF of OFDM signals using the SLM

technique with unequal transmission power allocated to each
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Fig. 6. Comparisons of different PAPR CCDF theoretical and simulated

results in OFDM system with unequal power allocation strategy and SLM

technique (M=4).
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Fig. 7. Results of the proposed PAPR CCDF for 802.11a and DAB-I

standards, respectively, using SLM technique (M = 1, 2, 4, 8, respectively).

subcarrier can be approximated as

Prob{PAPR > γ} ∼=⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − exp

⎡
⎢⎢⎢⎢⎣−e−γ

√√√√√√√√
πγ

N−1∑
k=0

(2k + 1 − N)2Pk

N−1∑
k=0

Pk

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

M

.
(22)

Figure 6 compares different PAPR CCDF theoretical and

simulated results in OFDM system with SLM technique and

random allocation of transmission power, where 105 indepen-

dent OFDM symbols are randomly generated with an over-

sampling factor equaling 4, QPSK modulation, N = 64 and

N = 1024, respectively. As shown in Figure 6, it is clear

that SLM technique can achieve substantial PAPR reduction.

Moreover, it is remarkable that the theoretical approximation

of (22) has a good match with the simulation results, especially
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when N is large (N > 64), although the assumption is not

strictly valid because all M of the generated signals have

the original frequency-domain data in common. Therefore, we

could design some parameters such as M and transmission

power allocation strategy when the SLM technique is em-

ployed in OFDM systems, which is based on the phenomenon

of Figure 6. For example, the proposed PAPR CCDF could be

applied to 802.11a WLAN and DAB-I standards as shown in

Figure 7. For 802.11a WLAN standard, out of all 64 narrow-

band subcarriers, only 52 subcarriers are used for data and

pilots and the rest 12 subcarriers are null, and thus only these

52 subcarriers are allocated to transmission power randomly

and no transmission power is allocated to the left subcarriers.

Therefore, for 802.11a WLAN standard, we directly design

M = 8 from Figure 7 to ensure that the probability-of-clipping

level of the HPA is less than 10−4 when the saturation point

of the HPA is about 8.0dB. Similarly, it cannot ensure that the

same system performance could be achieved when the same

M is directly used, if the same HPA is employed in DAB-I

system, which is obvious to find from Figure 7.

VI. CONCLUSIONS

In this paper, we derived out a general CCDF expression

of the PAPR in OFDM systems with unequal transmission

power allocation strategy, which is based on the extreme value

theory. Extensive computer simulations were conducted to

illustrate that the derived expression of the PAPR distribu-

tion has a satisfactory accuracy in general and has a good

match with the simulation results regardless of the number

of subcarriers. The proposed CCDF expression of the PAPR

in OFDM systems depends on the number of subcarriers, the

distribution of the power allocation to each subcarrier and the

total of transmission power. The proposed CCDF expression

of PAPR is helpful to provide useful insight for the design of

OFDM systems and some examples of application deploying

the derived CCDF distribution of the PAPR was illustrated to

design the SLM technique to achieve a desirable level of the

system performance.
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