
1

An Enhanced Bridged-Based Multi-hop Wireless

Network Implementation
Stefano Maurina, John Fitzpatrick, Laurentiu Trifan and Liam Murphy

Performance Engineering Lab,

School of Computer Science and Informatics,

University College Dublin,

Dublin, Ireland.

Email: stefano.maurina@gmail.com

Abstract—In this paper an enhanced Layer-2 multi-hop wire-
less network implementation for Infrastructure based Wireless
Mesh Networks is presented. This work combines the flexibility
of Layer-2 Wireless Bridging with the dynamic self-configuring
capabilities of MANET routing. The main contribution of this
paper is an investigation of the issues encountered when applying
a pure bridging based solution to wireless multi-hop networks
and the development of several mechanisms to overcome these
problems. This work was implemented and deployed in a real
testbed environment using Routerboard hardware and utilising
a number of open-source network tools in accordance with
the needs of our platform. The developed testbed incorporates
self-healing and self-configuration features without requiring a
traditional MANET routing protocol. Instead the 802.11 beacon
frames sent by the Access Points were extended with link
information to allow optimal construction of the mesh topology.
Results are presented which demonstrate the automated topology
construction mechanism. Further results also show the enhance-
ments made to the normal 802.11 Layer-2 mobility mechanism.

Index Terms—Multi-hop Wireless Networks, Wireless Distribu-
tion System (WDS), Layer-2 Wireless Bridging, MANET routing,
Beacon, Handover

I. INTRODUCTION

W IRELESS Mesh Networks are gaining increasing at-

tention as a low cost approach for providing wireless

Internet access in a similar fashion to IEEE 802.11 based

Access Points (APs). However, unlike traditional wireless APs,

Wireless Mesh Networks (WMNs) allows wireless network

coverage to be extended without requiring the installation of

expensive cabling. Although a significant amount of work

has been done in the WMN domain, much of the research

has been based upon simulation models. Although these can

provide a good basis for the development of new algorithms

and mechanisms, it is essential that an understanding of the

issues relating to the development and implementation of real

WMNs is gained.

There are primarily two approaches for building a WMN

[1]. The first is based on IP routing while the second on

Wireless Bridging. IP routing based WMNs utilise Mobile Ad

Hoc Network (MANET) routing protocols. There are two main

types of MANET routing protocols, reactive and proactive

approaches. A lot of work has been carried out in this area

with the two most successful solutions being Ad hoc On-

Demand Distance Vector Routing (AODV) [2] and Optimized

Link State Routing Protocol (OLSR) [3].

These protocols are implemented as routing daemons that

run on top of Layer-3 (IP layer) and packets are routed

toward the destination solely based on their IP address. The

disadvantage is that other Layer-3 protocols, such as DHCP,

cannot be used or they need a different, tailored version of the

MANET protocol, like AODV6 [4] for IPv6. However, the

main advantage of these approaches is that the connectivity

of the nodes and the topology of the network are constantly

monitored and routes are determined dynamically. MANET

protocols are therefore robust to changes in the network, self-

configuring and self-healing.

The Wireless Bridging based solutions use the Wireless

Distribution System (WDS) [5] which provides forwarding

functionality for extending the range of a wireless network by

allowing APs to act as repeaters. WDS is the Layer-2 bridging

alternative to routing and a WMN can be built simply by using

bridging. However, this solution comes with pros and cons.

A. Wireless Bridging Pros

The forwarding performed at Layer-2 offers great flexibility

since packets are routed according to the destination MAC

address regardless of the upper layer protocol. This means

that it is transparent to higher layer protocols, such as DHCP

and IPv6, and software can be used without any modification.

The implementation of such solutions is easier since it just

requires the set up of each AP to support the 4-addressing

scheme format (WDS).

Furthermore, since frames are bridged at Layer-2 there is

no special mechanisms required to develop in order to get

basic mobility support. Other advantages are that it eliminates

the overhead introduced by a routing protocol, the computa-

tional requirement on an embedded system and the impact of

periodic link-quality metric updates which have to cope with

unreliable wireless links.

B. Wireless Bridging Cons

However, since WDS bridging is usually static, with the

neighbour APs’ MAC addresses entered manually in each AP,

the dynamic self-configuration advantages of MANET proto-

cols are lost. Also, when using only one interface, all the APs

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

2

have to communicate in the same wireless channel causing

interference and contention issues with obvious performances

degradation. Furthermore, the standard AP-to-AP WDS format

requires that all of the wireless cards in the backbone operate

in AP mode. This means that a lot of overhead is generated

by IEEE 802.11 Management frames.

WDS also inherits many of the limitations of bridging.

Bridges use broadcast mechanisms until they learn a route to a

host and in the case of a broadcast protocol, such as ARP and

DHCP, the network is always being flooded. For this reason

they are slow to converge and do not scale well. It is also

worth noting that in a Layer-2 solution clients are no longer

transparent to the Mesh Nodes (MNs) since an end-user is not

known to a bridge until the client sends a packet to it.

Finally, the AP-to-AP topology implies that all APs within

the same radio range connect with one another. As a conse-

quence the mesh network obtained is highly likely to incorpo-

rate loops. This would not be a problem if a routing protocol

was being used but bridges cannot be used in loop topologies

unless Spanning Tree Protocol (STP) is used. However, STP

leads to a loop-free topology by disabling some ports and

enabling others according to its own algorithm and link costs

without considering any link quality metrics which would be

more suitable to the wireless medium.

