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ABSTRACT
We evaluate the throughput and stability properties of dig-
ital and analog network coding for wireless terminals ex-
changing broadcast traffic with the assistance of relay nodes.
For stochastically varying traffic, the stable operation is
compared under the different schemes of plain routing, and
digital and analog network coding, at the packet and the
signal levels, respectively. For each network coding scheme,
the queue dynamics are specified for the terminal and relay
nodes, and the maximum throughput region is optimized
over all transmission schedules. We then give generaliza-
tions of the well-known back-pressure policy for each scheme,
which accounts for the coupling of the queues due to net-
work coding and is throughput optimal, i.e., it stabilizes the
network whenever this is possible. Our initial analysis fo-
cuses on a network with a single relay node. We then discuss
extensions of this to arbitrary terminal-relay configurations
in a general multihop network. A general framework is es-
tablished to construct the maximum throughput region and
throughput optimal scheduling is jointly designed with net-
work coding for relay networks with general channel rates.
For any achievable rates in the maximum throughput region
the dynamic scheduling and coding ensure that the average
queue lengths at the terminal and relay nodes are asymp-
totically bounded.

Keywords
Analog network coding, digital network coding, queue sta-
bility, stable throughput region, throughput optimal control.

1. INTRODUCTION
Throughput optimal control of store-and-forward-based
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plain routing for stochastically varying packet flows is re-
alized by maximum differential backlog policies (also known
as back-pressure algorithms) [1]. This approach applies to
unicast communication between multiple source-destination
pairs, and has also been extended to multicast communica-
tion under a joint scheduling and routing framework [2].

In this paper, we consider generalizations of such policies
for broadcast traffic in networks that employ network cod-
ing. As an extension of plain routing, network coding can be
viewed as cooperative communication at the network layer
and allows intermediate nodes to code over the incoming
packets for backlogged packet traffic [3]. Network coding
can be also performed in analog form at the physical layer
as an extension of the amplify-and-forward mechanism [4].

For stochastically varying packet traffic, random network
coding has been adapted to back-pressure algorithms under
the assumption that network coding is limited to the packets
of the same source [5]. The stable operation of inter-session
network coding with multiple sources has been analyzed for
fixed scheduling solutions [6]. Dynamic scheduling has been
specified in [7] for the special case of pairwise network coding
of two unicast flows.

The queue stability with multi-source network coding has
been studied for different canonical network models. For ex-
change channels between two sources over a single relay, the
stability region has been computed in [8] for a bidirectional
relaying protocol and the effects of opportunistic scheduling
have been evaluated in [9] for Poisson packet arrivals. As an
extension to two relay nodes, stability properties have been
evaluated in [10] in conjunction with cooperative communi-
cation and network coding. Throughput optimal control has
been also considered in [11] to study the queue stability of
inter-session network coding for butterfly network model.

In this work, we consider local network coding at relay
nodes that are relied upon to exchange broadcast traffic
of multiple source terminals with arbitrary packet arrival
rates. For constant backlogged traffic (where nodes always
have packets available to transmit), the problem of network
coding over a single relay node has been addressed in [12] in
terms of achievable throughput rates without concern of sta-
bility and delay build-up in packet queues. In [13], this satu-
rated queue model has been extended to the stable operation
for stochastically varying traffic (with possibly empty packet
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queues) over error-free channels with uniform channel rates.
In this paper, we generalize first the channel properties for
the case of a single relay with multiple source terminals and
then we consider simultaneous operation of multiple relays
with arbitrary terminal assignments.

For each digital and analog network coding scheme, our
objectives are: (a) Construct the maximum throughput re-
gion by optimizing the flow conditions over transmission
schedules, and (b) Derive the throughput optimal control so-
lutions to stabilize the packet queues.

Meeting these objectives is not straightforward extension
of plain routing case in [1], because network coding serves
packet queues jointly. Hence, the service rates of relay and
terminal queues depend on each other’s queue backlogs for
digital and analog network coding, respectively. Lyapunov
stability over instantaneous queue contents cannot be di-
rectly applied to establish the stability properties for net-
work coding (compared to back-pressure algorithms for plain
routing [1]). Instead, we consider Lyapunov stability argu-
ments over the entire duration of any network coding session
in order to decouple the packet queues. Throughput opti-
mal control results in different formulations of back-pressure
algorithms with different metrics based on the differential
queue backlogs for digital and analog network coding.

We show that the packet queues can be stabilized while
achieving all rates in the maximum throughput region. The
approach is based on keeping virtual queues at the terminal
and relay nodes, and asymptotically bounding the average
queue lengths. This results in cross-layer solutions of queue-
based network coding and dynamic scheduling without any
a priori information on packet arrival statistics. For that
purpose, the network coding solutions of [12] for the back-
logged queue model need to be extended to accommodate
stochastic traffic. Network coding is designed in adaptation
to queue contents and requires a joint formulation with dy-
namic scheduling.

We quantify the improvement of stable throughput rates
over plain routing for each network coding scheme. The
throughput region is specified depending on the physical
channel properties and the number of neighbors each ter-
minal can overhear in the multihop operation. As the num-
ber of terminals increases, the throughput rates of different
schemes approach each other for finite overhearing range.

The paper is organized as follows. The system model is
introduced in Section 2 for the single relay case. We derive
the maximum throughput region and find the throughput
optimal control for digital and analog network coding in Sec-
tions 3 and 4, respectively. Then, we consider the general
multihop operation with multiple relay nodes in Section 5.
Finally, we discuss the stable throughput gains of network
coding in Section 6 and draw conclusions in Section 7.

2. SINGLE RELAY MODEL
We consider K ≥ 2 terminals communicating with each

other with the aid of a single relay node R, as shown in
Figure 1. We assume broadcast communication such that
the packets of each terminal have to be delivered to all other
terminals. There are only two possible paths for packets
either by direct transmission between terminals or by two-
hop transmissions through relay R. In particular, we do not
allow terminals to forward packets received from the other
terminals. We consider omnidirectional transmissions such
that any relay transmission reaches all terminals and any

terminal transmission reaches relay R. Any terminal j can
overhear n neighbors on each side, collectively denoted as
set Nj . Two network coding schemes are considered:

R

λ1
λ2λ K

1K 2

Figure 1: Star topology with K ≥ 2 terminals and a

single relay R.

