
Implementation of Dynamic Channel Switching on IEEE
802.11-Based Wireless Mesh Networks

Gang Wu Sathyanarayana Singh Tzi-cker Chiueh

Stony Brook University

ABSTRACT
Interference makes it difficult for a wireless network to pro-
vide robust performance and could sometimes lead to tran-
sient failures. Dynamic channel switching (DCS) allows a
wireless network interface (NIC) to operate in different fre-
quency channels during different time periods without dis-
rupting network connections that traverse the NIC. DCS
enables a wireless mesh network to avoid frequency chan-
nels with serious interference in certain parts of its coverage
area by switching to more idle channels. Although DCS
provides additional radio agility, it significantly increases the
complexity of the wireless mesh network’s routing protocol.
This paper describes the design, implementation and eval-
uation of a wireless mesh network system called Carlsbad,
which supports both DCS and load-balancing/fault-tolerant
routing, and successfully runs on low-cost commodity IEEE
802.11-based access points. Performance experiments on the
first Carlsbad prototype show that despite the additional
overhead it introduces, DCS can indeed improve the overall
throughput of an IEEE 802.11-based wireless mesh network,
sometimes by a factor of more than 2, for both TCP and
UDP connections.

1. INTRODUCTION
Communication quality of wireless network links is heavily

dependent on various external factors such as physical ob-
ject geometry and radio signal interference. As a result, real-
world radio channel quality tends to exhibit small-scale and
large-scale temporal variation that is in general difficult to
model and predict. These temporal quality fluctuations can
be considered as transient failures because they oftentimes
lead to serious performance degradation. How to architect
wireless networks so that they can deliver robust perfor-
mance is thus an important issue, especially for enterprise-
grade wireless network deployment. This paper describes
the design and implementation of an adaptive channel as-
signment scheme called Dynamic Channel Switching(DCS)
on an IEEE 802.11-based wireless mesh network, and shows
that it indeed provides more robust performance in the pres-
ence of radio signal interferences, the major cause of wireless
link quality fluctuation.

DCS virtualizes a wireless network interface (NIC) by al-

WICON’08, Nov. 17-19, 2008, Maui, Hawaii, USA.
Copyright 2008 ICST 978-963-9799-36-3.

lowing it to operate in different frequency channels during
different time periods without disrupting network connec-
tions that traverse the NIC. DCS enables a wireless NIC
to physically interact with multiple wireless NICs each of
which operates in a different frequency channel. This ad-
ditional flexibility provided by DCS offers two distinct ad-
vantages. First, it greatly increases a WMN node’s effective
connectivity beyond the number of physical NICs it has and
thus potentially provides more room for optimization to the
routing protocol. Second and more importantly, DCS en-
ables each pair of interacting wireless NICs to communicate
over the least loaded channel, thus making the best use of
the allocated frequency spectrum.

There are several non-trivial challenges in implementing
DCS on a standard-based wireless network. First of all,
the performance overhead of switching an wireless NIC be-
tween channels must be sufficiently small to be practical.
Second, switching wireless NICs between channels requires
substantial changes to the routing and transport protocols
running on the wireless networks. Finally, a sophisticated
control mechanism, comparable in complexity to those used
in multi-channel wireless mesh networks [8], is needed for op-
timal channel assignment and channel time allocation. Be-
cause of space constraints, this paper focuses only on the
first two challenges in the context of WiFi-based wireless
mesh networks.

A wireless mesh network (WMN) consists of a set of nodes
each of which is equipped with one or multiple wireless NICs
and plays the roles of access point or intermediate router
or both. Typically a WMN is connected to the wired in-
ternet through one or multiple gateways, and most of the
packets traversing a WMN go through one of these gate-
ways. Because WMN nodes are most stationary, the rout-
ing protocol used in WMNs is more similar to those used
in wired networks than to those used in mobile ad hoc net-
works (MANET). More specifically, because the maximal
number of hops in real-world WMNs is bounded to a small
number (approximately 5), many WMN routing protocols
actually borrow heavily in design from the routing protocols
used in wired local-area networks, which are pre-dominantly
based on the concept of spanning tree, for example, IEEE
802.1D [1]. The WiFi-based WMN system described in this
paper, Carlsbad, is no exception.

When a WMN has multiple gateways, Carlsbad constructs
multiple spanning trees over the WMN, each rooted at a
distinct gateway, and ensures that each node in the WMN
be able to interact with the wired internet through one and
only one gateway. To balance the loads of the gateways,
Carlsbad associates WMN nodes with spanning trees in such
a way that the entire traffic load is approximately divided
among these gateways. To quickly recover from a link or
node failure (including gateway failure), Carlsbad assigns to
each WMN node a list of back-up parent nodes in addition to

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

the primary parent node. In general, a WMN node’s back-
up parent nodes may or may not be in the same spanning
tree as the WMN node, and they offer an alternative path for
the WMN node to reach the wired internet when its primary
path fails.

Unfortunately, because WMN routing algorithms that sup-
port both load balancing and fault tolerance rely heavily on
broadcasting and DCS prevents a WMN node from reaching
all its immediate neighbors using a single physical broadcast
frame, integrating DCS with these WMN routing algorithms
poses a major technical challenge. The major focus of this
paper is the design and implementation of the first known
single-radio IEEE 802.11-based WMN system that supports
both DCS and load-balancing & fault-tolerant routing. De-
spite the additional performance overhead due to periodic
channel switching, empirical measurements on the first op-
erational Carlsbad prototype show that the additional flexi-
bility of DCS can indeed improve a WMN’s throughput by
more than a factor of 2, because DCS allows the WMN to
switch to least loaded frequency channels in parts of its cov-
erage area with heavy interference. In addition, this proto-
type demonstrates that the channel switching latency can be
reduced to under 2 msec on commodity wireless LAN NICs
and that hop-by-hop TCP could effectively eliminate the ad-
verse impact of DCS’s increased latency on transport-layer
performance.

