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ABSTRACT

Consider a wireless ad hoc network with n nodes distributed
uniformly on [0, 1]2. The transport capacity (TC) of such a
wireless network scales like

√
n. To achieve this, each node

should serve about
√

n distinct information flows. So the
routing table of each node should be of the order

√
n bits.

We show that if the size of the routing table is restricted
to be of the order O(nH(δ)), the maximum achievable per-

node TC is O(nR(δ)) when the source-destination distance

is n−δ/2. We show that R(δ) = min
˘

1
2
, δ

2
+ H(δ)

¯

−1 is the
optimal tradeoff.

Keywords

Wireless networks, ad hoc networks, routing overhead, trans-
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1. INTRODUCTION
The transport capacity (TC) of a wireless network has

been a topic of great interest since the paper [4]. The TC
of a wireless network indicates how far and how fast in-
formation can be propagated in a network. When all the
source-destination distances are of the same order, the TC
is proportional to the sum rate that can be achieved by the
network. It was shown in [4] that the TC of n wireless nodes

uniformly distributed in a unit square is Θ
“

p

n/ log(n)
”

when all the nodes have a common transmission range. Here
each source has a destination at Θ(1) distance away. Later
the log(n) factor in the denominator was removed in [2] by
using variable transmission ranges. In both the above re-
sults, interference is treated as noise. A lot of work has
been done in understanding the TC of a wireless network
with fading and when interference is not treated as noise
[5].

In the ad hoc networks, routing is intricately related to
scheduling, the hop lengths and hence the TC of the net-
work. Also there is a cost associated for establishing the
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Figure 1: Illustration of a routing table

routes a priori or dynamically. The routing table has to be
stored in the wireless device. If the number of nodes in the
network scales, it is not very clear how the size of the rout-
ing table should scale and how this would affect the TC of
the network. In [7, 1, 6] the routing overhead is considered
in a mobile ad hoc networks. They formulate the problem
of overhead in a mobile ad hoc network as a rate distortion
problem and provide the overhead as function of the mobil-
ity parameters. In this paper we focus on the routing table
length that each node has to maintain.

To illustrate the overhead we are indicating, consider a
wireless network in which the nodes are arranged on a lattice
grid. See Figure 1. A basic overhead in a network would be
to indicate the source and destination address in a packet.
For a network of n nodes this would scale like O(log(n)) bits
per packet, and this overhead cannot be avoided. So each
packet has a source number and a destination number that
is included in it.

The scheduling is done such that all the eight neighbors
of a node remain silent when it is transmitting. We also
assume that the routing tables are set before the network
begins to operate. Suppose x2 wants to transfer a packet
stream to x8. One possible route is indicated in a dashed
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line. The packet moves in hops as

x2 → x3 → x4 → x5 → x6 → x7 → x8.

Each node xi, 2 < i < 8 has an entry in the routing table
that tells the node what to do if it receives a packet with
source x2 and destination x8. In this strategy all the nodes in
the path of the flow should have routing information about
that flow. So in the above example six nodes have routing
information about the flow (x2 ⇒ x8). We quantify the
trade-off in the scaling between the transport capacity and
the size of the routing table as a function of the distance
that a packet propagates.

2. SYSTEM MODEL
Consider an ad hoc network with n nodes that are uni-

formly distributed on the unit square S = [0, 1]2. We assume
that a node located at x can communicate to a node located
at y if

SINR(x, y) > ν

i.e., we are considering interference as noise. We make the
following assumptions:

1. ν > 1.

2. The path loss model is given by ‖x‖−α, α > 2.

3. Nodes are unaware of their locations, i.e., do not have
a GPS receiver built into them. Each node is identified
by its node ID.

4. Each node is randomly paired with a destination at a
distance Θ(n−δ/2), δ ∈ [0, 1], i.e., each packet has to

traverse a distance of Θ(n−δ/2).

5. Time is slotted.

6. All source nodes should support the same per-flow
throughput λ. We also assume that a node is able
to transmitt one packet in each time slot if SINR > ν.
So if each source node is able to deliver K packets
generated by it to its destination in T time slots, then
limT→∞ K(T )/T = λ. Also if the modulation type and
the packet size are fixed for all the nodes and hops, the
packet rate λ would be proportional to the per-node
bit rate.

