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ABSTRACT
We study connectivity and information dissemination in large-
scale wireless networks with unreliable links from a percolation-
based perspective. We first examine static models, where
each link of the network is functional with some probability,
independently of all other links. We then examine dynamic
models, where each link is active or inactive according to
a Markov on-off process. We show that a phase transition
exists in such dynamic networks, and the critical density
for this model is the same as the one for static networks.
Furthermore, due to the dynamic behavior of links, a delay
is incurred for any information dissemination process even
when propagation delay is ignored. We study the behavior
of this delay and show that (ignoring propagation delay) the
delay scales linearly with the Euclidean distance between the
sender and the receiver when the network is in the subcriti-
cal phase, and the delay scales sub-linearly with the distance
if the network is in the supercritical phase. We then show
that when taking propagation delay into account, the delay
of information dissemination always scales linearly with the
Euclidean distance between the sender and the receiver.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; G.3 [Probability and Statistics]: Stochastic
Processes

General Terms
Performance, theory

Keywords
Information dissemination, first passage percolation, subad-
ditive ergodic theorem
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1. INTRODUCTION
Large-scale wireless networks for the gathering, process-

ing, and dissemination of information have become an im-
portant part of the modern communication infrastructure.
Traditionally, the performance of wireless networks has been
examined under the assumption of maintaining full connec-
tivity (or k-connectivity). Here, the system ensures that
any pair of nodes in the network are connected by a path
(or k paths). In large-scale wireless networks exposed to
severe natural hazards, enemy attacks, and resource deple-
tion, however, this full connectivity criterion may be overly
restrictive or impossible to achieve.

In this paper, we view the connectivity of large-scale wire-
less networks from a different perspective. One simple mea-
sure of the network functionality is the fraction of nodes in
the largest connected component of the network: nodes in
that component can communicate with an extensive por-
tion of the network, while those in smaller components can
communicate only with at most a few other nodes. On the
other hand, if after many sensor failures, the sensor net-
work breaks down into isolated parts where even the largest
component can reach only a few sensors, then the network
is not considered to be functional. From this perspective,
the characterization of network connectivity corresponds to
the study of the qualitative and quantitative properties of
the largest component. A powerful technique for this study
comes from the mathematical theory of percolation [1–3].
Recently, percolation theory, especially continuum percola-
tion theory, has become a useful tool for the analysis of
coverage, connectivity, capacity and latency in large-scale
wireless networks [4–6].

To intuitively understand percolation processes in large-
scale wireless networks, consider the following example. Sup-
pose a set of nodes are uniformly and independently dis-
tributed at random over an area. All nodes have the same
transmission radius, and two nodes within a transmission ra-
dius of each other are assumed to communicate directly. At
first, the nodes are distributed according to a very small
density. This results in isolation and no communication
among nodes. As the density increases, some clusters in
which nodes can communicate with one another directly or
indirectly (via multi-hop relay) emerge, though the sizes of
these clusters are still small compared to the whole network.
As the density continues to increase, at some critical point a
huge cluster containing a large portion of the network forms.
This phenomenon of a sudden and drastic change in the
global structure is called a phase transition. The density at
which phase transition takes place is called the critical den-
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sity [1–3]. A fundamental result of continuum percolation
concerns such a phase transition effect whereby the macro-
scopic behavior of the system is very different for densities
below and above the critical density λc. For λ < λc (subcrit-
ical), the connected component containing the origin (or any
other fixed node) contains a finite number of points almost
surely. For λ > λc (supercritical), the connected component
containing the origin (or any other fixed node) contains an
infinite number of points with a positive probability [1–3].

Due to noise, fading and multi-user interference, commu-
nication links in wireless networks are unreliable. Even when
two nodes lie within each other’s transmission range, a viable
communication link may not exist between the two nodes
due to path-loss. Furthermore, the link quality may switch
between the active and inactive states due to fading. To
capture this effect, we study percolation processes in wireless
networks with dynamic links, where each link of the network
is functional (active) according to some Markov on-off pro-
cess, independently of all other network links. We show that
a phase transition exists in these dynamic networks under
certain conditions, and the critical density for this model is
the same as the one for static networks with the same pa-
rameters. Due to the dynamic behavior of links, a delay is
incurred for any information dissemination even when prop-
agation delay is ignored. We study the behavior of this delay
by modelling the problem as a first passage percolation [7,8]
process on random geometric graphs. We show that ignor-
ing propagation delay, the delay of information dissemina-
tion scales linearly with the Euclidean distance between the
sender and the receiver when the dynamic network is in the
subcritical phase, and the delay scales sub-linearly with the
distance if the dynamic network is in the supercritical phase.
We further show that when taking propagation delay into ac-
count, the delay of information dissemination always scales
linearly with the Euclidean distance between the sender and
the receiver.

This paper is organized as follows. In Section 2, we out-
line some preliminary results for random geometric graphs
and continuum percolation. In Section 3, we study wireless
networks with static unreliable links. In Section 4, we intro-
duce a model for wireless networks with dynamic unreliable
links, and study percolation-based connectivity and infor-
mation dissemination delay performance in such dynamic
networks. Finally, in Section 5, we conclude the paper.

2. RANDOM GEOMETRIC GRAPHS AND
CONTINUUM PERCOLATION

We use random geometric graphs to model wireless net-
works. That is, we assume that the network nodes are
randomly placed over some area or volume, and a commu-
nication link exists between two (randomly placed) nodes
if the distance between them is sufficiently small, so that
the received power is large enough for successful decoding.
A mathematical model for this is as follows. Let ‖ · ‖ be
the Euclidean norm, and f(·) be some probability density
function (p.d.f.) on R

d. Let X1,X2, ...,Xn be independent
and identically distributed (i.i.d.) d-dimensional random
variables with common density f(·), where Xi denotes the
random location of node i in R

d. The ensemble of graphs
with undirected links connecting all those pairs {xi,xj} with
‖xi −xj‖ ≤ r, r > 0, is called a random geometric graph [3],
denoted by G(Xn, r). The parameter r is called the charac-

teristic radius.
In the following, we consider random geometric graphs

G(Xn, r) in R
2, with X1,X2, ...,Xn distributed i.i.d. accord-

ing to a uniform distribution in a square area A = [0,
√

n
λ
]2.

Let A = |A| be the area of A. There exists a link between
two nodes i and j if and only if i lies within a circle of radius
r around xj . As n and A both become large with the ratio
n
A

= λ kept constant, G(Xn, r) converges in distribution to
an (infinite) random geometric graph G(Hλ, r) induced by a
homogeneous Poisson point process with density λ > 0. Due
to the scaling property of random geometric graphs [2,3], in
the following, we focus on G(Hλ, 1).

Let Hλ,0 = Hλ ∪ {0}, i.e., the union of the origin and
the infinite homogeneous Poisson point process with density
λ. Note that in a random geometric graph induced by a
homogeneous Poisson point process, the choice of the origin
can be arbitrary. As discussed before, a phase transition
takes place at the critical density. More formally, we have
the following definition [2]:

Definition 1. For G(Hλ,0, 1), let W0 be the component
of G(Hλ,0, 1) containing 0. Define the following critical den-

sities: λ# , inf{λ : Pr(|W0| = ∞) > 0}, λN , inf{λ :

E[|W0|] = ∞}, λc , inf{λ : Pr(d(W0) = ∞) > 0}, λD ,

inf{λ : E[d(W0)] = ∞}, where |W0| is the cardinality—the

number of nodes—of W0, and d(W0) , sup{||x−y|| : x,y ∈
W0}.