2. RELATED WORK
Several research efforts have attempted to leverage mul-

tiple NICs to support multi-channel networks. In [14] and
[13], the authors proposed to use a dedicated control channel
to assign channels to wireless NICs, and operate the NICs
accordingly. Draves et al. [10] assumed each NIC operates in
one channel throughout. and the number of NICs per node
is equal to the number of available channels. It proposed a
metric that considered the bandwidth and loss ratio of each
link to find a high-throughput path between a source and
a destination. Some proposals [8, 9, 16, 18] explored how
to best leverage a limited number of NICs on each node.
Raniwala et al. proposed both the centralized [9] and dis-
tributed [8] approaches to assign channel to each NIC and
balance the load among NICs. Carlsbad focused on reap-
ing the performance benefits of multiple radio channels on
a single NIC.

So et al.[12, 17] and Liu et al.[11] assumed that it is pos-
sible to apply channel switching on a packet-by-packet basis
and proposed techniques to find an optimal channel for each
packet transmission. The slotted seeded channel hopping
(SSCH) scheme [15] is a virtual MAC protocol on top of
IEEE 802.11 MAC. Each node is assigned a pseudo-random
channel hopping sequence which ensures any of two neigh-
boring nodes overlap periodically, and thus multiple com-
munications can take place at the same time but at differ-
ent channels. SSCH assumes the channel switching delay
is approximately 80 µs. In contrast, Carlsbad is built upon
commodity WLAN access points with considerable channel
switching overhead. Its channel switching frequency is lower
(i.e. once every 500 msec). So et al. [17] proposed a routing
protocol for multi-channel networks that each node has only
one interface, which is similar to our architecture. The pa-
per provides results based on their simulation. None of the
previous works on single-interface multi-channel produced
actual working systems, let alone systems that worked on
commodity IEEE 802.11 NICs. As a result, all the perfor-
mance results in the associated papers were based on simu-
lations, rather than empirical measurements collected on a
fully operational prototype working in a real testbed, as in
the case of Carlsbad.

Much research [3, 4, 5] has gone into on-demand rout-

Figure 1: An example of how Carlsbad performs dynamic chan-
nel switching to avoid the adverse performance impact due to in-
terference from neighboring wireless LANs, each of whose cover-
age is represented as an ellipse marked with its operating channel.

ing for mobile ad-hoc networks. In addition, there has been
much research [8, 9, 10, 16, 17, 18, 19] on throughput op-
timization techniques for multi-channels wireless mesh net-
works. They used such wireless link characteristics as link
quality, packet loss ratio, gateway load, local interference,
and the combination of the above to achieve load balance
and identify higher-throughput paths. Carlsbad assumes
that its wireless nodes do not move and takes a similar ap-
proach to routing algorithm design by tailoring it to span-
ning tree topologies.

Carlsbad’s spanning tree construction algorithm is similar
in design to the spanning tree protocol of IEEE 802.1D [1]
where in all the bridges and switches that are interconnected
run an algorithm to find a spanning tree rooted at the root
bridge. In [1], each switch or bridge is involved in peri-
odic advertisement message exchange for tree maintenance.
The major difference is that 802.1D does not support dy-
namic load balancing whereas Carlsbad does. In addition,
Carlsbad automates IP address assignment as well as rout-
ing tree construction. Finally, Carlsbad supports spanning
tree-based load-balancing and fault-tolerant routing under
dynamic channel switching, in which a node cannot always
directly communicate its neighbors using physical broadcast.

3. DYNAMIC CHANNEL SWITCHING

3.1 Architectural Overview
DCS allows a wireless NIC to connect to multiple wireless

NICs that operate in different frequency channels during
different time periods, a capability particularly useful for
WMNs whose nodes have a small number of wireless NICs.
Moreover, DCS allows a single-interface WMN to use dif-
ferent frequency channels at different parts of its coverage
area so as to avoid heavily interfered channels already used
by neighboring networks. For example, Figure 1 shows a
linear-topology WMN traversing through multiple WLANs,
each of whose coverage area is represented as an ellipse and
labeled with its corresponding operating channel. To min-
imize interference between this WMN and the background
WLANs, the radio channel time is divided into cycles, each
of which in turn consists of two slots, and each wireless NIC
operates in a distinct frequency channel during each of the
two time slots. Assuming the underlying wireless technology
is IEEE 802.11b, which has three non-overlapped channels
(Channel 1, 6 and 11), Node 3 communicates with Node 2
over Channel 6 because the background wireless LANs op-
erate in Channel 1 and 11; similarly Node 3 communicates
with Node 4 over Channel 11 because the background wire-
less LAN operates in Channel 1 and 6.

Dynamic channel switching entails the following four de-
sign issues. First, how is the radio channel time divided into
cycles and slots? Second, which frequency channel does each
wireless NIC operate during each channel time slot? Third,

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

Figure 2: Hop-by-hop clock synchronization mechanism in
Carlsbad . The Client’s time corresponds to the server’s clock
value corresponding to Tc2.

how do communicating nodes synchronize with each other
so that they can switch to the same channel at the right
time? Finally, how is DCS integrated with wireless routing
algorithms? Owing to lack of space, we will focus on the
last two issues, and make the following assumptions about
the first two issue:

• The radio channel time is divided into fixed-sized cy-
cles, each of which consists of two slots of equal length.

• There is a separate radio resource manager that is ca-
pable of discovering the load on each usable channel
in each local area, and informing the WMN nodes of
these per-channel load information.

Assume each WMN node is equipped with only one wire-
less NIC, and the WMN nodes are organized into one or
more spanning trees, each of which is rooted at a gateway
node connected to the wired internet. Under DCS, each
wireless NIC uses one of the two slots (called the parent slot)
to communicate with its parent, and the other slot (called
the children slot) to communicate with all of its children. A
parent slot is typically of the same size as its corresponding
children slot because Carlsbad assumes the aggregate traffic
volume on a node’s children links should be largely the same
as that on its parent link. If a WMN node itself can also
generate traffic, this assumption no longer holds, and the
parent slot probably should be larger than the sum of the
children slots because most traffic is to or from the wired
internet, rather than among WMN nodes.

3.2 Hop-by-hop Synchronization
Dynamic channel switching requires communicating nodes

to synchronize their clocks at millisecond-level accuracy so
that they can switch to the same channel at the same time.
NTP (Network Time Protocol) [2] is a standard protocol for
synchronizing clocks of Internet nodes. Unfortunately, NTP
requires approximately symmetric packet transmission de-
lay, which does not always hold on multi-hop wireless links,
especially when dynamic channel switching is enabled.