(a) Digital Network Coding : Terminals take turn to trans-
mit their packets to relay R. Relay R decodes, re-encodes
and broadcasts the incoming packets, assuming linear net-
work coding in finite field Fq with field size q.

(b) Analog Network Coding : Relay R receives the super-
position of signals from the terminals, and then amplifies
and forwards it back to all terminals.

We consider the common framework of plain routing and
(digital and analog) network coding, as studied in [12] for
saturated packet queues. Half-duplex communication (such
that relay node cannot simultaneously transmit and receive
packets) is assumed in a synchronous slotted system. There-
fore, we consider a two-phase operation separated in time.
Let x define the set of terminal packets.

In the first phase, terminals transmit packets

xT = G̃ x, (1)

where G̃ is the scheduling matrix such that G̃t,j = 1, if
terminal j transmits in time slot t of the first phase, and
G̃t,j = 0, otherwise.

In the second phase, relay R transmits packets

xR = G yR, (2)

where yR is the set of packets received by relay R and G is
the coding matrix such that Gi,j is the linear coding coeffi-
cient for the packet of terminal j in the ith coded packet. We
have G̃ = IK for plain routing and digital network coding,
and G = IK for plain routing and analog network coding,
where IK is the K × K identity matrix.

For plain routing and digital network coding, relay R
needs to decode all packets before broadcasting them (in
plain or coded form) back to the terminals. We assume
error-free channels and do not allow multiple packet recep-
tion at relay R so that the received signal at R is given by
yR = xT . The channel rates are assumed to be constant.1

We denote by Ci,R the capacity of the channel from terminal
i to relay R and denote by CR,i the capacity of the channel
from relay R to terminal i. For packet overhearing in di-
rect transmissions, we assume channel rate of Ci,j = 1 from
terminal i to terminal j, if i ∈ Nj , i.e., one packet can be
successfully received per time slot by the overhearing termi-
nals. Otherwise, we have Ci,j = 0. On the other hand, the

1The analysis also extends to time-varying dynamic channel
conditions. In this paper, we skip this extension for brevity.
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terminal and relay transmissions are fully coupled in analog
network coding. The end-to-end channel rates over two hops
will be considered in Section 4.

If 2n ≥ K − 1, any terminal transmission can reach all
other terminals without need for the relay node. The opti-
mal policy is that the terminal with the longest (non-empty)
queue transmits at any time slot.2 Instead, we will assume
2n < K − 1 for the rest of the paper.

Each terminal keeps a packet queue of infinite capacity
that operates on a First-Come-First-Served basis. Relay R
maintains different queues for packets of different terminals
under plain routing and digital network coding, but keeps a
single queue for all packets under analog network coding.

We define λi as the average arrival rate at terminal i and
Ai(t) as the number of packets arriving at terminal i at time
slot t. Transmissions of terminal i and relay R are allocated
over separate time fractions fi and fR, respectively. The
maximum throughput region Λ is the convex hull of rates
{λi}

K
i=1 that are achieved by optimizing over {fi}

K
i=1 and

fR. Throughput region optimization over fixed schedules
requires a priori information on packet arrival rates. For
the case of unknown packet arrival statistics, we need to
consider dynamic transmission schedules based on the joint
contents of queues over the entire network coding session of
multiple time slots.

3. DIGITAL NETWORK CODING
In this section, we consider the single relay model with

digital network coding. We denote by Qi the queue of pack-
ets at terminal i and by Qi

R the queue at relay R for the
incoming packets of terminal i. At time slot t, the backlogs
of queues Qi and Qi

R are Ui(t) and U i
R(t), respectively. We

define µi(t) as the transmission rate from queue Qi of ter-
minal i at time slot t and µi

R(t) as the transmission rate of
relay R from queue Qi

R for packets of terminal i at time slot
t. Note that we have µi(t) = 0, if Ui(t) = 0, and µi

R(t) = 0,
if U i

R(t) = 0.
Let yi

R denote the first packet in queue Qi
R. The packets

in relay queues are linearly coded as G yR according to (2),
if U i

R > 0, i = 1, ..., K, where yR = {yi
R}K

i=1. The optimal
coding matrix G (with the minimum number of rows) is not
unique and has been specified in [12] for backlogged traffic.
A linearly independent set of m = K − 1 − 2n coded trans-
missions is necessary and sufficient to exchange one packet
per terminal (whereas plain routing requires K coded trans-
missions), if all K terminals are backlogged, i.e., the optimal
coding matrix G has the dimension of m × K.

In stable operation, the service rates of relay queues are
coupled in digital network coding and depend on the number
of backlogged relay queues. Assume that qR relay queues are
backlogged with at least one packet to code and transmit.
If qR > m, network coding can clear one packet from each
backlogged relay queue over the next m time slots, since
network coding can serve up to K backlogged queues over
m time slots, as shown in [12] (so that it would be sufficient
to transmit dummy packets from the empty packet queues).