The remainder of the paper is structured as follows; Section

II presents a brief overview of related work. Section III intro-

duces the main aspects of the proposed solution and provides

a detailed description of the implementation. In Section IV

an evaluation of the obtained results is presented. Finally, the

paper is concluded in Section V.

II. RELATED WORK

Layer-3 routing based Mesh Networks - Nowadays, most

WMN implementations are experimental and run by govern-

ment agencies, non-profit organizations, municipalities, and

research institutions. Most of these implementations are based

on open-source technologies and make use of a Layer-3

MANET routing protocol. An example of these experimental

trials is the Freifunk Project [6]. Packets are routed based

on their destination IP address using OLSR. The protocol

is implemented as a routing daemon that operates on top of

Layer-3.

Layer-2 routing based Mesh Networks - Ad-hoc Wireless

Distribution Service (AWDS) [1] is an implementation of the

OLSR routing protocol operating at Layer-2. It is implemented

as a Unix/Linux daemon and operates completely in user

space. For communicating with applications, the AWDS dae-

mon creates a virtual ethernet interface. All packets sent to

the virtual interface are received by the AWDS daemon and

routed to other stations according to the MAC address of the

wireless network card. Bridging can be used for integrating

this wireless network into an existing Infrastructure.

Layer-2 bridging based Mesh Networks - These type of

WMNs use the wireless bridging capabilities offered by WDS.

WDS is standardized by IEEE-802.11 and is implemented by

many manufacturers [7], [8]. Nevertheless, different products

are rarely compatible with each other since some parts of

the standard are not fully specified. The main purpose of

WDS is to provide wireless multi-hop extension to the wired

Distribution System (DS) allowing APs to act as wireless

repeaters. WDS allows packets to pass from one wireless

interface to another (on a different MN), just as if the wireless

devices were ports on a wired ethernet switch.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The solution developed in this work was done with a focus

of providing end-user clients with the ability to connect to a

wired network (in particular the Internet) and not to provide

intra-mesh communication in which clients can communicate

directly with each other. As a consequence all traffic flows

are aggregated and forwarded either to or from the Gateway

(GW) node. Based on this assumption several features and en-

hancements were developed to overcome the issues normally

encountered when applying a pure bridging based solution to

wireless multi-hop networks (cf. Section I-B).

A. Wireless Bridging Enhancement Solutions

It was therefore decided to use WDS over Infrastructure

mode (AP-STA communication). This choice was taken for

three main reasons. Firstly, in standard AP-to-AP mode, WDS

bridging is static with the neighbour APs’ MAC addresses

entered manually in each AP. When using WDS over In-

frastructure mode an interface operating in STA mode can

connect dynamically to an AP without the need to know

their respective MAC addresses but is still capable of using

the 4-address format (WDS). Secondly, the use of some

interfaces operating in STA mode instead of AP mode leads

to a reduction in the overhead generated by IEEE 802.11

Management frames. Finally, the use of Infrastructure mode

allows for the automatic construction of a loop-free topology.

This eliminates the requirement of having to use STP to

prevent loops which would interfere with our chosen link

quality metrics for optimal route computation.

Unlike a router, a bridge does not limit the scope of a

broadcast message. This results in uncontrolled flooding which

would prevent the mesh network from scaling up to cover

larger geographical areas. Based on the previous assumptions

it is sufficient for end-users to only have the capability to

communicate with the GW. Only DHCP discovery and ARP

request messages need to be supported for this purpose while

all other broadcast messages can be dropped. Besides, since

these two message types are always directed to the GW, as

soon as they are received by the Mesh Bridge (MB) to which

the client is attached, a MAC Destination NAT (DNAT) is

performed which changes the broadcast address to the MAC

address of the GW and are then unicast forwarded to the GW.

As frames are bridged at Layer-2, there is no special behav-

ior to develop in order to have some basic mobility support.

Nevertheless, since an end-user is not known to a bridge

until the client sends a packet to it, client-transparency is not

guaranteed and there will be a re-bridging delay following the

association to the new AP. To reduce this latency an ARP-

Proxy and a re-bridging mechanism were developed.

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

3

One of the key aspects of WMNs are the link-quality metrics

used for the selection of the best routes. These metrics are usu-

ally computed using periodic messages exchanged by a routing

protocol. In this work the normal 802.11 beacon frames sent

by an AP are enhanced to allow for the computation of a link

metric without the need for signalling from a routing protocol.

Furthermore, since the focus of this work is on providing

fixed wireless coverage, the MNs are static and therefore the

routes are not very dynamic unlike what can be expected in a

MANET.

In order to increase the network capacity and minimise

interference each MN is equipped with multiple 802.11 radios.

Specifically, one in 11g mode to provide connectivity to end-

users and two in 11a mode to provide intra-mesh communica-

tion between the MNs. By utilising multiple 802.11 radios in

each mesh node, our approach offers higher levels of capacity

and redundancy than existing single radio solutions.

A mesh-daemon was also developed to provide automated

self-configuration similar to that provided by a MANET

routing protocol. The self-healing capability is provided by

the daemon ifplugd [9], which is configured to trigger an

immediate response from the mesh-daemon upon connec-

tion/deconnection of a link.