As shown in Theorem 3.4 and Theorem 3.5 in [2], these
four critical densities are identical. According to the the-
ory of continuum percolation 0 < λc < ∞. Furthermore,
when λ > λc, there exists one unique infinite component
in G(Hλ,0, 1) with probability 1 (w.p.1), and when λ < λc,
there is no infinite component in G(Hλ,0, 1) w.p.1 [2].

3. WIRELESS NETWORKS WITH STATIC
UNRELIABLE LINKS

Random geometric graphs are good simplified models for
wireless networks. However, due to noise, fading, and inter-
ference, wireless communication links between two nodes are
usually unreliable. We use the bond percolation model on
random geometric graphs to study percolation-based con-
nectivity of large-scale wireless networks with static unreli-
able links. Given a random geometric graph G(Hλ, 1), let
each link of G(Hλ, 1) be active (independent of all other
links) with probability pe(d) which may depend on d, where
d = ‖xi −xj‖ ≤ 1 is the length of the link (i, j). The result-
ing graph consisting of all active links and their end nodes is
denoted by G(Hλ, 1, pe(·)). This model is a specific example
of the random connection model in continuum percolation
theory [2].

Definition 2. For G(Hλ,0, 1, pe(·)), let W0 be the com-
ponent of G(Hλ,0, 1, pe(·)) containing 0. We define four

critical densities: λ#(pe(·)) , inf{λ : Pr(|W0| = ∞) > 0},

λN (pe(·)) , inf{λ : E[|W0|] = ∞}, λc(pe(·)) , inf{λ :

Pr(d(W0) = ∞) > 0}, λD(pe(·)) , inf{λ : E[d(W0)] = ∞},
where |W0| is the cardinality—the number of nodes—of W0,

and d(W0) , sup{||x − y|| : x,y ∈ W0}.

Proposition 1. For G(Hλ,0, 1, pe(·)), we have

λ#(pe(·)) = λN (pe(·)) = λc(pe(·)) = λD(pe(·)). (1)
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Proof: The identity λ#(pe(·)) = λN (pe(·)) is given by
Theorem 6.2 in [2].

We now show λ#(pe(·)) = λc(pe(·)). The proof method
is similar to the one used for Theorem 3.4 in [2]. Suppose
λ > λ#(pe(·)). Then for some δ > 0, Pr(|W0| = ∞) = δ > 0.
For every h > 0, the box B(h) = [−h, h]2 contains at most
a finite number of nodes of G(Hλ,0, 1, pe(·)) w.p.1. Thus,
Pr(|W0 ∩ B(h)c| = ∞) = δ > 0. However, {|W0 ∩ B(h)c| =
∞} implies {|W0 ∩ B(h)c| > 0}, so that d(W0) ≥ h. Hence
we have Pr(d(W0) ≥ h) = δ > 0. Since this holds for
all h > 0, we have λ > λc(pe(·)). Therefore, λ#(pe(·)) ≥
λc(pe(·)). To show λ#(pe(·)) ≤ λc(pe(·)), note that d(W0) ≤
|W0| − 1, where equality is obtained when W0 is a chain
and the distance between any two adjacent nodes equals
1. Thus, {|W0| < ∞} implies {d(W0) < ∞}. This proves
λ#(pe(·)) = λc(pe(·)).

Finally we show λD(pe(·)) = λN (pe(·)). Since d(W0) ≤
|W0| − 1, {E[d(W0)] = ∞} implies {E[|W0|] = ∞}. Thus
we have λD(pe(·)) ≥ λN (pe(·)). On the other hand, if λ >
λN (pe(·)), then λ > λc(pe(·)), i.e., Pr(d(W0) = ∞) > 0. As
a consequence, E[d(W0)] = ∞, which implies λN (pe(·)) ≥
λD(pe(·)). Therefore, λD(pe(·)) = λN (pe(·)).

Since the four critical densities are identical, in the re-
mainder of this paper, we state our results with respect
to λc(pe(·)), which can be interchanged with λ#(pe(·)), or
λN (pe(·)), or λD(pe(·)).

It is known that when λ > λc(pe(·)), G(Hλ, 1, pe(·)) is
percolated, i.e., there exists one unique infinite component in
G(Hλ, 1) consisting of active links and their end nodes w.p.1,
and when λ < λc(pe(·)), G(Hλ, 1, pe(·)) is not percolated,
i.e., there is no infinite component in G(Hλ, 1) consisting of
active links and their end nodes w.p.1 [2].

The following proposition asserts that when the random
connection model is in the subcritical phase, the probability
that the origin and any node are connected decays exponen-
tially with respect to their distance. This is analogous to
similar results in traditional continuum percolation (Theo-
rem 2.4 in [2]) and discrete percolation (Theorem 5.4 in [1]).
The proof is omitted here due to space limitations.

Proposition 2. Given G(Hλ,0, 1, pe(·)) with λ < λc(pe(·)),
let B(h) = [−h, h]2, h ∈ R

+. Then there exist constants
c1, c2 > 0, such that Pr(0 ! B(h)c) ≤ c1e

−c2h, where
{0 ! B(h)c} denotes the event that the origin and some
node in B(h)c are connected, i.e., the origin and some node
outside B(h) are in the same component.

4. WIRELESS NETWORKS WITH DYNAMIC
UNRELIABLE LINKS

4.1 Percolation-based Connectivity
For large-scale wireless networks with static unreliable

links, we assumed that the structure of the graph does not
change with time. Once a link is active, it remains active for-
ever. In wireless networks, however, the link quality usually
varies with time due to shadowing and multi-path fading.
In order to study percolation-based connectivity of wireless
networks with time-varying links, we investigate a more so-
phisticated model. Formally, given a wireless network mod-
elled by G(Hλ, 1), we associate a stationary on-off state pro-
cess {Wij(dij , t); t ≥ 0} with each link (i, j), where dij is the
length of the link, such that Wij(dij , t) = 0 if link (i, j) is
inactive at time t, and Wij(dij , t) = 1 if link (i, j) is active

at time t. In discrete lattices, a similar problem has been
studied in [9]. Our model can be viewed as a dynamic bond
percolation in random geometric graphs.

For such dynamic networks, we will show that there exists
a phase transition, and the critical density for this model is
the same as the one for static networks with the same param-
eters. To simplify matters, assume that {Wij(dij , t)} is prob-
abilistically identical for all links with the same length. Use
{W (d, t)} to denote the process for a link with length d when
no ambiguity arises. Assume that {W (d, t)} is a Markov
on-off process with i.i.d. inactive periods Yk(d), k ≥ 1, and
i.i.d. active periods Zk(d), k ≥ 1, where E[Yk(d) + Zk(d)] <
∞, Pr(Zk(d) > 0) = 1 and Pr(Yk(d) > 0) = 1. That is both
active and inactive periods are always nonzero.

Under the above assumptions, the stationary distribution
of {W (d, t)} is given by [10]

η1(d) , Pr(W (d, t) = 1) =
E[Zk(d)]

E[Zk(d)] + E[Yk(d)]
, (2)

η0(d) , Pr(W (d, t) = 0) =
E[Yk(d)]

E[Zk(d)] + E[Yk(d)]
. (3)

We call η1(d) the active ratio for a link with length d.
Let the sampled graph at time t be G(Hλ, 1, W (d, t)).