To minimize the impact of asymmetric packet transmis-
sion delay, Carlsbad adopts a hop-by-hop clock synchroniza-
tion protocol to allow each Carlsbad node to tightly syn-
chronize with its parent. Each Carlsbad node acts both as
a synchronization server servicing synchronization requests
from its children, and a synchronization client requesting to
synchronize its clock with its parent. More concretely, a
synchronization client records the current time Tc1, puts it
in the payload of a synchronization request, and sends this
request to the server, which immediately responds with two
more time stamp Ts1 and Ts2. Ts1 is the time at which the
server receives the client’s request, and Ts2 is the time im-
mediately before the response is sent. Upon receiving the
server’s response, the client records the fourth time stamp,

Tc2, and then immediately adjusts its clock using the for-
mula listed in Figure 2. The second term of the right-hand
side of the formula represents the propagation delay, which is
assumed to be the same for both transmitting and receiving
a packet.

To improve the accuracy of this hop-by-hop synchroniza-
tion scheme, these four time stamps are taken inside the
kernel right above the WLAN NIC driver. As a result, un-
certainties due to context switching and process scheduling
are eliminated. However, interrupt latency including inter-
rupt mask delay still cannot be separated out. Finally, a
Carlsbad node sends a synchronization request only when it
is in the same channel as its parent, and a synchronization
response is valid only when it is returned in the same chan-
nel time slot as the corresponding request. To enforce the
latter, a synchronization response that returns more than
2 msec later is ignored, because empirically the round-trip
time of a synchronization request is less than 2 msec.

3.3 Minimizing Channel Switching Latency
Although DCS provides frequency agility that could help

avoid heavily interfered channels, it incurs additional perfor-
mance overhead because a wireless NIC cannot send/receive
packets when it switches from one channel to another. How
to reduce the channel switching overhead to a level that
does not offset the performance gain from DCS’s ability to
minimize interference is a major implementation challenge.

An IEEE 802.11 WLAN interface can communicate with
peers in a multi-hop network in two modes: ad-hoc mode
and Wireless Distribution System (WDS) mode. When a
WLAN interface operates in the ad hoc mode, it always
invokes a channel scanning procedure whenever it switches
between channels. Because this channel scanning procedure
is meant to locate other ad hoc networks, it may scan all
available channels by sending out probe messages and wait-
ing for responses and therefore is very time-consuming. If a
node cannot find any other nodes, it forms its own ad-hoc
network. The ad-hoc mode is not appropriate for DCS
for the following two reasons. First, each channel switch-
ing incurs a delay of 400 to 500 milliseconds, which mainly
comes from transmission of probe messages and waiting for
their associated responses or time-outs. Second, an ad-hoc
network may be partitioned into different islands with dif-
ferent network IDs (BSSIDs), even though they may share
the same SSID. This is unacceptable for DCS.

The WDS mode in the IEEE 802.11 standard was origi-
nally designed to bridge traffic between two WLAN access
points over a wireless link. When a WLAN NIC operates
in the WDS mode, it does not need to scan channels when
switching from one channel to another. As a result, the
channel switching latency can be reduced to less than 2 mil-
lisecond. Because minimal channel switching latency is ab-
solutely essential, Carlsbad is designed to run only in the
WDS mode.

When two nodes communicate with each other in the
WDS mode, each creates a WDS interface for the other.
Multiple WDS interfaces, each being a pseudo interface,
could be bound to one physical interface. Each Carlsbad
node is configured to run in the lazy WDS mode, which al-
lows a node to automatically create a WDS interface for a
peer whenever it receive the first packet in the WDS format
from that peer. In addition, each Carlsbad node is configured
with a broadcast WDS interface, which is used to broadcast
messages. Nodes in the receiving range of a broadcast WDS
message automatically create a WDS interface for the broad-
cast message’s sender. In summary, on each Carlsbad node,
one WDS interface is created for each of its neighbor nodes.

3.4 Implementation Issues

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

We implement Carlsbad on a commodity WLAN access
point, Linksys WRT54G, which comes with a 200-MHz RISC
CPU, 32MB DRAM, 16MB flash memory, five 100-Mbps
Ethernet ports, one 802.11g WLAN port, and a generic se-
rial port or the Ethernet port. Moreover, WRT54G uses
a stripped-down version of Linux as the control firmware.
There are several third-party open-source Linux-based firmware
providers on WRT54G, such as OpenWrt[6] and Sveasoft[7].
As a result, we can customize WRT54G with our modifica-
tion either at the user level or the kernel level.

The implementation can be divided into two parts, switch-
ing the operating channel and queuing packets destined to
non-active WDS interfaces. Switching channel involve two
actions, switching the channel and then setting the access
point’s SSID. Both actions are implemented on top of the
wireless driver’s ioctl calls.

When a WMN node operates in the DCS mode, it can-
not always immediately forward packets received from one
neighbor to their next-hop neighbor because these two neigh-
bors may be reachable in different channel time slots, e.g.,
traffic from parent nodes to children nodes or vice versa.
Therefore, a Carlsbad node needs to buffer incoming pack-
ets and forward them only during the channel time slots in
which the corresponding next-hop neighbors are reachable.

The Linux kernel in WRT54G maintains a packet queue
for each WDS interface, which is a link list containing point-
ers to SK buffers that actually hold packets. To send a
packet over a WDS interface, the Linux kernel dequeues
a packet from the interface’s packet queue and inserts it
into the ring buffer of the WDS driver, which in turn is-
sues a DMA request to copy the packet into the WLAN
NIC, and releases the associated SK buffer after the DMA
is completed. To buffer packets destined to a WDS interface,
Carlsbad modifies the kernel function netif_queue_stopped()
to disable dequeuing packets from that interface’s kernel
queue. When a WDS interface is ready for transmission
because a Carlsbad node switches to its associated channel,
Carlsbad sends out all the packets in the interface’s queue by
calling netif_schedule() to re-enable dequeuing of packets
from the interface’s kernel queue.