B. Overview of the Multi-hop Wireless Network

An example of the multi-hop network architecture is shown

in Figure 1. As can be seen the Mesh Portal (MP) and

MBs form a multi-hop wireless backbone; the MNs are static

nodes which act as relays for the mobile clients. Each MN

is equipped with three IEEE 802.11 Network Interface Cards

(NICs), one of which operates in 11g/b Infrastructure mode

and provides an AP connection to end-users. The other two

antennas on each MN are used for interconnection with other

MNs, this allows for the building of the multi-hop wireless

backbone. In order to mitigate interference with the clients

these two radios operate in the 11a frequency band.

Fig. 1. Overview of our Mesh Network Topology.

C. Overview of Mesh Nodes

All the MNs in our testbed have both the same hardware

and software. Each has an ethernet port and three wireless

interfaces; the wireless interfaces are bridged with each other

and are used for interconnection among the MNs and to

provide access to the mesh to end-users.

The Ethernet interface of certain nodes is used to connect

the mesh network to an external wired network. Based upon

whether or not a MN has a wired connection to an external

network it will play a different role in the network; it will

behave as either a MP or a MB.

1) MeshPortal (MP): A MP is a MN which has a direct

access to a wired network through the ethernet port; the main

purpose of which is to route traffic between the mesh and

external network. Essentially, a MP is a MN which acts as

both a bridge and a router where the routed interfaces are

the eth0 ethernet port and the bridge logical device br0. The

wireless interfaces are enslaved to the bridge (br0) and allow

connections with the other MNs.

In a MP the wireless interfaces are configured as in Table

I. AP(users) acts as a normal AP in mode 11g/b for the

connection of the end-users, while APs(mesh) are APs in mode

11a supporting the 4 addressing scheme (WDS) which are

used to extend the MeshBackbone. These wireless interfaces

are enslaved to the same Linux-based bridge br0. Furthermore,

a MP runs a DHCP server to assign the IP addresses to the

clients connected to the MeshBackbone and a NAT to share

the connection among them.

2) MeshBridge (MB): A MB is a MN which does not have

any wired connectivity, rather it obtains access to external

networks by connecting wirelessly to other MNs (both MP

or other MBs). It is the wireless interconnection between all

the MNs that builds the multi-hop wireless network backhaul.

Each MB acts as a relay station to forward the traffic from

clients and other MBs to and from the MP. As it happens on

a MP the three wireless interfaces are enslaved to the same

Linux-based bridge br0.

In a MB the wireless interfaces are configured as in Table

I. AP(users) is an 11b/g AP in the 2.4Ghz band used for

connection of the end-users, Client(mesh) is an interface

operating in station mode in the 5Ghz band and supporting

the 4 addressing scheme WDS; it is used for connecting to an

AP(mesh) on another MN. AP(mesh) is an 11a AP operating

in the 5Ghz band and is used to extend the MeshBackbone by

allowing other MNs to connect.

TABLE I
WIRELESS INTERFACES CONFIGURATION

MeshNode ATH0 ATH1 ATH2

MP AP (users) AP (mesh) AP (mesh)
MB AP (users) AP (mesh) Client (mesh)

D. Testbed Architecture

In this section we introduce the main hardware and software

components utilised to build our solution.

1) MN Hardware: The hardware in each MN is based upon

a MikroTik RouterBOARD 532A [10]. This device comes with

a MIPS32 little-endian based 400MHz embedded processor,

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

4

64MB of onboard DDR memory, two MiniPCI slots, a Com-

pactFlash interface and three Fast Ethernet ports. Since we

need three wireless interfaces we extended the main board by

using the RouterBOARD 502 daughterboard. This attaches to

the main board of the RB532A adding two more MiniPCI slots.

The wireless interface cards used are MikroTik R52 802.11abg

miniPCI cards. These cards are based on the Atheros AR5414

chipset and operate in both the 2.312-2.499GHz and 4.920-

6.100GHz frequency ranges.

2) Software:

a) Kernel-land: The Operating System (OS) used for the

MNs is a Debian Linux [11] distribution with kernel version

2.6.21. The standard kernel [12] required several patches

to function correctly on the MN hardware being used. The

patched OS is installed and run on a 1 Gigabyte Compact

Flash Card.

The open-source MadWifi driver [13] was chosen to drive

our Atheros-based wireless cards. As with the OS, the original

driver required several patches to add new features which are

described next in this paper.

The Layer-2 firewall ebtables [14] has been used and

extended with new modules to implement the main features

of our mesh network solution.

ebtables and the patched Madwifi driver are the two main

components that allow us to overcome the issues of a pure

bridging based Layer-2 solution.

b) User-space: The main component developed in user-

space is a mesh-daemon written in python. This daemon

controls and coordinates the mesh-related kernel modules and

user-space tools which have been developed to realise the

proposed mesh network solution.

One of the main tasks of the mesh-daemon is the signal

handling mechanism which enable a MN to quickly react

to the connection or disconnection of a wireless interface.

Indeed the mesh-daemon updates the MN state every two

minutes. Nevertheless this is not often enough to react quickly

to a change in the connection of a wireless interface. For

this reason the Client(mesh) interface is monitored using the

tool ifplugd [9]. ifplugd is primarily used to automatically

configure an ethernet device when a cable is attached, and

to automatically reset it if the cable is unplugged. Fortunately

it also offers support for wireless interfaces and using link beat

detection APIs is able to perform carrier detection.