That is, G(Hλ, 1, W (d, t)) consists of all active links at time
t, along with their associated end nodes. The following the-
orem establishes a phase transition phenomena with respect
to connectivity in a wireless network with dynamic unreli-
able links G(Hλ, 1, W (d, t)). It also asserts that the crit-
ical density is the same as the one for the static network
G(Hλ, 1, η1(d)), i.e, the network in which each link is active
with probability η1(d). The proof is omitted due to space
limitations.

Theorem 3. Let λc(η1(d)) be the critical density for the
static model G(Hλ, 1, η1(d)). Then G(Hλ, 1, W (d, t)) is per-
colated for all t > 0 if λ > λc(η1(d)) and not percolated at
any t > 0 if λ < λc(η1(d)).

4.2 Delay of Information Dissemination
We have shown that there exists a critical density λc(η1(d))

such that when λ > λc(η1(d)), G(Hλ, 1, W (d, t)) is perco-
lated for all time. When G(Hλ, 1, W (d, t)) is percolated, if
one node inside the infinite component of G(Hλ, 1, W (d, t))
broadcasts a message to the whole network, then ignor-
ing propagation delay, all the nodes in the infinite com-
ponent of G(Hλ, 1, W (d, t)) receive this message instanta-
neously. On the other hand, the nodes in the infinite com-
ponent of G(Hλ, 1) but not in the infinite component of
G(Hλ, 1, W (d, t)) cannot receive this message instantaneously.
However, we will show that even when λ < λc(η1(d)) and
G(Hλ, 1, W (d, t)) is never percolated, if two nodes u and v
are in the infinite component of G(Hλ, 1), information can
eventually be transmitted from u to v over multi-hop re-
lays. The main question we address here is the nature of
this information dissemination delay.

This problem is similar to the first passage percolation
problem in lattices [1, 7]. Related continuum models were
considered in [5, 8, 11]. In [8], the author study continuum
growth model for a spreading infection. In [5] and [11], the
authors consider wireless sensor networks where each sen-
sor has independent or degree-dependent dynamic behav-
ior, which can be modelled by an independent or a degree-
dependent dynamic site percolation on random geometric
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graphs, respectively. The main tool is the Subadditive Er-
godic Theorem [12]. We will use this technique to analyze
our problem.

In the following, we will show that in a large-scale wire-
less network with dynamic unreliable links, the message de-
lay scales linearly with the Euclidean distance between the
sender and the receiver if the resulting network is in the
subcritical phase, and the delay scales sub-linearly with the
distance if the resulting network is in the supercritical phase.

To begin, let Tij(dij) be a random variable associated with
link (i, j) having length dij , such that

{

Pr(Tij(dij) = 0) = η1(dij),
Pr(Tij(dij) > t) = η0(dij)Pdij

(t),
(4)

where Pdij
(t) = Pr(Wij(dij , t

′) = 0, ∀t′ ∈ [0, t)|Wij(dij , 0) =
0), and (η1(d), η0(d)) is the stationary distribution of {W (d, t)}
given by (2) and (3).

Let d(u, v) , ||Xu − Xv|| and

T (u, v) = T (Xu,Xv) , inf
l(u,v)∈L(u,v)







∑

(i,j)∈l(u,v)

Tij(dij)







, (5)

where l(u, v) is a path from node u to node v, and L(u, v)
is the set of all such paths. Hence, T (u, v) is the message
delay on the path from u to v with the smallest delay.1

Theorem 4. Given G(Hλ, 1, W (d, t)) with λ > λc, there
exists a constant γ < ∞ and γ > 0 w.p.1, such that for any
u, v ∈ C(G(Hλ, 1)), where C(G(Hλ, 1)) denotes the infinite
component of G(Hλ, 1),

(i) if G(Hλ, 1, W (d, t)) is in the subcritical phase, i.e., λ <
λc(η1(d)), then for any ε > 0, δ > 0, there exists d0 <
∞ such that for any u, v with d(u, v) > d0,

Pr

(
∣

∣

∣

∣

T (u, v)

d(u, v)
− γ

∣

∣

∣

∣

< ε

)

> 1 − δ; (6)

(ii) if G(Hλ, 1, W (d, t)) is in the supercritical phase, i.e.,
λ > λc(η1(d)), then for any ε > 0, δ > 0, there exists
d0 < ∞ such that for any u, v with d(u, v) > d0,

Pr

(

T (u, v)

d(u, v)
< ε

)

> 1 − δ. (7)

Before proceeding, we introduce some new notation. Let

X̃i, argmin
Xj∈C(G(Hλ,1))

{||Xj − (i, 0)||}, (8)

Tl,m,T (X̃l, X̃m), for ||X̃l − X̃m|| < ∞, 0 ≤ l ≤ m. (9)

The proof for Theorem 4-(i) is based on the following
lemma:

Lemma 5. Let

γ , lim
m→∞

E[T0,m]

m
. (10)

Then, γ = infm≥1
E[T0,m]

m
, and limm→∞

T0,m

m
= γ w.p.1.

To show Lemma 5, we use the following Subadditive Er-
godic Theorem by Liggett [12].

1
Note that the path with the smallest delay may be different from

the shortest path (in terms of number of links) from node u to node
v.

3d/2

a

Ra

Sa
- Sa

+

d/2

(a) Good Rectangle

3d/2

a

Ra

Sa
- Sa

+

d/2

(b) Open Rectangle

Figure 1: Examples of good and open rectangles

Theorem 6 (Liggett [12]). Let {Sl,m} be a collection
of random variables indexed by integers 0 ≤ l < m. Sup-
pose {Sl,m} has the following properties: (i) S0,m ≤ S0,l +
Sl,m, 0 ≤ l ≤ m; (ii) {S(m−1)k,mk, m ≥ 1} is a stationary
process for each k; (iii) {Sl,l+k, k ≥ 0} = {Sl+1,l+k+1, k ≥
0} in distribution for each l; (iv) E[|S0,m|] < ∞ for each

m. Then (a) α , limm→∞
E[S0,m]

m
= infm≥1

E[S0,m]

m
; S ,

limm→∞
S0,m

m
exists w.p.1 and E[S] = α. Furthermore, if

(v) the stationary process in (ii) is ergodic, then (b) S = α
w.p.1.

To show Lemma 5, we need to verify that the sequence
{Tl,m, l ≤ m} satisfies conditions (i)–(v) of Theorem 6. It is
easy to see that (i) is satisfied, since T0,m is the delay of the

path with the smallest delay from X̃0 to X̃m and T0,l +Tl,m

is the delay on a particular path from X̃0 to X̃l (it has

the smallest delay from X̃0 to X̃l, and from X̃l to X̃m).
Furthermore, because all nodes are distributed according to
a homogeneous Poisson point process, the geometric struc-
ture is stationary and hence (ii) and (iii) are guaranteed.
We need only to show conditions (iv) and (v) also hold for
{Tl,m, l ≤ m}. To accomplish this, we first show property
(iv) holds for {Tl,m, l ≤ m}.

Lemma 7. Let r0 = ||X̃0 − (0, 0)||, then r0 < ∞ w.p.1.