Otherwise, if qR ≤ m, plain routing is optimal and can
serve up to m packets from the relay queues over m time
slots. The backlogged terminals would be limited to plain
routing, since they cannot find more than m backlogged ter-

2This is similar to the longest connected queue policy for
multiple terminals transmitting to a single receiver [14].

minals to start a network coding session.
Define qR(t) =

∑K
i=1 1{Ui

R
(t)>0} as the number of back-

logged relay queues at time slot t, where 1{·} is the indicator

function, and define [U ]+ = max(U, 0).
The queue lengths evolve over time as follows:

(i) If µi
R(t) = 0, i = 1, ..., K,

Ui(t + 1) = [Ui(t) − µi(t)]
+ + Ai(t),

U i
R(t + 1) = U i

R(t) + µi(t),

(ii) If µi(t) = 0, i = 1, ..., K, and qR(t) > m,

Ui(t + m) = Ui(t) +

t+m−1
∑

τ=t

Ai(τ ),

U i
R(t + m) =

[

U i
R(t) − µi

R

(

[τ ]t+m−1
τ=t

)

]+

,

(iii) If µi(t) = 0, i = 1, ..., K, and qR(t) ≤ m,

Ui(t + 1) = Ui(t) + Ai(t),

U i
R(t + 1) =

[

U i
R(t) − µi

R(τ )
]+

,

where µi
R

(

[τ ]t+m−1
τ=t

)

is the service rate of relay queue Qi
R

achievable over m time slots of interval [τ ]t+m−1
τ=t starting

from t. Here, (i) corresponds to the case where only one
terminal transmits to relay R, (ii) corresponds to the case
where relay R transmits network-coded packets to terminals
over m time slots, and (iii) corresponds to the case where
relay R forwards plain packets to terminals one at a time.

3.1 Maximum Throughput Region

Theorem 1. For digital network coding, the maximum
throughput region Λ is given by

m
∑

i=1

λi

Ci
R

+

K
∑

i=1

λi

Ci,R
< 1 for

λ1

C1
R

≥ ... ≥
λK

CK
R

≥ 0, (3)

where

Ci
R = min

j:j 6=i,i/∈Nj

CR,j , i = 1, ..., K. (4)

Proof. The rates {λi}
K
i=1 are in the maximum through-

put region Λ, if and only if for arbitrarily small constant ε
there exists a stationary control policy such that the flow
conditions satisfy

E [µi(t) | U(t)] = ε + λi ≤ fi Ci,R (5)

for terminal queue Qi, i = 1, ..., K, where fi is specified by
the control policy, and

E

[

µi
R

(

[τ ]t+m−1
τ=t

)

−
t+m−1
∑

τ=t

µi(τ )

∣

∣

∣

∣

U(t)

]

= m ε (6)

for relay queue Qi
R, i = 1, ..., K. The expectations in (5)-(6)

are taken with respect to the transmission schedules.
Under any optimal policy, the decision of performing net-

work coding or plain routing will depend on how the number
of the non-empty relay queues, qR, compares to the thresh-
old m = K − 1 − 2n. If qR > m, network coding serves
qR packets. Otherwise, if qR ≤ m, plain routing is used.
Hence, during the fraction of time the relay is active, the
service rates satisfy

K
∑

i=1

1

Ci
R

E

[

µi
R

(

[τ ]t+m−1
τ=t

)

∣

∣

∣

∣

U(t)

]

≤

{

qR fR, if qR > m ,
m fR, if qR ≤ m ,

(7)

Digital Object Identifier: 10.4108/ICST.WICON2008.4967 
http://dx.doi.org/10.4108/ICST.WICON2008.4967 



where Ci
R in (4) is the broadcast rate for packets of terminal

i from relay R to the rest of terminals, since each packet
of terminal i should be delivered to all terminals with a
common rate (whereas a terminal j can overhear terminal
i in direct transmission, if i ∈ Nj). To achieve the rate
(4), relay R performs channel coding with respect to each
terminal, and then linearly network-codes the channel-coded
packets before broadcasting them back to the terminals [15].

We order relay queues such that λ1

C1

R

≥ ... ≥ λK

CK
R

. Relay

queues Qi
R with higher values of λi

Ci
R

are more likely to be

backlogged according to Little’s law [16]. Since for m relay
queues to be backlogged at least one of relay queues Qi

R,
i = m + 1, ..., K, must be backlogged, it follows that

P (qR > m) ≥ P
(

min
i=m+1,...,K

U i
R > 0

)

=
m

fR

K
∑

i=m+1

λi

Ci
R

. (8)

The service rate for the relay queue Qi
R, i = m + 1, ..., K,

normalized per time slot is fR

m
Ci

R, since relay R is activated
for fR fraction of time and the queue is served over m time
slots to clear one packet. We use P (qR > m) to condition
qRfR in (7) for any qR = m + 1, ..., K. Therefore, (7) is
bounded using (8) for the worst realization of qR = m + 1
(with the minimum value of qRfR) as follows:

K
∑

i=1

1

Ci
R

E

[

µi
R

(

[τ ]t+m−1
τ=t

)

]

≤ (m + 1) fR P (qR > m) + m fR (1 − P (qR > m))

≤ m
(

fR +

K
∑

i=m+1

λi

Ci
R

)

. (9)

From (5), (6), and (9), the constraints on the maximum
throughput region Λ = {λi}

K
i=1 are given by

0 ≤ λi < fi Ci,R, i = 1, ..., K, (10)
m
∑

i=1

λi

Ci
R

< fR, i = 1, ..., K, for
λ1

C1
R

≥ ... ≥
λK

CK
R

(11)

for arbitrarily small ε. The maximum throughput region
(3) follows from optimizing (10)-(11) over the disjoint time

fractions {fi}
K
i=1 and fR such that

∑K
i=1 fi + fR ≤ 1.

For plain routing, the maximum throughput region Λ is
achieved by time sharing of terminals and relay R such that

K
∑

i=1

λi

(

1

Ci
R

+
1

Ci,R

)

< 1, λi ≥ 0, i = 1, ..., K. (12)

Digital network coding expands the rate conditions for the
maximum throughput region Λ by the amount of

∑K
i=m+1

λi

Ci
R

over the time-sharing bounds (12) of plain routing.

3.2 Throughput Optimal Control
The unfinished work in terminal and relay queues Qi and

Qi
R, i = 1, ..., K, over the m time slots into the future can

be bounded in terms of the current unfinished work:

Ui(t + m) ≤
[

Ui(t) −
t+m−1
∑

τ=t

µi(τ )
]+

+
t+m−1
∑

τ=t

Ai(τ ), (13)

U i
R(t + m) ≤

[

U i
R(t) − µi

R

(

[τ ]t+m−1
τ=t

)

]+

+
t+m−1
∑

τ=t

µi(τ ), (14)

respectively, where µi
R

(

[τ ]t+m−1
τ=t

)

= 1 for all i = m +
1, ..., K, if qR(t) > m such that a digital network coding
session starts, or µi

R

(

[τ ]t+m−1
τ=t

)

≤ m for any individual
i = 1, ..., K, if qR(t) ≤ m such that relay R proceeds with
plain routing. (13) and (14) are upper bounds only, because
new arrivals may depart before the interval of m time slots is
finished and µi(τ ) would contribute to (14) only if Ui(τ ) > 0.