Packets may be lost when two DCS nodes communicate
with each other but they are not active in the same channel
simultaneously. This arises for two reasons. First, the clocks
of two communicating DCS nodes are not perfectly synchro-
nized. Second, after a packet is copied to a WLAN NIC, it
may take a variable amount of time to get successfully trans-
mitted, owing to back-off delay and retransmission. Because
software has no control over a packet once it is copied to a
WLAN NIC, it is possible that a packet is copied to a NIC
before the end of a channel time slot and only gets transmit-
ted in the next channel time slot. Because channels assigned
to two adjacent time slots are different, this packet is trans-
mitted in the wrong channel and is thus lost.

To minimize packet losses due to these two reasons, Carls-
bad divides each channel time slot into three parts, as shown
in Figure 3: head margin, operating period, and tail mar-
gin. A Carlsbad node DMAs packets to its WLAN NIC only
during the operating period, but not during head and tail
margins. However, it receives packets in the entire channel
time slot. The head margin is meant to compensate for im-
perfect clock synchronization, whereas the tail margin is for
imperfect clock synchronization and variable physical packet
transmission delay.

4. SPANNING TREE-BASED ROUTING

4.1 Overview
Although DCS is particularly useful for single-interface

WMNs, the same frequency agility advantage also applies to

Figure 3: A channel time slot is divided into three parts, the
head margin, operating period, and tail margin, whose lengths
are empirically determined.

multi-interface WMNs. However, we focus only on single-
interface WMNs in this paper. In the following, we as-
sume a WMN in which every node is equipped with only
one IEEE 802.11-based wireless NIC, and one or more of
these nodes (called gateways) are directly connected to the
wired internet. Carlsbad supports two modes of operation:
single-channel mode, in which every NIC operates only in
one channel, and multi-channel mode, in which a NIC may
operate in different channels during different time periods.

Carlsbad chooses a spanning tree topology because most of
the traffic in a WMN is between WMN nodes and the wired
internet and there is not much peer-to-peer traffic within
the WMN. To build up these spanning trees in a distributed
fashion, after associating itself with a spanning tree, a Carls-
bad node periodically broadcasts an advertisement message
consisting of the following information:

• Routing metric: the estimated load going through the
current gateway with which the node is associated.

• Path information: the list of nodes on the path be-
tween the node and its gateway.

• Sequence number: a unique identifier for each adver-
tisement to avoid duplicated messages and to calculate
message loss ratio.

For a gateway node, it broadcasts an advertisement mes-
sage periodically after it boots up to recruit other non-
gateway nodes to join its tree. For a non-gateway node,
after boot-up, it keeps silent, waits for advertisement mes-
sages from all of its live neighbors, and builds a local neigh-
borhood map for those nodes that are reachable in one hop.
Each non-gateway node compares the routing metrics in the
received advertisement messages, and picks one of the neigh-
bors as its parent and sends a join request to the chosen
neighbor to be a member of the associated spanning tree. If
the join request is approved, the parent node acknowledges
the request, updates its local routing table, and informs its
ancestor nodes of the newly joined node; otherwise, the non-
gateway node tries to join the next best neighbor until it
exhausts all its neighbors.

Each Carlsbad node maintains a routing table entry for
each of its descendant nodes. For example, a gateway node
keeps a routing table entry for every node in its associated
spanning tree. However, a Carlsbad node does not need to
maintain routing table entries for its ancestor nodes. In-
stead, each Carlsbad node uses its parent as the default
router, that is, packets whose destination is not one of its
descendent nodes are simply forwarded to its parent node.
As a result, a Carlsbad node can reach its ancestors through
its default router, and its sibling nodes using a triangle route
via their common ancestor node.

When a node joins a spanning tree, its parent serves as
a DHCP proxy and requests for a new IP address from the
wired DHCP server on behalf of the newly joined node. For
gateway nodes, they acquire their IP addresses through the
standard DHCP protocol from the DHCP servers on the
wired subsets with which they are associated.

In summary, given a set of wireless nodes, Carlsbad’s single-
channel routing algorithm allows each node to obtain its

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

local physical connectivity information, acquire a unique IP
address, and participate in a routing spanning tree, all with-
out any human intervention.

4.2 Load Balance and Fault Tolerance
To maximize the utilization efficiency of precious radio

resources, it is essential that the loads on a WMN’s be bal-
anced. In addition, a WMN should be able to quickly re-
route traffic around failed links or nodes so as to maintain
robust network connectivity in the presence of failures. In
Carlsbad, each non-gateway node maintains a list of back-
up parents, which are its neighbors that are neither current
parent nor current descendants, and updates their routing
metrics when receiving advertisements from them. When a
Carlsbad node detects a back-up parent with a better rout-
ing metric, it brings itself and its descendents to join the new
parent and disconnects itself and its descendents from the
old parent. Then both the new parent node and old parent
node inform their ancestor nodes of this route change event,
and these ancestor nodes update their routing table entries
with respect to the Carlsbad node and its descendents. Be-
cause advertisements are sent out periodically, each Carlsbad
node is constantly comparing potential parents and choosing
the best one to associate itself with. Through this mecha-
nism, a Carlsbad WMN can continuously re-arrange itself to
balance the loads on the gateways.

To perform load-balancing routing, each Carlsbad node
maintains a windowed running average of the upstream and
downstream traffic load on the path to each of its parents,
and uses the following criterion: PathLoadCurrentParent −

LocalLoad > PathLoadPotentialParent + LocalLoad + α to
determine if switching from its current parent to a backup
parent will result in a more balanced load among the gate-
ways, where LocalLoad represents the node’s locally gener-
ated traffic load and α is an empirical parameter designed to
prevent route oscillation. In addition, to prevent all nodes
from switching their parents simultaneously, Carlsbad re-
quires each node that plans to switch parent to pick a ran-
dom back-off timer value, and to physically switch parent
only when the timer expires and the gateways’ loads are
still not balanced at that point.

To perform fault-tolerant routing, each Carlsbad node con-
stantly monitors the advertisements from its parent to de-
termine if it is unreachable because of a link or node failure.
Whenever a Carlsbad node, say N , detects that its parent is
unreachable, it quickly tries to associate itself and its descen-
dents with one of N ’s back-up parents. If N can successfully
associate itself and its descendents with one of the back-up
parents, it does not need to inform its descendents of the
failure. However, if none of the back-up parents are accessi-
ble, then N has to involve its children in failure recovery. In
particular, N will send a message to its children to trigger
their failure recovery logic, as if the link between N and its
children is dead. After this message, N ’s children will at-
tempt to connect with their back-up parents, and N itself
will enter the silent state to wait until a new parent candi-
date (most likely one of its former children) shows up. If
necessary, the same distributed failure recovery procedure is
applied recursively throughput the entire subtree under N ,
until either finding a link to other spanning trees or conclud-
ing that N ’s subtree is isolated from the rest of the WMN.