Proof: We consider a mapping between G(Hλ, 1) and a
square lattice L = d · Z

2, where d is the edge length. The
vertices of L are located at (d × i, d × j) where (i, j) ∈ Z

2.
For each horizontal edge a, let the two end vertices be (d ×
ax, d × ay) and (d × ax + d, d × ay).

For edge a in L, define event Aa(d) as the set of outcomes
for which the following condition holds: the rectangle Ra =
[axd− d

4
, axd + 5d

4
]× [ayd− d

4
, ayd + d

4
] is crossed2 from left

to right by a connected component in G(Hλ, 1). If Aa(d)
occurs, we say that rectangle Ra is a good rectangle, and
edge a is a good edge. Let pg(d) , Pr(Aa(d)). Define Aa(d)
similarly for all vertical edges by rotating the rectangle by
90◦. An example of a good rectangle and a good edge is
illustrated in Figure 1-(a).

Further define event Ba(d) for edge a in L as the set of
outcomes for which both of the following hold: (i) Aa(d)
occurs; (ii) the left square S−

a = [axd− d
4
, axd + d

4
]× [ayd−

d
4
, ayd+ d

4
] and the right square S+

a = [axd+ 3d
4

, axd+ 5d
4

]×

[ayd − d
4
, ayd + d

4
] are both crossed from top to bottom by

connected components in G1(Hλ, 1).
If Ba(d) occurs, we say that rectangle Ra is an open rect-

angle, and edge a is an open edge. Let po(d) , Pr(Ba(d)).

2
Here, a rectangle R = [x1, x2] × [y1, y2] being crossed from left to

right by a connected component in G(Hλ, 1) means that there exists
a sequence of nodes v1, v2, ..., vm ∈ G(Hλ, 1) contained in R, with
||xvi

− xvi+1
|| ≤ 1, i = 1, ..., m − 1, and 0 < x(v1) − x1 < 1, 0 <

x2 − x(vm) < 1, where x(v1) and x(vm) are the x-coordinates of
nodes v1 and vm, respectively. A rectangle being crossed from top to
bottom is defined analogously.
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a

e

d

cb

f

g

Figure 2: A path of open edges in L implies a path
of connected nodes in G(Hλ, 1)

Define Ba(d) similarly for all vertical edges by rotating the
rectangle by 90◦. Examples of an open rectangle and an
open edge are illustrated in Figure 1-(b).

Suppose edges b and c are vertically adjacent to edge a,
then it is clear that when events Aa(d), Ab(d) and Ac(d)
occur, event Ba(d) occurs. Moreover, since events Aa(d),
Ab(d) and Ac(d) are increasing events3, by the FKG inequal-
ity [1–3], po(d) = Pr(Ba(d)) ≥ Pr(Aa(d)∩Ab(d)∩Ac(d)) ≥
Pr(Aa(d)) Pr(Ab(d)) Pr(Ac(d)) = (pg(d))3.

According to Corollary 4.1 in [2], the probability pg(d)
converges to 1 as d → ∞ when G(Hλ, 1) is in the supercriti-
cal phase. In this case, (pg(d))3 converges to 1 as d → ∞ as
well. Hence, po(d) converges to 1 as d → ∞ when G(Hλ, 1)
is in the supercritical phase.

Note that in our model, events {Ba(d)} are not indepen-
dent in general. However, if two edges a and b are not adja-
cent, i.e., they do not share any common end vertices, then
Ba(d) and Bb(d) are independent. Furthermore, when edges
a and b are adjacent, Ba(d) and Bb(d) are increasing events
and thus positively correlated. Consequently, our model is
a 1-dependent bond percolation model. It is known that

there exists pbond
1-dep < 1 such that any 1-dependent model

with p > pbond
1-dep is percolated, where p is the probability of

an edge being open [13].
Now define

d0 , inf

{

d′ > 1 : po(d
′) > max

{

8

9
, pbond

1-dep

}}

, (11)

and choose the edge length of L to be d > d0. Then there
is an infinite cluster consisting of open edges and their end
vertices in L. Denote this infinite cluster by C(L).

From Figure 2, it is easy to see that all the nodes along the
crossings in Ra and all the nodes along the crossings in Rb for
any a, b ∈ C(L) are connected. Since the infinite component
of G(Hλ, 1) is unique, all the nodes along the crossings in
Ra for each a ∈ C(L) must belong to C(G(Hλ, 1)).

By definition, no node of G(Hλ, 1) strictly inside A(0, r0)
belongs to C(G(Hλ, 1)). This implies that no edge of L
strictly inside A(0, r0) belongs to C(L). To see this, sup-
pose edge ai,j of L is strictly inside A(0, rs0) and belongs
to C(L). The nodes along the crossings in Rai,j belong to
C(G(Hλ, 1)). As shown in Figure 3-(a), when d > 1 and
r0 � 1, no matter what direction the edge ai,j has, there are
some nodes along the crossings in Rai,j (therefore belong-
ing to C(G(Hλ, 1))) which are strictly inside A(0, r0). These

3
An event A is called increasing if IA(G) ≤ IA(G′) whenever graph

G is a subgraph of G′, where IA is the indicator function of A. An
event A is called decreasing if Ac is increasing. For details, please
see [1–3].

0

L

r0

ai,j

ai,j

X0

~

(a)

0

L
L'

r0

X0

~

(b)

Figure 3: (a) Two possibilities for ai,j in L. (b) A
closed circuit in L′ containing all edges of L strictly
inside A(0, r0)

nodes then have strictly smaller distance to 0 than node X̃0.
This contradiction ensures that no edge of L strictly inside
A(0, r0) belongs to C(L).

Consider the dual lattice L′ of L. The construction of L′

is as follows: let each vertex of L′ be located at the center
of a square of L. Let each edge of L′ be open if and only
if it crosses an open edge of L, and closed otherwise. It
is clear that each edge in L′ is open also with probability
po(d). Let q = 1 − po(d) < 1

9
. Choose 2m edges in L′.

Since the states (open or closed) of any set of non-adjacent
edges are independent, we can choose m edges among the
2m edges such that their states are independent. As a result,
Pr(all the 2m edges are closed) ≤ qm.

Now a key observation is that if no edge of L strictly inside
A(0, r0) belongs to C(L), for which the event is denoted by
EL, then there must exist a closed circuit in L′ (a circuit
consisting of closed edges) containing all edges of L strictly
inside A(0, r0), for which the event is denoted by EL′ , and
vice versa. This is demonstrated in Figure 3-(b). Hence
Pr(EL) = 1 ⇐⇒ Pr(EL′) = 1.

Any closed circuit in L′ containing all edges of L strictly
inside A(0, r0) has length greater than or equal to 2l, where

l , 2b r0
d
c. Thus we have Pr(EL′) =

∑∞
m=l Pr(∃Oc(2m)) ≤

∑∞
m=l γ(2m)qm, where Oc(2m) is a closed circuit having

length 2m in L′ containing all edges of L strictly inside
A(0, r0), and γ(2m) is the number of such circuits. By
a similar argument to the one used in [1], we can show
γ(2m) = 4

27
(m − 1)32m so that

∞
∑

m=l

γ(2m)qm ≤
∞

∑

m=l

4

27
(m − 1)(9q)m

=
4

27

[

∞
∑

m=l

m(9q)m −
∞

∑

m=l

(9q)m

]

=
4[l − 1 − (l − 2)9q]

27(1 − 9q)2
(9q)l. (12)

Since q < 1
9
, we have Pr(EL′) → 0 as l = 2b r0

d
c → ∞.