E. Beacon Enhancement & Propogation for Automatic Topol-

ogy Construction

Beacon frames are part of the Management frames defined

by the IEEE 802.11 standard. Management frames present

the same MAC header regardless of their subtype while the

specific information of each subtype is usually carried in the

Frame Body (cf. Figure 2).

Two types of fields are defined in a Frame Body: fixed-

length fields appropriately called fixed fields and variable-

length fields named information elements [15]. Information

elements are encoded as a Type-Length-Value (TLV); they

offer great flexibility since new fields can be defined without

compromising the compatibility with older implementations

which can easily skip these new elements.

The Madwifi driver is patched to add a new information

element (mesh beacon) to the Frame Body of the beacon

frames. This modification applies to the APs(mesh) and allows

to carry additional information on the backbone network. This

information is used by the Client(mesh) interface during the

connection process to decide which of the available AP(mesh)

interfaces it should associate with.

A new structure has been added to the original 802.11

beacon frame structure which contains four fields. These are,

a gateway identifier, the number of hops to the gateway, the

number of clients connected along the path to the gateway and

the number of clients connected locally (cf. Figure 2). In the

current implementation only the first two of these fields are

used for selecting a backbone access point to associate with

(cf. Section III-F1). At the receiving node of a modified beacon

frame, the mesh beacon information is obtained by the user-

space mesh-daemon. The communication between this user-

space daemon and the kernel-land madwifi driver is carried out

through the sysctl(/proc/sys directory) interface. This interface

allows user space applications to read and write the kernel

variables exported by sysctl.

Fig. 2. Modified Beacon frame.

Upon scanning the network with the Client(mesh) interface,

a MB chooses the best AP(mesh) to connect to according

to the metric described in Section III-F1. Once the MB has

associated with the AP(mesh) it must also begin broadcasting

a modified beacon frame to allow other mesh nodes to connect

to it thereby extending the network. Prior to broadcasting

the beacon frames the MB first updates the mesh beacon

variables, for example it must increment the hop count by

one.

F. Layer-2 Wireless Bridging

In this section we describe the main components of our

Layer-2 Wireless Bridging solution.

1) Routing Metric for Implementation: The information

carried in the beacon extension is used to compute the routing

metric. During the bootstrap process a MB scans using a

Client(mesh) interface for APs(mesh) to connect to. The AP

connection decision is based on both the number of hops

to the gateway and the Signal to Noise Ratio (SNR) of

the APs(mesh). Furthermore, an SNR threshold has been

introduced to prevent the MB from connecting to an AP which

is closer to the GW in terms of number of hops, but presents

a very low SNR. The AP(mesh) with the minimum number of

hops and an SNR greater than the threshold is chosen. In the

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

5

case where there is more than one AP with the same minimum

number of hops, the one with the highest SNR is selected. If

none of the available APs exceeds the SNR threshold then the

threshold value is reduced and the decision process is repeated.

2) Linux Bridging: In order to bridge together the wireless

interfaces of each MN, the bridge functionality of the Linux

kernel is used [16]. The Linux bridge code implements a

subset of the ANSI/IEEE 802.1d standard.

brctl is the user-space utility to configure a Linux bridge.

brctl allows to create a bridge device, enslave NICs to it, and

configure the bridge parameters. To talk to the kernel brctl

uses the ioctl interface for a subset of commands and sysfs

interface for the others.

There are two main differences between a Linux bridge and

a pure hardware switch. The first is the capability of a Linux

bridge to filter and shape traffic using Ethernet Bridge Tables

(ebtables); the ebtables program is a filtering tool for Linux

bridge based firewalls. The second is the ability to assign an IP

address to the virtual interface formed by the bridge. All NICs

in the bridge can listen and respond to datagrams destined to

this IP. This is the only exception to transparency and is useful

for the remote management of the bridge.

3) Ebtables based Firewall: ebtables is a framework that

allows filtering and mangling of ethernet frames at Layer-2 on

a Linux bridge. Combined with the brctl tool it allows an OSI

Layer-2 bridge firewall to be built. It also provides some basic

IP filtering possibilities. Therefore, ebtables provides extra

capabilities that are not available using Netfilter; specifically

the bridge firewalling that iptables cannot provide. Indeed,

iptables and ebtables can be seen as complementary and can

be used in parallel [17].

The ebtables user-space tool is used to set up the ebtables

rules in the kernel. All traffic entering or leaving on a bridge

port will be seen by the rules. The ebtables syntax and usage

are very similar to the iptables ones. Ebtables (cf. Figure 3)

provides three tables: broute, nat and filter. Each of these

tables have their own chains which are attached onto the hooks

of the Linux bridge. In fact, the bridging code defines six

hooks where ebtables can attach itself to process the frames

going through the bridged interfaces. Given its flexibility

and modularity, ebtables is extensively used in this work.

In particular it is involved in the main aspects concerning

scalability and mobility.