Theorem 2. For digital network coding, throughput op-
timal control at time slot t (when there is not any ongoing
digital network coding session of m time slots) is given by

(a) terminal i transmits a packet from queue Qi, if

Ci,R [ui(t)]
+ ≥ max

(

{Cj,R [uj(t)]
+}K

j=1,j 6=i,

{Ci
R U i

R(t)}K
i=1,

1

m

K
∑

i=1

C̃i
R U i

R(t)
)

, (15)

(b) relay R transmits a plain packet from queue Qi
R, if

Ci
R U i

R(t) ≥ max
(

{Ci,R [ui(t)]
+}K

i=1,

{Cj
R U j

R(t)}K
j=1,j 6=i,

1

m

K
∑

i=1

C̃i
R U i

R(t)
)

, (16)

(c) relay R transmits linearly network-coded packets from
queues Qi

R, i = 1, ..., K, over m time slots, if

1

m

K
∑

i=1

C̃i
R U i

R(t)

≥ max
i=1,...,K

(

Ci,R [ui(t)]
+, Ci

R U i
R(t)

)

, (17)

where ui(t) = Ui(t) − UR(t).

Proof. We consider Lyapunov stability arguments to es-
tablish the stability properties of packet queues. For the set
of queue backlogs U(t) at time slot t, the quadratic Lya-
punov function is defined as

L(U(t)) =
K
∑

i=1

(

(Ui(t))
2 + (U i

R(t))2
)

. (18)

Since any network coding session continues m time slots,
we need to define from (18) the m-time slot Lyapunov drift:

∆m(U(t)) = E [L(U(t + m)) − L(U(t)) | U(t)] . (19)

For any non-negative real numbers V , U , µ and A, note
that V 2 ≤ U2 + µ2 + A2 − 2U(µ −A), if V ≤ [U − µ]+ + A,
as given in [17]. From (13)-(14), (19) can be bounded as

∆m(U(t)) ≤ m2
(

2 +
K
∑

i=1

(Amax
i )2

)

−2
K
∑

i=1

Ui(t) E

[

t+m−1
∑

τ=t

µi(τ ) −
t+m−1
∑

τ=t

Ai(τ )

∣

∣

∣

∣

U(t)

]

−2

K
∑

i=1

U i
R(t) E

[

µi
R

(

[τ ]t+m−1
τ=t

)

−
t+m−1
∑

τ=t

µi(τ )

∣

∣

∣

∣

U(t)

]

, (20)

since we have µi(t) ≤ 1, µi
R

(

[τ ]t+m−1
τ=t

)

≤ m, Ai(t) ≤ Amax
i ,

and terminal and relay queues are separately served at any
time slot t. Conditioned on qR(t) =

∑K
i=1 1{Ui

R
(t)>0}, the
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differential queue backlogs satisfy

K
∑

i=1

(

Ui(t) − U i
R(t)

)

E

[

t+m−1
∑

τ=t

µi(τ )

∣

∣

∣

∣

U(t)

]

≤ m max
i=1,...,K

(

Ci,R

[

Ui(t) − U i
R(t)

]+ )

, (21)

for terminals, and

K
∑

i=1

U i
R(t)E

[

µi
R

(

[τ ]t+m−1
τ=t

)

∣

∣

∣

∣

qR(t) ≤ m

]

≤ m max
i=1,...,K

(

Ci
R U i

R(t)
)

, (22)

if relay R performs plain routing at time slot t, or

K
∑

i=1

U i
R(t)E

[

µi
R

(

[τ ]t+m−1
τ=t

)

∣

∣

∣

∣

qR(t) > m

]

≤
K
∑

i=1

C̃i
RU i

R(t), (23)

if relay R starts digital network coding session at time slot
t. From (21)-(23) the right hand side of (20) is minimized
by the throughput optimal control policy (15)-(17).3 From
(5), (6) and (9), the Lyapunov drift (20) satisfies

∆m(U(t)) ≤ B − 2ε̃
K
∑

i=1

(

Ui(t) + U i
R(t)

)

(24)

for constants B = m2
(

2 +
∑K

i=1(A
max
i )2

)

and ε̃ = mε,

where ε satisfies the flow conditions (5), (6) and (9). Then,
from (24) the average congestion is bounded as

lim sup
t→∞

1

t

t−1
∑

τ=0

K
∑

i=1

(

E [Ui(τ )] + E

[

U i
R(τ )

])

≤
B

2ε̃
, (25)

and system is strongly stable [17] from congestion bound
(25). The throughput optimal control policy (15)-(17) min-
imizes the right hand side of (20) while satisfying the flow
conditions (5), (6) and (9) such that all rates in the maxi-
mum throughput region Λ given by (3) can be stabilized.

4. ANALOG NETWORK CODING
In this section, we extend the analysis of the single relay

model to analog network coding. Terminals are scheduled
to transmit according to (1) with the scheduling matrix G̃,

where G̃t,j = 1, if terminal j transmits at time slot t of the
network coding session. The minimum-length schedules are
not unique. The scheduling matrix G̃ with the minimum
number of rows is specified in [12] for backlogged traffic. A
period of m = K−1−2n time slots is necessary and sufficient
to deliver K degrees of freedom to relay R, i.e., the optimal
scheduling matrix G̃ has the dimension of m × K.