That is, as r0 goes to infinity, w.p.1, there is some edge of
L strictly inside A(0, r0) belonging to C(L). Hence, w.p.1,
there is some node of G(Hλ, 1) strictly inside A(0, r0) be-
longing to C(G(Hλ, 1)). This contradiction implies that r0

is finite w.p.1.
Let rm = ||X̃m − (m, 0)||, due to stationarity, we have
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Figure 4: Square annuli

rm < ∞ w.p.1, for any m.

Lemma 8. Let L(X̃0, X̃m) be the shortest path (in terms

of the number of links) from X̃0 to X̃m), and let |L(X̃0, X̃m)|

denote the number of links on such a path. If ||X̃0 − X̃m|| <

∞, then |L(X̃0, X̃m)| < ∞, and E[T L
0,m] < ∞, where T L

0,m

denotes the delay on path L(X̃0, X̃m).

Proof: We use the same mapping as the one for the proof

of Lemma 7. For any given 4

√

8
9

< δ < 1, define

dδ = max{inf{d′ : pg(d′) ≥ δ}, ||X̃0 − X̃m||}. (13)

Then, for any d > dδ, we have pg(d) ≥ δ.
Now, consider a fractal structure as shown in Figure 4:

first a square S(dδ) is constructed with edge length dδ cen-

tered at X̃0+X̃m

2
. Then, a second square S(3dδ) is con-

structed with edge length 3dδ also centered at X̃0+X̃m

2
. The

construction proceeds in the same manner, i.e., at step j,
a square S(3j−1dδ) is constructed with edge length 3j−1dδ

centered at X̃0+X̃m

2
. Thus, we have the initial square and a

sequence of square annuli that do not overlap.
Denote the square annulus with inside edge length 3j−1dδ

(j ≥ 2) and outside edge length 3jdδ by D(3jdδ). Let A+
j be

the event that the upper horizontal rectangle of D(3jdδ)—

[m
2
− 3j

2
dδ,

m
2

+ 3j

2
dδ]×[ 3

j−1

2
dδ,

3j

2
dδ] is good, i.e., it is crossed

by a connected component in G(Hλ, 1) from left to right.
Since the length of the corresponding lattice edge of the
upper horizontal rectangle of D(3jdδ) is 2 · 3j−1dδ > dδ,
we have Pr{A+

j } ≥ δ. Similarly define A−
j , B+

j and B−
j to

be the events that the lower, right and left rectangles are
good, respectively. Then Pr{A−

j } ≥ δ, Pr{B+
j } ≥ δ and

Pr{B−
j } ≥ δ, ∀j ≥ 1.

Let Ej be the event that there exists a circuit of connected
nodes in G(Hλ, 1) within D(3jdδ). Once A+

j , A−
j , B+

j and

B−
j all occur, Ej must also occur. Although A+

j , A−
j , B+

j and

B−
j are not independent, they are increasing events. By the

FKG inequality, we have Pr(Ej) ≥ Pr(A+
j ∩A−

j ∩B+
j ∩B−

j ) ≥

Pr(A+
j ) Pr(A−

j ) Pr(B+
j ) Pr(B−

j ) ≥ δ4.

When Ej occurs, X̃0 and X̃m are contained in S(3j−1dδ)
and there is a circuit of connected nodes in G(Hλ, 1) con-
tained in the square annulus D(3jdδ). If the shortest path

between X̃0 and X̃m, L(X̃0, X̃m), were to go outside S(3jdδ),
it would intersect the closed circuit contained by D(3jdδ)

and we could construct a shorter path from X̃0 to X̃m. This
implies that L(X̃0, X̃m) must be contained in S(3jdδ).

Suppose u, v and w are three consecutive nodes along
L(X̃0, X̃m). Then ||Xu −Xw|| > 1, since otherwise v would

not belong to the shortest path. Hence, if we draw circles
with radius 1

2
, centered at Xu and Xw, respectively, then

the two circles do not overlap. Consequently, if the length
of L(X̃0, X̃m) is |L| , |L(X̃0, X̃m)|, then we must be able

to draw at least d |L|
2
e circles with radius 1

2
centered at alter-

nating nodes along L(X̃0, X̃m). All of these circles are con-
tained in the square with edge length 3jdδ+1. Such a square
contains at most d(3jdδ + 1)2/[π( 1

2
)2]e non-overlapping cir-

cles with radius 1
2
. Therefore, |L| ≤ 2d4(3jdδ +1)2/πe < ∞.

Now if |L| > 2d4(3jdδ + 1)2/πe, then |L| > 2d4(3idδ +
1)2/πe for all i = 1, 2, ..., j. By the above argument, none of
the events E1, E2, ...Ej can occur. Thus

Pr

(

|L| > 2

⌈

4

π
(3jdδ + 1)2

⌉)

≤

j
∏

i=1

Pr(Ec
i ) ≤ (1 − δ4)j .

Let M = 2
⌈

4
π
(3dδ + 1)2

⌉

, then we have

E[|L|]=
M
∑

k=0

Pr(|L| > k) +
∞

∑

k=M+1

Pr(|L| > k)

≤M+
∞

∑

j=1

⌈

4

π
(3j+1dδ + 1)2

⌉

Pr

(

|L|>

⌈

4

π
(3jdδ + 1)2

⌉)

≤M +

∞
∑

j=1

(

4

π
(3j+1dδ + 1)2 + 1

)

(1 − δ4)j

=M+
∞

∑

j=1

(

4

π
(9 · 9jd2

δ +6 · 3jdδ + 1)+1

)

(1−δ4)j (14)

When δ > 4

√

8
9
, we have (1− δ4)j < 9−j . Thus, E[|L|] < ∞.

Let ΛW (d,t) , max0<d≤1{η0(d)E[Yk(d)]} < ∞, then we

have E[T L
0,m||L|] =

∑|L|
i=1 η

(i)
0 (d)E[Y

(i)
k (d)] ≤ |L|ΛW (d,t), where

η
(i)
0 (d) and E[Y

(i)
k (d)] are the stationary probability of the

inactive state, and the expected inactive period of the i-
th link with length d on L(X̃0, X̃m), respectively. Hence
E[T L

0,m] = E[E[T L
0,m||L|]] ≤ E[|L|]ΛW (d,t) < ∞.

To show property (v), we show {T(m−1)j,mj , m ≥ 1} is

strong mixing.4

Lemma 9. The sequence {T(m−1)k,mk, m ≥ 1} is strong
mixing, so that it is ergodic.

Proof: From the proof of Lemma 7, we have Pr(Ej) ≥ δ4

for all j = 1, 2, .... Summing over j yields
∑∞

j=1 Pr(Ej) ≥
∑∞

j=1 δ4 = ∞. Since Ej are independent events, by the

Borel-Cantelli Lemma, w.p.1 there exists j′ < ∞ such that
Ej′ occurs.