4) MadWiFi WDS: Both AP(mesh) and Client(mesh) in-

terfaces use the 802.11 4-address fields format known as

WDS [5]. Table II shows the relation between network

mode, To/FromDS fields and MAC addresses. The ToDS and

FromDS bits indicate whether or not a frame is destined for the

distribution system. They are part of the Frame Control field

of a 802.11 frame and determine the type of network deployed

and indirectly the number and function of the address fields.

In the standard Infrastructure mode three address fields are

enough since receiver (AP to User) or transmitter (User to AP)

correspond respectively with destination and source. However,

three addresses are not enough when an 802.11 device is acting

as a wireless bridge. In this case the source and destination

are different from transmitter and receiver of the frame on the

wireless medium, hence four addresses are needed. WDS is

Fig. 3. Ebtables’ tables and chains traversal process and interactions.

TABLE II
TO/FROM DS AND ADDRESS FIELD CONTENTS

Mode ToDS FromDS
No. of

Address Address 1 Address 2 Address 3 Address 4

Ad-hoc 0 0 3 RA=DA TA=SA BSSID N/A

Infrastructure
(AP to User)

0 1 3 RA=DA TA=BSSID SA N/A

Infrastructure
(User to AP)

1 0 3 RA=BSSID TA=SA DA N/A

4 Addresses
(WDS)

1 1 4 RA TA DA SA

the mechanism that allows 802.11 frames with 4 addresses

to be used. WDS allows packets to pass from one wireless

interface to another, just as if the wireless devices were ports

on a wired ethernet switch. As with all other data frames,

WDS frames use the first address for the receiver of the

frame and the second address for the transmitter. These two

addresses are used for acknowledgments and control traffic,

such as RTS, CTS, and ACK frames. The other two address

fields are necessary to indicate the source and destination of

the frame and to distinguish them from the addresses used

on the wireless link. It’s main application is to transparently

bridge remote networks via a wireless link. Nevertheless, the

applications envisaged by the use of this format are not defined

or described in detail by the IEEE 802.11 standard [5].

Within our deployment we use WDS on the backbone’s

interfaces for two main reasons. Firstly, it is required in order

to deploy a transparent bridged multi-hop wireless network.

The Linux-based bridge is used to bridge together the in-

terfaces on the same MN, but to connect the different MNs

to each other in a transparent way over a wireless link, a

wireless bridge is needed. The second is related to the standard

limitation that makes it impossible for a wireless card in

station mode to work properly when enslaved to an ethernet

bridge, the reason being again the need for 4 addresses. The

WDS 4-address format overcome this limitation enabling an

Infrastructure mode station to operate when enslaved to an

ethernet bridge. Indeed we have to point out that while most

of WDS implementation provide interconnection among APs

[8], [7], the Madwifi WDS implementation offers also the

possibility to use WDS over the Infrastructure mode, thus

allowing the use of the 4-address format among an AP and

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

6

its associated client stations. This approach has been adopted

for example by Mikrotik to transparently bridge two remote

networks [18].

Figure 4 shows the interaction between the Linux bridge and

WDS. A packet directed to end-user EU2 is received by the

MP coming from the external network. After being processed

by Layer-3 routing, the packet is sent to the internal virtual

bridge interface and here it is forwarded out of the correct port

based on the bridge’s MAC table. In this example it would be

forwarded to AP2. Similar to an ethernet bridge, the driver on

AP2 keeps a table where each device’s MAC address that has

been discovered is associated to one of its WDS link partner.

In the above example the driver performs a look-up in

the WDS table for the MAC address of EU2. This lookup

will return the MAC address of the WDS peer interface Cl3,

operating in station mode. Once received by Cl3 the packet

is forwarded to the Linux bridge and the forwarding proceeds

in the same way as before. When the packet reaches the MN

which is the network point of attachment for EU2, it is trans-

mitted from the AP(user) interface using the Infrastructure 3-

address format. Notice that during the forwarding of the packet

from the MP to EU2, the source and destination addresses do

not change. On the other hand both the transmitter and receiver

addresses are specific to each wireless hop and therefore are

changed at each hop to the destination. This behavior is similar

to the relation between IP and MAC addresses in a routed

network.

Fig. 4. Linux Bridge and WDS interaction.

G. Mesh Network Topology

There are three basic network architectures for WMNs: flat/-

client WMNs, hierarchical/infrastructure WMNs, and hybrid

WMNs [19]. Our solution belongs to the Infrastructure type.

This architecture (cf. Figure 1) is characterized by static mesh

routers connected to each other and to a few gateway nodes.

The WMN routers form a multi-hop wireless access backbone

for the clients. This means that the backbone nodes do not

originate or terminate data traffic but they act as relay for the

client nodes.

1) How the network builds itself using the beacons: Since

the aim of the proposed solution is to offer wireless multi-

hop access to an external network, primarily the Internet,

the presence of a MP is necessary for building the backbone

network. When a MB first boots, it begins scanning for other

MNs using the Client(mesh) interface. Assuming it is not the

first node in the mesh network, then it is likely to detect several

AP(mesh) interfaces belonging either to other MBs or to the

MP within its radio coverage range. The MB then chooses

the best AP(mesh) to connect to according to what described

in Section III-F1. The connection to an AP(mesh) is detected

by ifplugd which will execute a configuration script. After

connecting to an AP(mesh), the MB begins to advertise both its

own AP(mesh) interface to extend the wireless backbone and

its AP(user) interface to allow end-users devices to connect.