4.3 Integration with DCS
Under dynamic channel switching, a WMN node can no

longer assume that it can always receive advertisement mes-
sages from its immediate neighboring nodes, because a neigh-
bor node may use a different channel when broadcasting its
advertisement messages. To overcome this problem, Carls-
bad requires each WMN node to send its advertisement mes-

sages, which include the channel slot schedule and the chan-
nel used in each slot, to the root of its spanning tree, which
periodically generates an aggregate advertisement from per-
node advertisements and broadcasts it to all WMN nodes,
including those in other spanning trees. From each aggre-
gate advertisement message received, each Carlsbad node
can keep track of each neighbor’s status, including whether
it is alive, its associated path load to its root, its channel slot
schedule and the channels it uses. Given that each Carls-
bad node is able to keep track of the advertisements of its
neighbors through the aggregate advertisement mechanism,
it can now apply the same load-balancing and fault-tolerant
routing algorithm described previously, with one exception.
When a node A detects that its current parent is unreach-
able and tries to associate itself with a new parent node B,
it needs to take two additional steps (Here we assume each
cycle consists of a parent slot and a children slot, and the
children slot is not further subdivided.):

• Identify the channel time slot that B uses to communi-
cate with its child nodes, assign that channel time slot
as A’s parent slot, and adjust the channel time slots
and their channel assignments for A’s descendants re-
cursively.

• Set the channel of A’s parent slot to that of B’s children
slot and let A send a join request to B.

When a Carlsbad network starts, it starts in the single-
channel mode, and after the spanning trees stabilize, each
root issues a DCS mode switching command to request ev-
ery node under its tree to start running in the multi-channel
mode. This command is delivered reliably, and a parent
node won’t turn into the multi-channel node until it is sure
that all its child nodes have received this command. A root
node can also request its descendants to switch back to the
single-channel mode when a Carlsbad network encounters
concurrent failures and the network starts the reconfigura-
tion process.

In the non-DCS mode, a newly joining node keeps silent
and waits for advertisement messages from its immediate
neighbors. However, in the DCS mode, a newly joining node
actively scans each available channel to identify its physi-
cal neighbors and probes them. More concretely, whenever
a new node, say A, scans a channel, it broadcasts multiple
probe messages to check if any nodes operating in that chan-
nel; if a node, say B, receives a probe message from A, it
adds A into its local neighborhood map, and responds to A
with its latest advertisement message; When A receives B’s
response, it adds B to its local neighborhood map. A new
node stays in each scanned channel long enough (currently 3
seconds) to make sure its neighboring nodes have a chance to
receive and respond to its probe messages, and then moves
on to the next channel. After scanning all the channels, a
new node selects the neighbor with the best routing metric
as its parent. When a new Carlsbad node boots up, it starts
in the single-channel mode for a period of time to check if
the rest of the network is in the single-channel mode. If not,
the new node switches to the multi-channel mode and starts
channel scanning.

5. PERFORMANCE EVALUATION

5.1 Dynamic Channel Switching

5.1.1 Testbed Setup
The first Carlsbad prototype is implemented on a set of

commercial IEEE 802.11b wireless LAN access points, Linksys’s
WRT54G, which runs on Linux and costs about $40 USD
each. We used a simple wireless testbed shown in Figure 4

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

Figure 4: The wireless testbed used in this study consists of a
2-node background WLAN, an AP and a station, and a 3-node
2-hop linear network with nodes N1, N2, and N3.

to evaluate the effectiveness of the Carlsbad prototype’s dy-
namic channel switching mechanism. The testbed contains
a 3-node Carlsbad network (N1, N2 and N3) with a linear
topology and a 2-node background WLAN. Each linear net-
work node’s signal can only reach its immediate neighbor.
That is, N3 is a hidden node for N1. The background WLAN
consists of an AP and a station, and their radio signals can
reach N1 and N2, but not N3. All of them transmit pack-
ets at the physical rate of 11 Mbps. When sending traffic
on both networks, we used UDP packets with IP packet
size of 1500 bytes, set the contention window CWmin to 15
and CWmax to 1023, and transmitted them as IEEE 802.11
frames with long preamble and PLCP header. The channel
time slot size is set to 500 msecs by default unless specified
otherwise. We measured a network’s throughput based on
IP packet size without including IEEE 802.11 header.

5.1.2 Gain from Congested Channel Avoidance
We first measured the baseline throughput of the Carlsbad

network and the background WLAN when they are isolated
from each other and sent traffic at full speed over Channel
1. The results are shown in the isolated columns of the
non-DCS row of Table 1. The maximum throughputs of the
Carlsbad network and the WLAN are 3.37 Mbps and 6.72
Mbps, respectively. The Carlsbad network’s throughput is
about half of that of the WLAN because the former has
twice as many hops as the latter. Then we measured their
throughputs when both are active simultaneously: The AP
was pumping traffic to the station and N1 was transmitting
packets to N3 via N2 at full speed. The throughputs of
the Carlsbad network and WLAN are reduced to 2.09 Mbps
and 2.50 Mbps, respectively. In this test, there are three
senders in the same collision domain, N1, N2 and the AP.
The sum of the transmission rates of these three senders is
6.78 Mbps, which is almost the same as the isolated WLAN’s
throughput.

To understand how effectively dynamic channel switching
could mitigate the performance degradation due to inter-
ference, we performed two experiments. In the first exper-
iment, the Carlsbad network shared only one channel with
the WLAN: the link N1 – N2 used Channel 1 and the link N2

– N3 used Channel 11. In the second experiment, the Carls-
bad network did not share any channel with the WLAN: the
link N1 – N2 used Channel 6 and the link N2 – N3 used
Channel 11.