We now construct squares A1 and A2 centered at
X̃(m−1)j+X̃mj

2

and
X̃(m+k−1)j+X̃(m+k)j

2
with edge length 3j′dδ and 3j′′dδ re-

spectively, such that the path with the smallest delay from
X̃(m−1)j to X̃mj , and the path from X̃(m+k−1)j to X̃(m+k)j

are contained in A1 and A2, respectively. Let E be the event
that j′ < ∞ and j′′ < ∞. Then Pr(E) = 1.

When finite j′ and j′′ exist, due to stationarity, j′ and j′′

are independent of k. Hence, as k → ∞, A1 and A2 become

4
A measure preserving transformation H on (Ω,F, P ) is called strong

mixing if for all measurable sets A and B, limm→∞ |P (A∩H−mB)−
P (A)P (B)| = 0. A sequence {Xn, n ≥ 0} is called strong mixing if
the shift on sequence space is strong (weak) mixing. Every strongly-
mixing system is ergodic [14].
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Figure 5: Path segments.

non-overlapping so that the paths inside A1 and A2 do not
share any common nodes of G(Hλ, 1). Hence T(m−1)j,mj and
T(m+k−1)j,(m+k)j are independent of each other as k → ∞.

Therefore

lim
k→∞

Pr({T(m−1)j,mj <t}∩{T(m+k−1)j,(m+k)j <t′})

= lim
k→∞

Pr({T(m−1)j,mj <t}∩{T(m+k−1)j,(m+k)j <t′}|E) Pr(E)

+ lim
k→∞

Pr({T(m−1)j,mj <t}∩{T(m+k−1)j,(m+k)j <t′}|Ec) Pr(Ec)

=Pr(T(m−1)j,mj <t|E) Pr(T(m−1)j,mj <t′|E)

=Pr(T(m−1)j,mj <t) Pr(T(m−1)j,mj <t′), (15)

This implies that sequence {T(m−1)k,mk, m ≥ 1} is strong
mixing, so that it is ergodic.

Now, we present the proof for Lemma 5.
Proof of Lemma 5: Conditions (i)–(iii) of Theorem 6 have

been verified. The validation of (iv) is provided by Lemma 8.

Let L(X̃0, X̃m) be the shortest path from X̃0 to X̃m. Since

L(X̃0, X̃m) is a particular path, we have T0,m ≤ T L
0,m so

that E[T0,m] ≤ E[T L
0,m], where T L

0,m denotes the delay on

path L(X̃0, X̃m). By Lemma 8, we have E[T L
0,m] < ∞ and

therefore E[T0,m] < ∞. Furthermore, due to Lemma 9,
{T(m−1)k,mk, m ≥ 1} is ergodic, thus the results (a) and (b)
of Theorem 6 hold.

Remark: Using the proof for condition (iv), we can show
that for any two nodes u and v in the infinite component of
G(Hλ, 1) which are within finite Euclidean distance of each
other, i.e., u, v ∈ C(G(Hλ, 1)) with d(u, v) < ∞, E[T (u, v)] <
∞.

Lemma 10. Suppose G(Hλ, 1, pe(·)) is in the supercritical
phase, i.e, λ > λc(pe(·)). Let v /∈ C(G(Hλ, 1, pe(·))) and

define w , argmini∈C(G(Hλ,1,pe(·))) d(i, v), i.e., w is the node
in the infinite component of G(Hλ, 1, pe(·)) with the smallest
Euclidean distances to node v. Then, d(w, v) < ∞ w.p.1.

The idea behind the proof for this lemma is similar to
that for the proof for Lemma 7. The difference is that the
probability of a good event is now defined with respect to
G(Hλ, 1, pe(·)) instead of G(Hλ, 1). Due to space limita-
tions, the proof is omitted here.

Lemma 11. Let γ be defined as (10). (i) If G(Hλ, 1, W (d, t))
is in the subcritical phase, i.e., λ < λc(η1(d)), then γ < ∞,
and γ > 0 w.p.1. (ii) If G(Hλ, 1, W (d, t)) is in the super-
critical phase, i.e., λ > λc(η1(d)), then γ = 0 w.p.1.

Proof: To show (i), note that γ < ∞ follows directly from

γ = infm≥1
E[T0,m]

m
≤ E[T0,1] < ∞, where the last inequality

is shown above in the proof for Lemma 5.
To see why γ is positive, suppose the node at X̃0 dissemi-

nates a message at time t = t0 and consider G(Hλ, 1, W (d, t0)).
Choose K large enough such that c1e

−c2K < 1
2
, where c1

and c2 are the constants given in Proposition 2. Let q =
b m

2(K+1)
c. When m > 2(K + 1), q ≥ 1.

Let Sh = {(x, y) ∈ R
2 : K +(h−1)(K +1) ≤ x−x(X̃0) <

h(K + 1)} for h = 1, 2, ..., where x(v) is the x-coordinate of

node v. Since X̃0 and X̃m are both in C(G(Hλ, 1)), there

exists at least one path from X̃0 to X̃m. Moreover, since
each strip Sh has width 1, at least one node of C(G(Hλ, 1))
lies inside each Sh.

Let {X
(1)
l , l = 1, 2, ...} be the nodes of C(G(Hλ, 1)) which

lie inside S1. Since G(Hλ, 1, W (d, t0)) is in the subcritical
phase, by Proposition 2, the probability that there exists a

path consisting of only active links from X̃0 to any X
(1)
l ,

l = 1, 2, ..., is less than or equal to c1e
−c2K < 1

2
. In other

words, with probability strictly greater than 1
2
, there exists

at least one inactive link at time t = t0 on any path from

X̃0 to X
(1)
l , l = 1, 2, .... Let T (1) = infl{T (X̃0,X

(1)
l )}. Let

ΓW (d,t) , min0<d≤1 {η0(d)E[Yk(d)]} > 0, then E[T (1)] >
1
2
ΓW (d,t) > 0.

Let {X
(h+1)

l′
, l′ = 1, 2, ...} be the nodes of C(G(Hλ, 1))

which lie inside Sh+1, for h ≥ 1. By the same argument
as above, the probability that there exists a path consist-
ing of only active links from any node in Sh to any node
in Sh+1 is less than or equal to c1e

−c2K < 1
2
. In other

words, with probability strictly greater than 1
2
, there exists

at least one inactive link on any path from any node in Sh

to any node in Sh+1. Let T (h+1) = infl,l′{T (X
(h)
l ,X

(h+1)

l′
)}.

Then E[T (h+1)] > 1
2
ΓW (d,t) > 0. The path segments are

illustrated in Figure 5.
Since ||X̃0 − X̃m|| ≥ m− r0 − rm, when m

2
> r0 + rm, any

path from X̃0 to X̃m has at least b m
2(K+1)

c = q segments and

the delay on each segment is strictly greater than 1
2
ΓW (d,t) >

0. Hence, E[T0,m] > 1
2
qΓW (d,t) when m

2
> r0 + rm. Since

both r0 and rm are finite w.p.1, m
2

> r0 + rm holds w.p.1 as
m → ∞.

Since K is finite and ΓW (d,t) is positive and independent of

m, we have γ = limm→∞
E[T0,m]

m
> limm→∞

q

m
1
2
ΓW (d,t) >

limm→∞

(

1
2(K+1)

− 1
m

)

1
2
ΓW (d,t) > 0 w.p.1, where we used

the fact that q > m
2(K+1)

− 1.