The beacon advertisement contains an updated version of

the mesh beacon information which was received by the

Client(mesh) interface of the MB.

H. Mobility

In order to provide a good user experience when an end-user

moves from one MN to another, a fast handover mechanism

is required. Since in this work, frames are bridged at Layer-2

and all of the MNs belong to the same subnet, there is no

special behavior required to get a basic mobility support.

A Link-layer handover is composed of three phases, scan-

ning discovery, re-authentication and reassociation phase; the

first of which accounts for most of the delay [20], [21]. This

delay is mainly due to the behaviour of the end-user device and

cannot be improved without requiring changes to the device.

However in a bridged network there is another delay which

effects the handover latency. This re-bridging delay follows the

association to the new AP and is the time needed to update

both Linux bridge and WDS MAC tables along the path from

the new MB to which the user is connected to the MP.

While this delay can be negligible in a typical 802.11

Extended Service Set (ESS) deployment where the APs are

directly bridged to the switched DS, this is no longer the

case in a distributed multi-hop wireless network. Furthermore,

there is a difference in the delay between the upstream and

downstream traffic with re-bridging time in the latter case

likely to be much higher.

1) Upstream Traffic - ARP-Proxy: If the roaming end-user

is sending upstream traffic or receiving downstream traffic us-

ing a protocol which requires acknowledgements, such as TCP,

then the re-bridging along the path to the MP is performed

automatically as soon as the client sends traffic through the

new AP. However, during experimentation we noticed most

devices flush their ARP cache after a handover. Therefore they

need to send an ARP request to the default gateway and wait

for an ARP reply before transmitting data packets.

However, since the wireless network may be composed of

many nodes and may be heavily loaded, the ARP message

exchange can take quite a long time leading to service dis-

ruption. For this reason each MN implements an ARP-Proxy

mechanism which replies immediately to an ARP request from

a client on behalf of the MP. The ARP-Proxy mechanism

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

7

has been implemented by adding a rule in the PREROUTING

chain of the NAT table in ebtables.

2) Downstream Traffic - Re-bridging Mechanism: If the

roaming client was only receiving downstream traffic the re-

bridging delay will be significantly longer. The reason is that

the bridging tables will not be updated until the end-user

sends data toward the MP through the new MB. Even if the

ARP cache is flushed, the client will send an ARP request

only when it has to send traffic upstream toward the MP.

The downstream frames coming from the MP will still be

forwarded toward the old MB and will therefore be lost. To

insure a fast and deterministic update of the route to the MP

the address learning mechanism of a bridge is exploited.

A bridge associates a host’s MAC address with one of its

ports through a process called passive learning. The bridge

inspects the source MAC address of all incoming data frames

and builds the MAC forwarding table accordingly; WDS

works in a similar way. Therefore, since updating the path

toward the MP just requires to update the bridge and WDS

tables of the MNs along this route, it is enough to send a frame

with the MAC address of the roaming end-user as the source

MAC address. This must be done as soon as the end-user gets

connected to the AP(users) interface of a MN. This requires the

re-bridging mechanism to be hooked to the 802.11 Association

sequence. Since this process is handled by the wireless drivers,

modifications to the MadWifi sources were needed.

The re-bridging message is an Ethernet frame with the

source MAC address of the end-user and destination MAC

address of the MP. A unicast packet is sufficient and more

suitable to update the route between end-user and MP. Using

a unicast packet avoids flooding the network and increases the

probability that the re-bridging frame will be received since,

unlike a broadcast frame, a unicast frame requires acknowl-

edgement (802.11 ACK) and therefore will be retransmitted

in case of loss.

To further enhance the reliability of the re-bridging mech-

anism, priority is given to the re-bridging frame. This was

accomplished by modifying the queuing system in the kernel

sources. The standard FIFO policy would delay the trans-

mission of the re-bridging frame in case of high traffic with

consequent delay in the updating of the new route to the MP.

I. Scalability

Unlike a router, a bridge does not limit the scope of broad-

cast frames. Indeed, when a bridge receives a frame addressed

to the ethernet broadcast address (FF:FF:FF:FF:FF:FF) or to a

L2 multicast address, this is forwarded to every port except the

one from which it was received. This means that if an end-user

or a MN transmits a broadcast frame it will flood the entire

network producing obvious traffic load issues. In the case

of a relatively small mesh network consisting of only a few

nodes, this is not really a problem. However, this uncontrolled

flooding issue would become a problem if the mesh network

was scaled up to cover larger areas. Nevertheless we must still

support some protocols which make use of broadcast messages

such as ARP and DHCP.

The main aim of our mesh network is to provide Internet

access to the end-users and not to provide intra-mesh commu-

nication among them. Under this assumption it is sufficient

to provide end-users only with the ability to communicate

with the MP. Support for DHCP discovery and ARP request

messages is all that is required for this purpose and therefore

all other broadcast messages are dropped. Since these two

message types are always directed to the MP, as soon as

they are received by the MB to which the sending client is

attached, a MAC DNAT changes the broadcast MAC address

to the MAC address of the MP and they are unicast forwarded

to the MP.

Basically, the only message type transmitted in broadcast

over the mesh network is an ARP request from the MP looking

for the MAC address of an end-user or a MB. The MAC NAT

capabilities of ebtables were used to implement this behavior.