As shown in the Carlsbad/Isolated column of the DCS
rows, the isolated throughput of the Carlsbad network when
DCS is turned on is 3.08 Mbps, which is independent of the
number of shared channels and is about 93% of the theo-
retical optimum (3.31 Mbps), which is one half of a one-
hop WDS link’s measured throughput (6.62 Mbps) because
each WLAN NIC is half duplex and thus can either send
or receive but not both. The missing 7% results from the

Configuration
Carlsbad WLAN

ISOL SIMU ISOL SIMU
non-DCS 3.37 2.09 6.72 2.50

DCS (shared=1) 3.08 1.67 6.72 5.05
DCS (shared=0) 3.08 3.08 6.72 6.70

Table 1: The effectiveness of dynamic channel switching in
minimizing the interference between the Carlsbad network and
the background WLAN in the testbed. Both networks try to
send packets at full speed. ISOL and SIMU are abbreviations for
Isolated and Simultaneous, respectively. Throughput is measured
in Mbps.

channel switching overhead. The isolated throughput of the
background WLAN is unaffected by whether the Carlsbad
network turns on DCS or not.

When DCS was turned on and the Carlsbad network and
WLAN sent traffic simultaneously over one shared channel,
the throughput of the Carlsbad network is 1.67 Mbps and
that of the WLAN is 5.05 Mbps. The Carlsbad network’s
throughput decreases from 2.09 Mbps (non-DCS) to 1.67
Mbps because N1 only spends half of its time competing for
Channel 1’s resource and the other half being silent as N2

was transmitting packets to N3 over Channel 11. For the
same reason, the WLAN’s throughput increases from 2.50
Mbps (non-DCS) to 5.05 Mbps.

When DCS is turned on and the Carlsbad network and
WLAN do not share any channels, these two networks are
essentially isolated from each other. As a result, their ”si-
multaneous” throughputs (6.70 Mbps) are almost identical
to their isolated throughputs (6.72 Mbps). The combined
throughput of the two under DCS without channel sharing
is 2.35 times as high as that under non-DCS.

To quantify the impact of intra-channel interference, we
fixed the injected traffic rate of the Carlsbad network at 1.5
Mbps, and varied the number of links that shared the same
channel as the background WLAN among 0, 1 and 2. The
measured throughputs of the background WLAN are 6.72
Mbps, 5.25 Mbps and 3.41 Mbps, respectively. This result
shows that by carefully avoiding already used channels, DCS
can improve the throughput of neighboring WLANs by a
factor of close to two.

5.1.3 Impact of Head/Tail Margin
To avoid packet loss in the transition from one channel to

another, Carlsbad stops copying packets into the NIC dur-
ing head and tail margins. To empirically determine the
best size for head and tail margins, we set up a 4-node lin-
ear network (N1 – N2 –N3 –N4), each of whose links ran over
a non-overlapped channel. Each node is able to communi-
cate with its immediate neighboring nodes, but is outside
the sensing range of all other nodes. For example, N2 can
communicate with N1 and N3 directly, but cannot commu-
nicate with N4. N1 sent 1500-byte UDP packets to N4. All
other parameters were set in the same way as in previous
subsections. By tagging each UDP packet with a unique ID,
we could measure the UDP packet loss ratio at N4.

The channel slot time was set to 500 milliseconds, that
is, each node operated in one channel for 500 milliseconds
and then switched to the next. We fixed the head margin
at 30 milliseconds and varied the tail margin from 0 to 30
milliseconds, and measured the impact of tail margin size
on the packet loss ratio. The results are shown in Figure 5,
whose X axis is the tail margin size and the Y axis is the
measured packet loss ratio. When the tail margin size is 0,
the perceived packet loss ratio is the highest at 1.43%. As
the tail margin size increases, the packet loss ratio decreases
because more synchronization errors and transmission delay
variations can be accommodated. 10 milliseconds is a turn-
ing point, as the packet loss ratio remains flat at 0.02% after

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

Figure 5: The impact of varying the tail (head) margin size on
the packet loss ratio, while fixing the head (tail) margin size at
30 (10) milliseconds.

Figure 6: UDP throughput of a 4-node linear network running
DCS when the channel slot time is varied from 100 milliseconds
to 1000 milliseconds.

the tail margin size becomes greater than 10 milliseconds.
Moreover, most of these packet losses result from random bit
corruption rather than dynamic channel switching, because
these losses are uniformly distributed over time rather than
clustered during the channel transition periods.

Next we examined the impact of the head margin size on
the packet loss ratio while setting the tail margin to 10 mil-
liseconds. Results in Figure 5 suggested that head margin
may not be necessary because with the default retransmis-
sion count of 4 and a 1500-byte packet taking more than 10
msec to transmit at 11 Mbps, the amount of time required
to retransmit an IEEE 802.11 frame four time is more than
sufficient to accommodate most cases in which the a receiver
node switches to the common channel a little bit later than
the sender.

From the above experiments, we recommend setting the
head margin to 0 and the tail margin to 10 milliseconds for
IEEE 802.11b WLAN NICs. However, they may need to be
re-tuned for different physical transmission rates or different
retransmission counts.

5.1.4 Impact of Channel Time Slot Size
To understand the impact of the channel time slot size on

a Carlsbad network’s UDP throughput, we used the same
4-node linear network and experiment set-up as before. The
head margin was set to 0 milliseconds and the tail mar-
gin was set to 10 milliseconds. Larger channel time slots
lower the relative performance impact of head/tail margins
and channel switching latency, but increase the end-to-end
delay and potentially degrade the throughput of TCP con-
nections. Figure 6 shows the perceived UDP throughput at

Figure 7: Packet loss ratio of a 4-node linear network running
DCS when the channel slot time is varied from 100 milliseconds
to 1000 milliseconds.

N4 when the channel time slot is varied from 100 millisec-
onds to 1000 milliseconds. In addition to DCS’s throughput
curve, there are three other straight lines, which correspond
to the theoretical throughput bound of a 4-node linear net-
work, the measured throughput of a non-DCS configuration
with RTS/CTS turned off, and the measured throughput of
a non-DCS configuration with RTS/CTS turned on. These
three configurations have nothing to do with DCS and there-
fore their throughputs are independent of the channel time
slot size.