For (ii), suppose G(Hλ, 1, W (d, t)) is in the supercritical
phase. To simplify notation, let C(t) be the infinite com-
ponent of G(Hλ, 1, W (d, t)). Let t′ be the first time when

some node in C(t′) receives X̃0’s message, and let w1 ,

argmini∈C(t′) d(Xi, X̃0), and w2 , argmini∈C(t′) d(Xi, X̃m).

If node X̃0 is in C(t0), then t′ = t0 and w1 = X̃0. If at time

t′, node v is in C(t′), then w2 = X̃m.
Since both w1 and w2 belong to C(t′), T (w1, w2) = 0.

The distances d(X̃0,Xw1) and d(Xw2 , X̃m) are finite w.p.1

by Lemma 10. Clearly, d(X̃0,Xw1) is independent of m. By

stationarity, d(Xw2 , X̃m) is also independent of m. Hence by

the proof of Lemma 5, E[T (X̃0,Xw1)] < ∞, E[T (Xw2 , X̃m)] <

∞ w.p.1 for any m, and E[T (X̃0,Xw1)] and E[T (Xw2 , X̃m)]
are independent of m. Moreover,

0 ≤
T0,m

m
≤

T (X̃0,Xw1) + T (w1, w2) + T (Xw2 , X̃m)

m
.

Hence γ = limm→∞
E[T0,m]

m
= 0 w.p.1.

Proof of Theorem 4: Assume node u disseminates a mes-
sage at time t = t0. Take Xu as the origin, and the line
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XuXv as the x-axis. By definition u, v ∈ C(G(Hλ, 1)).

Since node u is the origin, Xu = X̃0. Let m be the clos-
est integer to x(v)—the x-axis coordinate of node Xv. Now

T0,m = T (Xu, X̃m). If Xv = X̃m, T (u, v) = T0,m.
Note that m− 1 < d(u, v) < m + 1, Thus, for any m > 1,

we have

T0,m

m + 1
<

T (u, v)

d(u, v)
<

T0,m

m − 1
. (16)

On the other hand, if Xv 6= X̃m, then X̃m must be adja-
cent to Xv. This is because ||(m, 0) − Xv|| ≤

1
2

(m is the

closest integer to x(v)) and ||(m, 0) − X̃m|| ≤ 1
2

(X̃m is the

closest node to (m, 0)). Consequently, T0,m − T (X̃m,Xv) ≤

T (u, v) ≤ T0,m +T (X̃m,Xv). Thus, for any m > 1, we have

T0,m − T (X̃m,Xv)

m + 1
<

T (u, v)

d(u, v)
<

T0,m + T (X̃m,Xv)

m − 1
. (17)

Since X̃m is adjacent to Xv, T (X̃m,Xv) < ∞ w.p.1.
Therefore in both cases, by Lemma 5 and a typical ε-δ ar-
gument, we have for any ε > 0, δ > 0, there exists d0 < ∞,
such that if d(u, v) > d0 then (6) holds. When G(Hλ, 1) is
in the subcritical phase, by Lemma 11, we have 0 < γ < ∞
w.p.1.

On the other hand, when G(Hλ, 1) is in the supercritical
phase, by Lemma 11, we have γ = 0 w.p.1. Then, by a
typical ε-δ argument, we have for any ε > 0, δ > 0, there
exists d0 < ∞, such that if d(u, v) > d0 then (7) holds.

4.3 Effects of Propagation Delay
Up to this point, we have ignored propagation delays. We

now take this type of delay into account. Suppose the prop-
agation delay is 0 < τ < ∞ for any link independent of
length. We assume the following mechanism is enforced for
a transmission from node i to node j: a packet is success-
fully received by node j if the length of the active period on
link (i, j), during which the packet is being transmitted, is
greater than or equal to τ ; node i retransmits a packet to
node j until the packet is successfully received by j.

If node i initiates transmission on (i, j) at time t = 0
and link (i, j) is on at time 0 with Z1(d) ≥ τ , then the
transmission delay T τ

ij(d) on (i, j) is τ . However, if link
(i, j) is on at time 0 with Z1(d) < τ , or if (i, j) is off at
time t = 0, then the delay on (i, j) is less straightforward to
calculate. In this case, we need to capture the behavior of
retransmissions. Let K(d) = argmink≥1{Zk(d) ≥ τ}. Then,
K(d) is a stopping time for the sequence {Zk(d), k ≥ 1}.
Now we have

{

T τ
ij =

∑K−1
i=1 (Yi + Zi) + YK + τ, W (d, 0) = 0,

T τ
ij =

∑K−1
i=1 (Yi + Zi) + τ, W (d, 0) = 1,

(18)

where we abbreviate T τ
ij(d), K(d), Yi(d) and Zi(d) as T τ

ij ,
K, Yi and Zi, respectively.

Let

T τ (u, v)=T τ (Xu,Xv), inf
l(u,v)∈L(u,v)







∑

(i,j)∈l(u,v)

T τ
ij(dij)







, (19)

where T τ
ij(dij) is given by (18). Then, T τ (u, v) is the mes-

sage delay on the path from u to v with the smallest delay,
including propagation delays.

Corollary 12. Given G(Hλ, 1, W (d, t)) with λ > λc and
propagation delay 0 < τ < ∞, there exists a constant γ(τ) <

∞ with γ(τ) > τ (w.p.1), such that for any u, v ∈ C(G(Hλ, 1)),
and any ε > 0, δ > 0, there exists d0 < ∞ such that for any
u, v with d(u, v) > d0,

Pr

(
∣

∣

∣

∣

T τ (u, v)

d(u, v)
− γ(τ)

∣

∣

∣

∣

< ε

)

> 1 − δ. (20)

Moreover, when G(Hλ, 1, W (d, t)) is in the subcritical phase,
as τ → 0, γ(τ) → γ w.p.1, where γ is defined in Theorem
4. When G(Hλ, 1, W (d, t)) is in the supercritical phase, as
τ → 0, γ(τ) → 0 w.p.1.

To prove this corollary, we need the following two lemmas.

Lemma 13. Given any 0 < τ < ∞, for all 0 < d ≤ 1, the
expected delay on each link (i, j) is positive and finite, i.e.,
0 < E[T τ

ij ] < ∞.

Proof: By (18), we have

E[T τ
ij ] = η0E[T τ

ij |W (d, 0) = 0] + η1E[T τ
ij |W (d, 0) = 1]

= η0E

[

K−1
∑

i=1

(Yi + Zi) + YK + τ |Zi < τ

]

+η1E

[

K−1
∑

i=1

(Yi + Zi) + τ |Zi < τ

]

= τ + η0E[YK ] + E

[

K−1
∑

i=1

(Yi + Zi)|Zi < τ

]

< E[K]τ + η0E[Yi] + (E[K] − 1)E[Yi], (21)

where in the last equality, we used the fact that Yi and Zi

are i.i.d. and Zi < τ for i = 1, 2, ...K − 1, and the Wald’s
Equality for stopping time K.

Since 0 < τ < ∞, 0 < η0 < 1, and 0 < E[Yi] < ∞,
in order to show 0 < E[T τ

ij ] < ∞, it suffices to show 1 ≤
E[K] < ∞. By definition, K ≥ 1 so that E[K] ≥ 1. Thus,
we need only to show E[K] < ∞. For any k ≥ 1, Pr(K =
k) = Pr(Z1 < τ, ..., Zk−1 < τ, Zk ≥ τ) = FZ(τ)k−1(1 −
FZ(τ)), where FZ(·) = Pr(Zi ≤ τ). Then

E[K] =
∞

∑

k=1

kFZ(τ)k−1(1 − FZ(τ)) =
1

1 − FZ(τ)
. (22)

Therefore, we have E[K] < ∞.