J. Topology Graph

In order to visualise the mesh network backbone, a topology

graph tool showing the real-time interconnection between the

MNs was developed. Given the distributed and dynamic nature

of a wireless multi-hop network, the usage of a tool to assess

the network topology of the testbed is essential.

An external topology server collects information which it

periodically receives from each MN in the network. This

information is processed so to get a complete view of the

current network topology which can then be displayed as a

runtime updating image.

IV. RESULTS

In this section we present results which demonstrate the

automated topology construction mechanism and the enhance-

ments made to the normal 802.11 Layer-2 mobility mecha-

nism.

A. Beacon Enhancement based Automated Configuration

A key aspect of WMNs is represented by their dynamic,

self-configuration and self-healing features which are usually

provided by a routing protocol. The drawback is the overhead

introduced by the routing protocol, the computational require-

ment on an embedded system and the variability impact of

periodic link-quality metric updates which have to cope with

unreliable wireless links.

Our solution offers a basic version of these features but

without the need for a routing protocol. In fact, since the

use case for the testbed developed in this work is for static

MNs, the routes are not likely to change unlike what can

be expected in a MANET. It allows for the automatic set-

up of a wireless mesh backbone without requiring any time-

consuming manual configuration. The beacon enhancement

incorporates a minimum-hop link metric without requiring

signalling from a routing protocol. To fully support the beacon

extension, the wlanconfig tool has been altered so that it

can display the additional information included in the beacon

frames (cf. Figure 5).

The self-healing feature is provided by the ifplugd daemon

that triggers an immediate response from the mesh-daemon

upon connection/deconnection updates. Another dynamic ele-

ment is the ability of each node to switch smoothly from a MP

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

8

to a MB configuration and viceversa. Finally, a basic channel

assignment mechanism is present on both MP and MBs to

reduce the presence of overlapping channels. Nevertheless, this

point needs further investigation and will be addressed in the

next development of the project.

Fig. 5. Modified beacon frames displayed by wlanconfig.

B. Mobility Performance

Several experiments were performed to assess the utility and

performance of the ARP-Proxy and re-bridging mechanisms.

A client connected to the wireless backbone performs a

handover between two MNs every 30 secs. Each test was run

for 1000 seconds for each scenario and with a varying number

of hops to the GW.

1) ARP-Proxy: For the ARP-Proxy tests the client transmits

an upstream UDP flow toward an external server at 2Mbps;

this traffic was generated using the iperf tool. A 5Mbps flow

of background UDP traffic was also transmitted on the path

from the MP to the client to increase the traffic load in the

network. The card being used flushes the ARP-cache at every

handoff. In Figure 6 we evaluate the time difference between

the ARP request delivery and the moment we start sending

actual data for a different number of hops, with and without

the ARP-Proxy mechanism.

Fig. 6. ARP reply delay with/without ARP-Proxy and different number of
hops.

With the introduction of the ARP-Proxy mechanism, the

ARP-Reply delay is quite constant regardless of the number

of hops. In this case, since each MN the client gets attached

to replies to an ARP request on behalf of the GW, the delay

is not correlated with the numbers of hops. When not using

the ARP-Proxy mechanism, the ARP-Reply delay increases

with the number of hops to the MP. This behavior is easily

explained with the greater number of MBs that ARP-Reply and

ARP-Request have to cross for each added hop. Furthermore

this trend is likely to be accentuated with the increase of the

traffic load in the network. Nevertheless the range of variation

of this delay is quite small, in the order of tens of millisecond

with a maximum of 15 ms for eight hops. This value is almost

negligible when compared with the handover latency that is

in the scale of hundreds of millisecond [20].

This small range of variation is reflected in the results of

Figure 7 where we observe almost the same Packet Loss Ratio

(PLR) with or without ARP-Proxy. Furthermore we can notice

that there is no direct correlation with the results of Figure 6,

according to which a higher PLR would be expected with

the increase in the number of hops when not using ARP-

Proxy mechanism. This is the confirmation that the ARP-

Reply latency is almost negligible and the handover latency

accounts for the most of the loss.

Fig. 7. Loss rate with/without ARP-Proxy and different number of hops.

2) Re-bridging: The re-bridging mechanism has been

tested using the same parameters as for the ARP-Proxy but

with the UDP flow in the opposite direction. Now the roaming

client is receiving the stream while performing a handover

every 30 secs. In Figure 8 the time difference between the

moment the client receives the Association Response follow-

ing a handover and the moment it starts receiving the data

packets is examined. We computed this delay only when the

re-bridging mechanism is used.

Indeed, when the re-bridging mechanism is disabled, the

data flow coming from the MP is still forwarded to the client’s

previous point of attachment at the old MB. In this case

the latency is not deterministic but rather it depends on the

moment the MP sends a broadcast ARP-Request to the end-

user. The ARP-Reply from the client will update the bridging

table of the MNs en route to the MP.

On the contrary, when using the re-bridging mechanism, as

soon as the end-user gets connected to the new MN, this sends

an ethernet frame to update the path to the GW. In this case

the delay is very short and increases slightly with the number

of hops to the MP.