Combine relay queues Qi
R, i = 1, ..., K, into a single queue

QR on a First-Come-First-Served basis such that the simul-
taneous transmissions arrive at relay node as a superposed
signal and they are forwarded in a subsequent time slot as
a single packet. Define UR(t) as the backlog of queue QR at

3If (17) holds with U i
R(t) = 0 for any i = 1, ..., K, a dummy

packet of all zeros is coded from queue Qi
R to start the digital

network coding session.

time slot t and define µR(t) as the transmission rate of relay
R. Note that we have µR(t) = 0, if UR(t) = 0.

The channel rates in two consecutive phases (from ter-
minals to relay R and from relay R to terminals) are fully
coupled. Therefore, we need to express the end-to-end rate
for any terminal pair. Then, this rate can be partitioned
among transmissions in two phases to satisfy the Max-Flow
Min-Cut condition. Define Ci→j as the end-to-end rate from
terminal i to terminal j over two hops through the amplify-
and-forward operation by relay R for i /∈ Nj .

4 Then, the
broadcast rate from terminal i to the rest of terminals is

C̃i = min
j:j 6=i,j /∈Ni

Ci→j , i = 1, ..., K, (26)

after taking into account the overhearing effects.
In analog network coding, the service rates of terminal

queues are coupled due to scheduling of simultaneous trans-
missions from different packet queues. Assume that qT ter-
minal queues are backlogged with at least one packet to
transmit. If qT > m, network coding can clear one packet
from each backlogged terminal queue over m time slots.
Otherwise, if qT ≤ m, plain routing is optimal and can serve
up to m packets from terminal queues over m time slots.

Define qT (t) =
∑K

i=1 1{Ui(t)>0} as the number of back-
logged terminal queues at time slot t and define AR(t) as
the number of packets arriving at relay queue QR at time
slot t. The queue lengths evolve over time as follows:

(i) If µi(t) = 0, i = 1, ..., K,

Ui(t + 1) = Ui(t) + Ai(t),

UR(t + 1) = [UR(t) − µR(t)]+ ,

(ii) If µR(t) = 0 and qT (t) > m,

Ui(t + m) =
[

Ui(t) − µi

(

[τ ]t+m−1
τ=t

)

]

+

t+m−1
∑

τ=t

Ai(τ ),

UR(t + m) = UR(t) +

t+m−1
∑

τ=t

AR(τ ),

(iii) If µR(t) = 0 and qT (t) ≤ m,

Ui(t + 1) = [Ui(t) − µi(t)]
+ + Ai(t),

UR(t + 1) = UR(t) + AR(t),

where µi

(

[τ ]t+m−1
τ=t

)

is the service rate of terminal queue Qi

achievable over m time slots of interval [τ ]t+m−1
τ=t . Here, (i)

corresponds to the case where relay R amplifies and forwards
the received signals to terminals, (ii) corresponds to the case
where terminals jointly transmit to relay R over m time slots
in analog network coding, and (iii) corresponds to the case
where only one terminal transmits to relay R.

4.1 Maximum Throughput Region

Theorem 3. For analog network coding, the maximum
throughput region Λ is given by

m
∑

i=1

λi <
C̃

2
for λ1 ≥ ... ≥ λK ≥ 0, (27)

where

C̃ = min
i=1,...,K

C̃i. (28)

4The rate Ci→j strongly depends on the physical layer prop-
erties, and it has been derived in [12] for binary symmetric
channels and erasure channels under backlogged traffic.
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Proof. Define fT as the total fraction of time allocated
to terminal transmissions such that fi ≤ fT , i = 1, ..., K.
The rates {λi}

K
i=1 are in the maximum throughput region Λ,

if and only if for arbitrarily small constant ε there exists a
stationary control policy such that the flow conditions satisfy

E

[

µi

(

[τ ]t+m−1
τ=t

)

∣

∣

∣

∣

U(t)

]

= m (ε + λi) (29)

for terminals i = 1, ..., K. Relay R does not decode packets,
i.e., any transmission arrives as a new packet. Hence, the
channel rate from a terminal to relay R is one packet per
slot. Under any optimal policy, the decision of performing
network coding or plain routing will depend on the number
of non-empty terminal queues, qT . For the threshold m =
K−1−2n, if qT > m, the service rate is qT fT . Otherwise, if
qT ≤ m, the service rate is mfT . Hence, during the fraction
of time the terminals are active, the service rates satisfy

K
∑

i=1

E

[

µi

(

[τ ]t+m−1
τ=t

)

∣

∣

∣

∣

U(t)

]

≤

{

qT fT , if qT > m ,
m fT , if qT ≤ m .

(30)

We order terminal queues such that λ1 ≥ ... ≥ λK . Ter-
minal queues with larger arrival rates are more likely to be
backlogged according to Little’s law [16]. Since for m termi-
nal queues to be backlogged at least one of terminal queues
Qi, i = m + 1, ..., K, must be backlogged, it follows that

P (qT > m) ≥ P
(

min
i=m+1,...,K

Ui > 0
)

=
m

fT

K
∑

i=m+1

λi. (31)

The service rate for the terminal queue Qi, i = m +
1, ..., K, normalized per time slot is fT

m
, since terminals are

activated for fT fraction of time and the queue is served over
m time slots to clear one packet. We use P (qT > m) to con-
dition qT fT in (30) for any qT = m+1, ..., K. Therefore, (7)
is bounded using (31) for the worst realization of qT = m+1
(with the minimum value of qT fT ) as follows:

K
∑

i=1

E
[

µi

(

[τ ]t+m−1
τ=t

)]

≤ (m + 1) fT P (qT > m) + m fT ((1 − P (qT > m))

≤ m
(

fT +
K
∑

i=m+1

λi

)

. (32)

From (29) and (32), we obtain the following rate bound
for terminal transmissions:

m
∑

i=1

λi < fT . (33)

Then, from (33) the arrival rate at relay queue QR is the
total rate of analog network-coded transmissions such that

E [AR(t) | U(t)] =
m
∑

i=1

λi, (34)

where λ1 ≥ ... ≥ λK . Since relay R is activated to transmit
for fR fraction of time and the packets of terminal i can be
decoded with common rate C̃i by the rest of terminals, the
flow condition for relay queue QR is given by