The theoretical throughput is half of a one-hop WDS link’s
measured throughput (6.62/2 = 3.31 Mbps). The measured
throughput of the 4-node network is 2.03 Mbps when both
DCS and RTS/CTS are turned off, and is 1.64 Mbps when
DCS is turned on and RTS/CTS is turned off. RTS/CTS
could mitigate the hidden node problem, but also intro-
duces additional performance overheads due to extra control
frames. The DCS configuration’s throughput is significantly
better than the non-DCS configurations, by a factor of more
than 2, because the former forces a TDMA-like behavior on
media access and thus significantly reduces contention de-
lays. As the channel time slot size increases, the gap between
the DCS and non-DCS configuration increases because the
relative overhead of head/tail margins diminishes.

As the channel slot time increases, the packet loss ratio
decreases and eventually stabilizes, as shown in Figure 7.
When DCS is disabled, the packet loss ratio is 0.45%, which
is mainly attributed to the hidden node problem. Turning on
RTS/CTS reduces the packet loss ratio to 0.15%. Enabling
DCS further reduces the packet loss ratio to 0.02% because
it completely eliminates the hidden node problem. Most
of these remaining packet losses result from channel errors.
RTS/CTS cannot solve the starvation problem due to hidden
nodes because it is designed to avoid transmission collision
from the hidden node, but does nothing to stop a node from
dropping packets because its RTS never gets acknowledged,
which is the main reason of packet loss in this experiment.

5.1.5 TCP Throughput
A major weakness of dynamic channel switching is its in-

crease in the end-to-end delay, which could have an adverse
effect on TCP connections’ throughput. To a first approx-
imation, a TCP connection’s throughput is the congestion
window size divided by RTT. In the 4-node linear network,
the RTT is roughly 3 seconds with a channel slot time of
500 milliseconds. Assuming a congestion window size of 64
Kbytes, the throughput of this network tops out at about
174 Kbps. In addition long round-trip delay (RTT) slows
down the growth rate of the congestion window in the pres-
ence of packet losses.

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

Figure 8: TCP throughput of a 4-node linear network running
DCS when varying the channel time slot from 100 msec to 500
msec, and applying TCP on an end-to-end basis or a hop-by-hop
basis.

Figure 9: An 10-node wireless mesh network testbed used in
the performance study of load-balancing routing

In this experiment, N1 sent 4000 1500-byte TCP pack-
ets to N4 over a 4-node linear network running DCS us-
ing TCP Reno, with the following TCP features turned on,
TCP timestamp, SACK, DSACK, and FACK. In addition
we turned on the TCP window scaling option to make sure
that the congestion window can grow to a sufficiently large
value to fully utilize the network bandwidth. We measured
the perceived throughput at N4 when the channel slot time
is 100 milliseconds and 500 milliseconds.

As shown in Figure 8, the 100-msec configuration performs
better than the 500-msec configuration because the former
can recover the congestion window faster than the latter, as
indicated by the slope of the throughput curves when they
move upwards. However, neither configuration’s maximal

Figure 10: The evolution of the traffic loads on the two gate-
ways of the testbed under load-balancing routing in the DCS
mode

Figure 11: The evolution of the traffic loads on the two gate-
ways of the testbed under load-balancing routing in the non-DCS
mode

Configuration Detection Recovery Total
Case 1, non-DCS 3.70 0.25 3.95

Case 1, DCS 6.51 0.45 6.96
Case 2, non-DCS 3.95 1.40 5.35

Case 2, DCS 6.72 11.72 18.44

Table 2: Breakdown of the total failure recovery time for the
two test cases into the failure detection and failure recovery com-
ponents

throughput exceeds 1.3 Mbps, which is much lower than the
measured UDP throughput of 3 Mbps in Section 5.1.4.

To demonstrate that it is possible to provide similar TCP
throughput to UDP throughput on a DCS network, we im-
plemented a hop-by-hop TCP mechanism into Carlsbad: A
M -hop TCP connection is is broken into M 1-hop TCP con-
nections. Because TCP’s retransmission works within a sin-
gle hop, whenever a packet loss occurs, the congestion win-
dow could recover within the same channel time slot in most
cases. As a result, the throughput of DCS combined with
hop-by-hop TCP when the channel slot time is 100 msec per-
forms even better than non-DCS combined with end-to-end
TCP, as shown in Figure 8. On the average, the sustained
throughput of the DCS plus hop-by-hop TCP configuration
is 2.1 Mbps, whereas that of the non-DCS configuration is
only 1.56 Mbps.

5.2 Load Balance and Fault Tolerance
To evaluate the effectiveness of Carlsbad’s load-balancing

routing, we ran Carlsbad on a 10-node 2-gateway testbed
whose topology is shown in Figure 9, where R is a control
server on the wired network. Each node in the testbed sent
a UDP stream of 100 Kbps to R. Initially, the loads on the
two gateways, GW1 and GW2, are very different because
the initial topology is skewed, but after 20.5 seconds, two
of the nodes in the middle column switch to GW2 and the
gateways’ loads are balanced, as shown in Figure 10. We
repeated the same experiment but turned off DCS, and the
time taken to balance the loads of GW1 and GW2 is reduced
to 14.5 seconds, as shown in Figure 11. The difference be-
tween the two mainly comes from the fact that under DCS
a Carlsbad node can communicate with a physical neighbor
only in its channel time slot, and therefore it takes longer to
probe back-up parents and re-associate with a new parent.

To assess the effectiveness of Carlsbad’s fault-tolerant rout-
ing, we ran Carlsbad on a 10-node 2-gateway testbed whose
topology is shown in Figure 12. We tried two failure cases:
(1) Node 3 and 4 die, and (2) Node 1 dies. In both cases, the
affected nodes successfully switched to the alternative gate-

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

way. As shown in table 2, the total failure recovery times
for Case (1) and (2) under the DCS mode are 6.96 sec and
18.44 sec, respectively. For Case (1), more than 92% of the
failure recovery time is spent on failure detection, whereas
for Case (2), more than 60% of the failure recovery time is
spent on failure recovery, because Node 3 and 4 in this case
probed all possible parents only to give up and ask their
children (Node 7 and 8) to take over the failure recovery
operation. In both test cases, the total failure recovery time
in the DCS mode is much longer than that in the non-DCS
mode, because the fact that DCS prevents a node from im-
mediately communicating with its physical neighbors is an
even more serious restriction during failure recovery. How
to overcome this restriction to speed up failure recovery is a
topic for future research.