In Figure 9 a comparison of the PLR with and without the

re-bridging mechanism is presented. As expected there is a big

difference in the PLR in the two cases. The results obtained

when the re-bridging mechanism is used are comparable with

those of Figure 7 where the handoff process latency accounts

for the most of the loss. On the contrary, when the re-

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

9

Fig. 8. Re-bridging delay with/without re-bridging mechanism and different
number of hops.

bridging mechanism is not used, the PLR increases up to the

order of 30%. Since the bridges are not aware of the client’s

switch until the end-user sends a packet from its new MN of

attachment, the client-transparency is not guaranteed and there

is a re-bridging delay following the association that is no more

negligible when compared to the handoff latency.

Fig. 9. Loss rate with/without re-bridging mechanism and different number
of hops.

Finally it is interesting to notice that in both Figure 7 and 9

the PLR is almost constant regardless of the number of hops to

the MP. This is mainly due to the adoption of multiple 802.11

radios working on non-overlapping channels that offer higher

levels of capacity and scalability than single radio solutions.

V. CONCLUSION AND FUTURE WORK

Wireless Mesh Networks are gaining increasing attention

as a low cost approach for providing wireless Internet access

in a similar fashion to IEEE 802.11 based APs. Although

a significant amount of work has been done in the WMN

domain, it is essential that an understanding of the issues

relating to the development and implementation of real WMNs

is gained. In this paper we presented an enhanced bridged-

based implementation solution intended for Infrastructure

based multi-hop wireless networks. The goal of our design

is to provide dynamic, self-configuration and self-healing

features without the need for a routing protocol. In this way the

flexibility of Layer-2 bridging mechanism and the self-healing

capabilities of a MANET routing protocol are combined.

The main issues related to applying a pure bridging based

solution to wireless multi-hop networks were investigated and

several features to overcome these problems were introduced.

Furthermore a detailed implementation description of the real

testbed was presented. Finally experimental results involving

measurements of the re-bridging latencies on Layer-2 handoff

times with the aim of assessing the utility of our mobility

improvement solutions were presented.

Future work will be to perform further experimental tests to

evaluate performance and overhead of the proposed solution

and compare them with results obtained using a pure AP-to-AP

WDS bridging solution and with MANET routing protocols.

In addition we are also working on the development of an

optimal channel assignment algorithm for wireless mesh nodes

equipped with multiple radios.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreement no. 214994.

REFERENCES

[1] A. Herms and G. Lukas. Awds (ad-hoc wireless distribution service).
[Online]. Available: http://awds.berlios.de/about.html

[2] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Proc. Second IEEE Workshop on Mobile Computing Systems

and Applications WMCSA ’99, Feb. 25–26, 1999, pp. 90–100.
[3] T. Clausen and P. Jacquet, “Optimized link state routing protocol

(olsr),” Published Online, IETF, RFC 3626, October 2003. [Online].
Available: http://rfc.net/rfc3626.txt

[4] C. E. Perkins and E. M. Royer, “Ad hoc On-Demand Distance Vector
(AODV) Routing for IP version 6,” IETF, Internet-Draft draft-perkins-
aodv6-01, Nov. 2000.

[5] D. Engwer. (2005, July) Wds clarifications. [Online]. Avail-
able: http://www.ieee802.org/1/files/public/802 architecture group/802-
11/4-address-format.doc

[6] Freifunk project. [Online]. Available: http://start.freifunk.net/
[7] 3COM. (2004) Configuring a wireless distribution

system (wds). Technical Brief. [Online]. Available:
http://www.3com.com/other/pdfs/products/en US/104108.pdf

[8] ORiNOCO. (2002, February) Wds (wireless distribution
system). Technical Bulletin (046/A). [Online]. Available:
http://www.proxim.com/support/techbulletins/TB-046.pdf

[9] ifplugd. [Online]. Available: http://0pointer.de/lennart/projects/ifplugd/
[10] Mikrotik routers and wireless. [Online]. Available:

http://www.mikrotik.com/
[11] Debian. [Online]. Available: http://www.debian.org/
[12] The linux kernel archives. [Online]. Available: http://www.kernel.org/
[13] The madwifi project. [Online]. Available: http://madwifi-project.org/
[14] ebtables. [Online]. Available: http://ebtables.sourceforge.net/
[15] M. S. Gast, 802.11 Wireless Networks. The Definitive Guide.

O’REILLY, 2005.
[16] U. Bohme. Linux bridge-stp-howto. [Online]. Available:

http://www.faqs.org/docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html
[17] C. Benvenuti, Understanding Linux Network Internals. O’REILLY,

2005.
[18] MikroTik. Transparently bridge two networks. [Online]. Available:

http://wiki.mikrotik.com/wiki/Transparently Bridge two Networks
[19] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a

survey,” Comput. Netw. ISDN Syst., vol. 47, no. 4, pp. 445–487, 2005.
[20] A. Mishra, M. Shin, and W. Arbaugh, “An empirical analysis of the ieee

802.11 mac layer handoff process,” SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 2, pp. 93–102, 2003.

[21] C.-S. Li, Y.-C. Tseng, and H.-C. Chao, “A neighbor caching mechanism
for handoff in ieee 802.11 wireless networks,” in Proc. International

Conference on Multimedia and Ubiquitous Engineering MUE ’07, Apr.
26–28, 2007, pp. 48–53.

Digital Object Identifier: 10.4108/ICST.WICON2010.8510

http://dx.doi.org/10.4108/ICST.WICON2010.8510

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