E [µR(t) | U(t)] = ε + E [AR(t) | U(t)] ≤ fR C̃i (35)

for i = 1, ..., m. Relay R amplifies and forwards the incoming
signals equivalently back to all terminals. Therefore, this

broadcast phase limits the achievable rate for each terminal
to C̃ = mini=1,...,K C̃i (which could be improved by more
advanced analog relaying schemes with end-to-end channel
coding). From (29) and (33)-(35), the constraints on the
maximum throughput region Λ = {λi}

K
i=1 are given by

λi ≥ 0, i = 1, ..., K,

m
∑

i=1

λi < fT , (36)

m
∑

i=1

λi < fR

(

min
i=1,...,K

C̃i

)

for λ1 ≥ ... ≥ λK (37)

for arbitrarily small ε, where disjoint time fractions fT ≥
0 and fR ≥ 0 satisfy fT + fR ≤ 1. Since each terminal
transmission needs to be forwarded in a subsequent time
slot, we have fT = fR. The maximum throughput region
(27) follows from evaluating the flows conditions (36)-(37)
over the time fractions fT = fR = 1

2
.

4.2 Throughput Optimal Control
The unfinished work in terminal queues Qi, i = 1, ..., K,

and in relay queue QR over m time slots into the future can
be bounded in terms of the current unfinished work:

Ui(t + m) ≤
[

Ui(t) − µi

(

[τ ]t+m−1
τ=t

)]+
+

t+m−1
∑

τ=t

Ai(τ ), (38)

UR(t + m) ≤
[

UR(t) −
t+m−1
∑

τ=t

µR(τ )
]+

+

t+m−1
∑

τ=t

AR(τ ), (39)

respectively, where µi

(

[τ ]t+m−1
τ=t

)

= 1 for all i = m+1, ..., K,
if qT (t) > m such that terminals start analog network cod-
ing session for m time slots, or µi

(

[τ ]t+m−1
τ=t

)

≤ m for any
individual i = 1, ..., K, if qT (t) ≤ m such that terminals
transmit packets in separate time slots for plain routing.

Theorem 4. For analog network coding, throughput op-
timal control at time slot t (when there is not any ongoing
analog network coding session of m time slots) is given by

(a) terminal i transmits a packet from queue Qi, if

[ui(t)]
+ ≥ max

(

{[uj(t)]
+}K

j=1,j 6=i, [uT (t)]+, C̃ UR(t)
)

, (40)

(b) terminals i = 1, ..., K transmit cooperatively (i.e., they
start analog network coding session) over m time slots, if

[uT (t)]+ ≥ max
(

{[ui(t)]
+}K

i=1, C̃ UR(t)
)

, (41)

(c) relay R forwards a packet from queue QR, if

C̃ UR(t) ≥ max
(

{[ui(t)]
+}K

i=1, [uT (t)]+
)

, (42)

where uT (t) = 1
m

∑K
i=1 Ui(t) − UR(t).

Proof. Consider the quadratic Lyapunov function given
by L(U(t)) =

∑K
i=1(Ui(t))

2 +(UR(t))2. From (38)-(39), the
Lyapunov drift (19) over m time slots can be bounded as

∆m(U(t)) ≤ m2
(

2 +
K
∑

i=1

(Amax
i )2

)

−2
K
∑

i=1

Ui(t) E

[

µi

(

[τ ]t+m−1
τ=t

)

−
t+m−1
∑

τ=t

Ai(τ )

∣

∣

∣

∣

U(t)

]

−2 UR(t) E

[

t+m−1
∑

τ=t

(µR(τ ) − AR(τ ))

∣

∣

∣

∣

U(t)

]

, (43)
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since we have µi

(

[τ ]t+m−1
τ=t

)

≤ m, µR(t) ≤ 1, Ai(t) ≤ Amax
i ,

AR(t) ≤ 1, and terminal queues and relay queue are sep-
arately served at any time slot. Conditioned on qT (t) =
∑K

i=1 1{Ui(t)>0}, the differential queue backlogs satisfy

UR(t) E

[

t+m−1
∑

τ=t

µR(τ )

∣

∣

∣

∣

U(t)

]

≤ m C̃ UR(t), (44)

for relay R, and satisfy

K
∑

i=1

Ui(t)E

[

µi

(

[τ ]t+m−1
τ=t

)

∣

∣

∣

∣

qT (t) ≤ m

]

− UR(t)

t+m−1
∑

τ=t

E

[

AR(τ )

∣

∣

∣

∣

qT (t) ≤ m

]

≤ m max
i=1,...,K

[Ui(t) − UR(t)]+ , (45)

if terminals proceed with plain routing, or satisfy

K
∑

i=1

Ui(t)E

[

µi

(

[τ ]t+m−1
τ=t

)

∣

∣

∣

∣

qT (t) > m

]

− UR(t)

t+m−1
∑

τ=t

E

[

AR(τ )

∣

∣

∣

∣

qT (t) > m

]

≤

[

K
∑

i=1

Ui(t) − m UR(t)

]+

, (46)

if terminals start analog network coding session at time slot
t. From (28), C̃ is the maximum common rate C̃i achievable
for all terminals i, since relay R broadcasts the same packets
to all terminals. The right hand side of (43) is minimized by
the throughput optimal control policy given by (40)-(42).5

From (29) and (33)-(35), the Lyapunov drift (43) satisfies

∆m(U(t)) ≤ B − 2ε̃

(

K
∑

i=1

Ui(t) + UR(t)

)

(47)

for constants B = m2
(

2 +
∑K

i=1(A
max
i )2

)

and ε̃ = mε,

where ε satisfies the flow conditions given by (44)-(46). Then,
from (47) the average congestion is bounded as

lim sup
t→∞

1

t

t−1
∑

τ=0

((

K
∑

i=1

E [Ui(τ )]
)

+ E [UR(τ )]
)

≤
B

2ε̃
(48)

and system is strongly stable from congestion bound (48).
The throughput optimal control policy (40)-(42) minimizes
the right hand side of (43) while satisfying the flow condi-
tions (29) and (33)-(35) such that all rates in the maximum
throughput region Λ given by (27) can be stabilized.