Lemma 14. Given G(Hλ, 1, W (d, t)) with λ > λc and no

propagation delay, let L0,m be the path from X̃0 to X̃m that
attains T0,m and has the smallest number of links (in case
there exist multiple paths attaining T0,m). Then |L0,m| < ∞
w.p.1 for each m, where |L0,m| is the number of links along
L0,m.

Proof: By the proof of Lemma 8, we have E[T0,m] < ∞.
Note that E[T0,m] = E[E[T0,m||L0,m|]], where E[T0,m||L0,m|] =
∑|L0,m|

i=1 η
(i)
0 (d)E[Y

(i)
k (d)] ≥ |L0,m|ΓW (d,t), where η

(i)
0 (d) and

E[Y
(i)

k (d)] are the stationary probability of inactive state,
and the expected inactive period of the i-th link on L0,m

respectively, and ΓW (d,t) = min0<d≤1{η0(d)E[Yk(d)]} > 0.
Thus, we have E[|L0,m|]ΓW (d,t) < ∞. This implies E[|L0,m|] <
∞, which further implies |L0,m| < ∞ w.p.1.

Proof of Corollary 12: Let T τ
l,m = T τ (X̃l, X̃m), for ||X̃l −

X̃m|| < ∞, 0 ≤ l ≤ m, where X̃i is defined as in (8).
Clearly, the relationship T τ

0,m ≤ T τ
0,l + T τ

l,m still holds for
any 0 ≤ l ≤ m. Hence condition (i) of Theorem 6 holds.
Since the propagation delay does not affect the stationarity
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of the geometric structure of the network, conditions (ii) and
(iii) of Theorem 6 also hold.

By the same argument as that in the proof of Lemma 8, we
have E[|L|] < ∞, where |L| , |L(X̃0, X̃m)| and L(X̃0, X̃m)

is the shortest path from X̃0 to X̃m. Let T τ,L
0,m be the de-

lay on this path. Then, E[T τ,L
0,m||L|] =

∑|L|
i=1 E[T τ

i (di)] ≤
|L|ΛW τ (d,t), where T τ

i (di) is the delay on the i-th link with

length di on the path L(X̃0, X̃m), as given by (18), and

ΛW τ (d,t) , max0<d≤1 E[T τ
i (di)] < ∞. By Lemma 13, 0 <

E[T τ
i (di)] < ∞ for all 0 < di ≤ 1, so that ΛW τ (d,t) < ∞.

Hence E[T τ,L
0,m] = E[E[T τ,L

0,m||L|]] ≤ E[|L|]ΛW τ (d,t) < ∞,
which implies E[T τ

0,m] < ∞. This ensures that condition
(iv) of Theorem 6 holds.

Furthermore, the propagation delay does not affect the
strong mixing property of {T τ

l,m, 0 ≤ l ≤ m}. Therefore
the result of Lemma 5 holds for {T τ

l,m, 0 ≤ l ≤ m}. Let

γ(τ) , limm→∞
E[T τ

0,m]

m
, then γ(τ) = infm≥1

E[T τ
0,m]

m
, and

limm→∞
T τ
0,m

m
= γ(τ) w.p.1.

Then applying the same proof for Theorem 4, we can show
that for any ε > 0, δ > 0, there exists d0 < ∞, such that if
d(u, v) > d0 then (20) holds.

To see why γ(τ) < ∞, note that γ(τ) = infm≥1
E[T τ

0,m]

m
≤

E[T τ
0,1] < ∞. Moreover, since the shortest path between

nodes X̃0 and X̃m has at least b||X̃0−X̃m||c ≥ bm−r0−rmc
links, T τ

0,m ≥ τbm−r0−rmc. Since r0 and rm are both finite
w.p.1, we have γ(τ) ≥ τ w.p.1.

We now show that as τ → 0, γ(τ) → γ w.p.1 when
G(Hλ, 1) is in the subcritical phase, and γ(τ) → 0 w.p.1
when G(Hλ, 1) is in the supercritical phase. Observe that

T0,m ≤ T τ
0,m ≤

∑|L0,m|

i=1 T τ
i (di), where L0,m is defined in

Lemma 14, and T τ
i (di) is the delay on the i-th link with

length di along L0,m, as given by (18). By Lemma 14,

|L0,m| < ∞ w.p.1. Thus E[T0,m]≤E[T τ
0,m]≤

∑|L0,m|

i=1 E[T τ
i (di)]

w.p.1. Since (21) and E[T0,m] =
∑|L0,m|

i=1 η0(di)E[Yk(di)],
we have

E[T0,m] ≤ E[T τ
0,m] ≤

E[T0,m]+|L0,m|E[K]τ +

|L0,m|
∑

i=1

(E[K]−1)E[Yk(di)] (23)

w.p.1. From (22), we know that as τ → 0, E[K] → 1.

Therefore, as τ → 0, we have |L0,m|E[K]τ +
∑|L0,m|

i=1 (E[K]−
1)E[Yk(di)] → 0 w.p.1. This, combined with (23) implies
limτ→0 E[T τ

0,m] = E[T0,m] w.p.1. Therefore,

lim
τ→0

γ(τ) = lim
τ→0

lim
m→∞

E[T τ
0,m]

m

= lim
m→∞

lim
τ→0

E[T τ
0,m]

m

= lim
m→∞

E[T0,m]

m
= γ (24)

w.p.1, where the interchanging of limitation operations is
justified by E[T τ

0,m] < ∞. Consequently, as τ → 0, γ(τ) → γ
w.p.1 when G(Hλ, 1) is in the subcritical phase, and γ(τ) →
0 w.p.1 when G(Hλ, 1) is in the supercritical phase.

An interesting observation of this corollary is when the
propagation delay is large, the message delay cannot be
improved too much by transforming the network from the

subcritical phase to the supercritical phase. However, as
the propagation delay becomes negligible, the message de-
lay scales almost sub-linearly (γ(τ) ≈ 0) when the network
is in the supercritical phase, while the delay scales linearly
(γ(τ) ≈ γ) when the network is in the subcritical phase.

5. CONCLUSIONS
In this paper, we studied percolation-based connectivity

and information dissemination latency in large-scale wire-
less networks with unreliable links. We first studied static
models, where each link of the network is functional (or
active) with some probability, independently of all other
links. We then studied wireless networks with dynamic un-
reliable links, where each link is active or inactive accord-
ing to Markov on-off processes. We showed that a phase
transition exists in such dynamic networks, and the critical
density for this model is the same as the one for static net-
works under some mild conditions. We further investigated
the delay performance in such networks by modelling the
problem as a first passage percolation process on random ge-
ometric graphs. We showed that without propagation delay,
the delay of information dissemination scales linearly with
the Euclidean distance between the sender and the receiver
when the resulting network is in the subcritical phase, and
the delay scales sub-linearly with the distance if the result-
ing network is in the supercritical phase. We further showed
that when taking propagation delay into account, the delay
of information dissemination always scales linearly with the
Euclidean distance between the sender and the receiver.
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