6. CONCLUSION
Because of interferences, application-perceived through-

put fluctuates more and thus is less robust on wireless net-
works than on wired networks. The most promising way
to mitigate interference-induced performance degradation
on wireless networks is to make the most of available ra-
dio spectrum. Traditionally, a wireless interface operates in
one frequency channel at a time, because it is generally con-
sidered expensive to switch between channels on a granular
basis, especially on standards-based wireless networks. This
paper presents a fully working dynamic channel switching
prototype that demonstrates, for the first time, not only it
is technically feasible to implement DCS on IEEE 802.11-
based wireless networks, but also DCS can deliver substan-
tial performance improvements despite its additional chan-
nel switching overhead.

Although dynamic channel switching has been explored
before, it has never been fully implemented, tested and shown
to work on multi-hop wireless networks that are built from
commodity hardware. In addition, none of previous works
investigated how to integrate DCS with upper-layer routing
and transport protocols. The Carlsbad system described in
this paper successfully integrates dynamic channel switching
with spanning tree-based fault-tolerant and load-balancing
routing, and shows that it is indeed practical to apply dy-
namic channel switching to off-the-shelf wireless LAN NICs.
The research contributions of this paper include

• A low-latency channel switching implementation that
reduces the channel switching latency to below 2 msec
on commodity IEEE 802.11 WLAN NICs,

• A spanning tree-based load-balancing and fault-tolerant
routing algorithms that works with dynamic channel
switching, and

• A fully operational prototype that empirically demon-
strates that by leveraging DCS to avoid congested chan-
nels, Carlsbad could deliver a performance improve-
ment as high as a factor of 2 for multi-hop UDP/TCP
connections.

7. REFERENCES
[1] IEEE 802 Working Group; “IEEE 802.1D: IEEE MAC Bridges

standard draft 4”; Nov. 2003.
[2] D. Mills; “Network Time Protocol (Version 3) Specification,

Implementation and Analysis”; IETF RFC 1305, Mar. 1992.
[3] C. Perkins, E. Belding-Royer, and S. Das; “Ad Hoc On Demand

Distance Vector (AODV) Routing”; IETF RFC 3561, July 2003.
[4] T. Clausen, P. Jacquet; “Optimized Link State Routing

Protocol (OLSR)”; IETF RFC 3626, Oct. 2003.
[5] D. Johnson, Y. Hu, and D. Maltz; “The Dynamic Source

Routing Protocol (DSR) for Mobile Ad Hoc Networks for
IPv4”; IETF RFC 4728, Feb. 2007.

[6] OpenWRT Team; “OpenWRT: A Linux distribution for
WRT54G”; http://openwrt.org

Figure 12: The original topology used in the fault-tolerant
routing study and the resulting topologies when some of the nodes
fail.

[7] Sveasoft Inc. http://www.sveasoft.com
[8] A. Raniwala, T. Chiueh; “Architecture and Algorithms for an

IEEE 802.11-based Multi-channel Wireless Mesh Network”; in
Proc. of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’05),
Miami, FL, Mar. 2005.

[9] A. Raniwala, K. Gopalan, and T. Chiueh; “Centralized channel
assignment and routing algorithms for multi-channel wireless
mesh networks”; ACM Mobile Computing & Comm Review
(MC2R), April 2004.

[10] R. Draves, J. Padhye, and B. Zill; “Routing in Multi-radio,
Multi-hop Wireless Mesh Networks”; in Proc. of the 10th
annual international conference on Mobile computing and
networking (MobiCom’04), Philadelphia, PA, Sep. 2004.

[11] Y. Liu, E. Knightly; “Opportunistic Fair Scheduling over
Multiple Wireless Channels”; in Proc. of the 22nd Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM’03), San Francisco, CA, April 2003.

[12] J. So, N. Vaidya; “Multi-Channel MAC for Ad Hoc Networks:
Handling Multi-Channel Hidden Terminals Using A Single
Transceiver”; in Proc. of the 5th ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHOC’04), Japan, May 2004.

[13] S. Wu, C. Lin, Y. Tseng, and J. Sheu; “A new multi-channel
mac protocol with on-demand channel assignment for multi-hop
mobile ad hoc networks”; in Proc. of the 5th International
Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN’00), Dallas/Richardson, TX, Dec. 2000.

[14] J. Deng and Z. Haas; “Dual Busy Tone Multiple Access
(DBTMA): A New Medium Access Control for Packet Radio
Networks”; in Proc. of IEEE 1998 International Conference on
Universal Personal Communications (ICUPC’98), Florence,
Italy, Oct. 1998.

[15] P. Bahl, R. Chandra, J. Dunagan; “SSCH: slotted seeded
channel hopping for capacity improvement in IEEE 802.11
ad-hoc wireless networks”; in Proc. of the 10th annual
international conference on Mobile computing and networking
(MobiCom’04), Philadelphia, PA, Sep. 2004.

[16] M. Alicherry, R. Bhatia, and L. Li; “Joint channel assignment
and routing for throughput optimization in multi-radio wireless
mesh networks”; in Proc. of the 11th annual international
conference on Mobile computing and networking
(MobiCom’05), Cologne, Germany, Sep. 2005.

[17] J. So and Nitin H. Vaidya; “A Routing Protocol for Utilizing
Multiple Channels in Multi-Hop Wireless Networks with a
Single Transceiver”, Tech. Rep., University of Illinois at
Urbana-Champaign, Oct. 2004.

[18] P. Kyasanur and N. Vaidya; “Routing and interface assignment
in multi-channel multi-interface wireless networks”; In Proc. of
Wireless Communications and Networking Conference
(WCNC’05), New Orleans, LA, Mar. 2005.

[19] J. Tang, G. Xue, and W. Zhang; “Interference-Aware Topology
Control and QoS Routing in Multi-Channel Wireless Mesh
Networks”; In Proc. of the 6th ACM international symposium
on Mobile ad hoc networking and computing,
Urbana-Champaign, IL, May 2005

[20] Steven Ashley, ”Cognitive Radio,” Scientific American,
February 20, 2006.

Digital Object Identifier: 10.4108/ICST.WICON2008.4997
http://dx.doi.org/10.4108/ICST.WICON2008.4997