We can further simplify the throughput optimal control
given by (40)-(42). Assume that any superposition of arriv-
ing signals is immediately amplified and forwarded by re-
lay R in the next time slot such that relay R transmits, if
C̃ UR(t) > 0 (regardless of the terminal queue backlogs).

Provided that C̃ > 0, this alternative form of throughput
optimal control is given by (49)-(51) at time slot t and relies
on immediate forwarding by relay R as follows:

5If (41) holds with Ui(t) = 0 for any i = 1, ..., K, a dummy
packet is transmitted from queue Qi to start the analog net-
work coding session.

j

Sj

Relay
End Terminal

Figure 2: General topology with multiple relays R.

(a) relay R forwards a packet from queue QR, if

UR(t) > 0, (49)

(b) terminal i transmits a packet from queue Qi, if

UR(t) = 0, Ui(t) ≥ max
(

{Uj(t)}
K
j=1,

1

m

K
∑

j=1

Uj(t)
)

, (50)

(c) terminals i = 1, ..., K transmit cooperatively (i.e., they
start analog network coding session) over m time slots, if

UR(t) = 0,
1

m

K
∑

j=1

Uj(t) ≥ max
(

{Uj(t)}
K
j=1

)

. (51)

5. EXTENSION TO MULTIPLE RELAYS
We extend the single relay case to general multihop oper-

ation with multiple relays for broadcast communications, as
shown in Figure 2. Define N as the set of nodes and define R
as the set of relays that have the node degree of more than
one (and can perform routing or network coding). Nodes
with the node degree of one are called the end terminals.

For relay j ∈ R, we define Sj as the set of one-hop neigh-
bor nodes of relay j (that have packets to be relayed by
relay j). The node set Sj is predetermined by a set of given
paths P (e.g., by a broadcast tree) such that all nodes are
connected with each other through possibly multiple hops.
Packets of nodes in Sj must be exchanged over relay j ∈ R
and there are no cycles allowed in the predetermined set P
of broadcast paths.

For any node i, we define λ̃i,j as the total rate of traffic
that is carried to the one-hop relay j ∈ R (such that i ∈ Sj)
and further relayed by relay j. This total rate consists of the
rate λi of self-generated traffic and the rate of relay traffic
incoming from neighbor nodes, and it is given by

λ̃i,j = λi, i /∈ R, i ∈ Sj , j ∈ R, (52)

λ̃i,j = λi +
∑

l∈Si\{j}

λ̃l,i, i ∈ R, i ∈ Sj , j ∈ R. (53)

5.1 Digital Network Coding
The source and relay traffic can be separated in transmis-

sions. Therefore, we separately define Qi
i as the queue at

(relay or end terminal) node i for the self-generated packets
and Qi

j as the queue at relay node j for the relay packets

incoming from node i ∈ Sj . The backlogs of queues Qi
i and

Qi
j at time slot t are U i

i (t) and U i
j (t), respectively. We use

Digital Object Identifier: 10.4108/ICST.WICON2008.4967 
http://dx.doi.org/10.4108/ICST.WICON2008.4967 



the notation

∑

(m)

{λi} =
m
∑

i=1

λi for λi ≥ λj if i < j, (54)

which is the sum of the largest m elements in set {λi}.
We define N j

k as the set of nodes Sj , j ∈ R, that a node
k ∈ Sj can overhear, and we define mj = |Sj |−1−2nj , where
nj for i ∈ Sj is the number of hops a node can overhear on
each side from the neighbor nodes of relay j ∈ R. The
flow conditions (10)-(11) for the single relay case can be
generalized to multiple relays such that the achievable rates
λj ≥ 0, j ∈ N , satisfy

∑

(mj)

{ λ̃i,j

Ci
j

}

i∈Sj

+
λj

Cj
< fj , j ∈ N , (55)

where the rates λ̃i,j are given by (52)-(53), fj is the total
fraction of time allocated to the transmissions of node j,

Cj = min
k∈Sj

Cj,k, j ∈ R, (56)

which is the channel rate for the source packets from relay
j ∈ R to neighbor nodes Sj , or

Cj = Cj,k, j /∈ R, j ∈ Sk, k ∈ R, (57)

which is the channel rate for the source packets from the end
terminal j /∈ R to a relay k ∈ R such that j ∈ Sk, and

Ci
j = min

k:k∈Sj\{i},i∈N
j
k

Cj,k, j ∈ R, i ∈ Sj , (58)

which is the channel rate for the packets of node i ∈ Sj from
relay j to the rest of neighbor nodes Sj\{i}.

Optimizing the rate rate conditions (55) over {fj}j∈N

yields the maximum throughput region Λ = {λj}j∈N . The
throughput optimal control policy uses the following differ-
ential backlogs (59)-(61) for plain routing by relay nodes and
end terminals as well as requires a new formulation of dif-
ferential backlogs as given by (62) to take into account the
network-coded transmissions from relay nodes:

Bi,j
1 (t) =

[

U i
i (t) − U i

j (t)
]+

(59)

for transmissions from i (where i ∈ Sj and i /∈ R) to j ∈ R,

Bi,j
2 (t) =

[

U i
j (t) −

∑

k:j∈Sk\{i},k∈R\{i,j}

U j
k(t)

]+

(60)

for transmissions of packets of i ∈ Sj from j ∈ R to Sj\{i},

Bj
3(t) =

[

U j
j (t) −

∑

k:j∈Sk,k∈R\{j}

U j
k(t)

]+

(61)

for transmissions of self-generated packets from j ∈ R to Sj ,
and

Bi,j
4 =

1

mj

[

U i
j (t) −

∑

k:j∈Sk\{i},k∈R\{i,j}

U j
k(t)

]+

(62)

for digital network-coded transmissions from j ∈ R to i ∈

Sj . Based on channel rates (56)-(58), we define the weights

W i,j
1 (t) =







Ci,j if i /∈ R successfully transmits
to j ∈ R, where i ∈ Sj ,

0 otherwise,
(63)

W i,j
2 (t) =







Ci
j if j ∈ R successfully transmits

to Sj\{i}, where i ∈ Sj ,
0 otherwise,

(64)

W j
3 (t) =







Cj if j ∈ R successfully transmits
to Sj

0 otherwise,
(65)

W i,j
4 (t) =















Ci
j if j ∈ R successfully transmits

coded packets to Sj\{i}, where
i ∈ Sj , over mj time slots ,

0 otherwise.

(66)

Let T (t) denote the set of nodes transmitting at time slot
t. Throughput optimal control to achieve the rate conditions
(55) follows from choosing T (t) to bound the time-average
value of total queue length

∑

i∈N U i
i (t)+

∑

j∈R

∑

i∈Sj
U i

j (t).

This is realized by maximizing the following weighted sum
W (t) of differential backlogs based on (59)-(66):

W (t) =
∑

j∈R,i∈Sj,i/∈R

W i,j
1 (t)Bi,j

1 (t) +
∑

j∈R,i∈Sj

W i,j
2 (t)Bi,j

2 (t)

+
∑

j∈R

W j
3 (t)Bj

3(t) +
∑

j∈R,i∈Sj

W i,j
4 (t)Bi,j

4 (t).

5.2 Analog Network Coding
We define fj,1 and fj,2 as the time fractions allocated to

transmissions from nodes Sj to relay j ∈ R, and from relay
j ∈ R to nodes Sj , respectively. The flow conditions (36)-
(37) for the single relay case can be generalized to multiple
relays such that the achievable rates λj ≥ 0, j ∈ N , satisfy

∑

(mj)

{λ̃i,j}i∈Sj
< fj,1, j ∈ R, (67)

for transmissions of nodes Sj to relay j ∈ R, and

∑

(mj)

{ λ̃i,j

C̃j

}

i∈Sj

+
λj

Cj
< fj,2, j ∈ R, (68)

for (relay and source packet) transmissions of relay j ∈ R,

where Cj , j ∈ R, is given by (56), C̃j = mini∈Sj
C̃j

i , and

C̃j
i = min

k:k∈Sj\{i},i∈Sj,i/∈N j

k
,j∈R

Cj
i→k. (69)

In (69), Cj
i→k, i ∈ Sj , is the rate from node i to node k ∈

Sj over two hops through the amplify-and-forward operation
by relay j. Optimizing the rate conditions (67)-(68) over
{fj,1}j∈R and {fj,2}j∈R yields the maximum throughput
region Λ = {λj}j∈N . Relay nodes do not decode packets
incoming from the neighboring end terminals and therefore
this model corresponds to partial broadcasting only.

Analog network coding requires that relay j keeps all relay
packets in a common queue Qj . The self-generated packets
are separately kept in queue Qi

i at any node i such that the
transmissions of source and relay packets are separated in
time. The backlogs of queues Qj and Qi

i at time slot t are
Uj(t) and U i

i (t). The throughput optimal control policy is
based on maximizing a weighted sum W (t) of differential
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backlogs that represent the transmissions to relay nodes by
plain routing or analog network coding as well as relay trans-
missions. This extension is similar to digital network coding
and it is skipped here for brevity. The maximum stable rates
(67)-(68) can be achieved while bounding the time-average
value of total queue length

∑

i∈N U i
i (t) +

∑

j∈R Uj(t).

6. STABLE THROUGHPUT COMPARISON
For single relay R, consider channel rates Ci,R = 1, CR,i =

1 and Ci→j = 1 for any terminals i and j. Network coding
is reduced to plain routing, if λi = 0, i = m + 1, ..., K,
for λ1 ≥ ... ≥ λK . Otherwise, digital and analog network
coding improve the sum rate

∑K
i=1 λi over plain routing by

the amount of 1
2

∑K
i=m+1 λi and

∑K
i=m+1 λi, respectively.

The maximum throughput region for K − 1 terminals in-
cludes the maximum throughput region for K terminals ex-
cept for the case when λK > 0. Consider common through-
put rates λi = λ, i = 1, ..., K. Plain routing, digital and
analog network coding asymptotically achieve stable rates
λ = 1

2K
, λ = 1

2K−1−2n
and λ = 1

max(2dK/2e,2(K−1−2n))
, re-

spectively, if 2n < K − 1; otherwise λ = 1
K

. These stable
rates coincide with the throughput rates derived in [12] for
the case of saturated queues. The individual rates of differ-
ent schemes approach each other, as the number of terminals
K increases for the finite values of overhearing range n.

Next, consider two relay nodes connected in tandem. Each
relay is connected to K end terminals. Consider channel
rates Ci,j = 1 for any neighbors i and j, and Cj

i→k = 1 for
any relay j and two-hop neighbors i and k. Each (relay or
end terminal) node generates the packet traffic with common
rate λ. Assume that a relay and end terminals connected to
its one-hop neighbor relay can overhear each other depend-
ing on the hop-distance. However, the end terminals con-
nected to different relays cannot overhear each other. Let
nj = n, j = 1, 2. For 2n < K, plain routing, digital and
analog network coding asymptotically achieve stable rates
λ = 1

5K+4
, λ = 1

5K+2−4n
and λ = 1

4K+2−4n
, respectively.

7. CONCLUSIONS
In this paper, we evaluated the maximum throughput re-

gion for relay-assisted wireless broadcast under digital and
analog network coding. We showed that throughput opti-
mal control results in variations of the maximum differential
backlog policy and ensures the stable operation for arrival
rates in the maximum throughput region. We started with
the case of a single relay and extended the analysis to the
simultaneous operation of multiple relays. The results quan-
tify the stable throughput improvement of digital and analog
network coding over plain routing. The throughput optimal
control schemes rely on centralized scheduling with instanta-
neous queue backlog information. Future work should look
at distributed control with limited or delayed information on
queues and channel properties. In addition, the trade-offs of
stable throughput with delay and energy measures should
be further analyzed in the context of network coding.
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