With the above assumptions the per-node transport capacity
is given by λn−δ/2 and the TC is given by λn1−δ/2. Observe
that the TC is proportional to the per-flow (per-source node)
throughput λ. We define the rate exponent to be

R(δ) = lim
n→∞

log(per-flow transport capacity)

log(n)

and the routing table size overhead exponent to be

H(δ) = lim
n→∞

log(per-node routing table size)

log(n)

We characterize R(δ) as a function of H(δ). Observe that
we can restrict the per-node routing table size independent
of δ. For example we can choose the routing table size to be
nβ/2, β ∈ [0, 1]. Then H(δ) = β/2.

It was shown in [3] that the average delay is equal to
the average number of hops that a packet takes to reach its

destination when the packet size scales with the permitted
per-flow throughput. Later they extended the result to the
case of fixed packet length. So we define the delay exponent
as

D(δ) = lim
n→∞

log(Average # hops required by the flows)

log(n)

3. UPPER BOUND ON THE TRANSPORT

CAPACITY
We now bound the TC of n nodes with the average number

of hops that a packet takes to reach its destination. We
closely follow the proof of Theorem 2.1 in [4].

Theorem 1. Consider an ad hoc network with n nodes
which satisfies the conditions given in the previous section.
Then

R(δ) ≤ min



1

2
,
δ

2
+ D(δ)

ff

(1)

Proof. This is very similar to the upperbound proved
in [3] except that we state the dependence on δ ∈ [0, 1]
explicitly. Let the k-th packet1 take hk(n) hops to reach its
destination. Let λ denote the per node throughput of each
node. Denote the hop set that a packet flow i takes to reach
its destination by

Ei =
n

x1
i , x

2
i , . . . , x

hi(n)
i

o

.

We use xk
i to denote both the hop and its length. Let Γm de-

note the set of active hops (transmitters and receiver pairs)
at time instant m. Since each node ( its packet flow ) sup-
ports a rate of λ we have

min
i∈{1,...,hi(n)}

1

T

T
X

m=1

1Γm(xi
k) = λ, 1 ≤ k ≤ n (2)

for large T . This is basically the average rate constraint.
We also have the following constraint on the transmitting
set at every time instant.

X

x∈Γm

x2 ≤ A, (3)

where A is some constant. This follows from the sphere
packing bound. From (3), we have

T
X

m=1

X

x∈Γm

x2 ≤ TA. (4)

Since each packet has to travel over a distance n−δ/2, we
have

hk(n)
X

i=1

xi
k ≥ n−δ/2, 1 ≤ k ≤ n. (5)

Rewriting (4), we have

T
X

m=1

n
X

k=1

hk(n)
X

i=1

“

xi
k

”2

1Γm

“

xi
k

”

≤ TA

1We identify the packets by the node number from which
they originate.
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Interchanging the summations and using (2), we have

n
X

k=1

hk(n)
X

i=1

“

xi
k

”2

≤ Aλ−1 (6)

From the Cauchy-Schwartz inequality we have

hk(n)
X

i=1

xi
k ≤

v

u

u

t

hk(n)
X

i=1

(xi
k)

2
hk(n).

Using (5), we have

hk(n)
X

i=1

“

xi
k

”2

≥ n−δ

hk(n)
. (7)

Using (7) in (6), we have2

n
X

k=1

λ
n−δ

hk(n)
≤ A

So we have

λn1−δ/2 ≤ Anδ/2+1

 

n
X

k=1

1

hk(n)

!−1

Observe that n
“

Pn
k=1

1
hk(n)

”−1

is the harmonic mean of

hk(n). Using the fact that harmonic mean is smaller than
arithmetic mean we have

λn1−δ/2 ≤ Anδ/2

 

1

n

n
X

k=1

hk(n)

!

(8)

From [4], we have TC(n) ≤ O(
√

n). Taking the logarithm
of (8), dividing by log(n) we have

log(TC(n))

log(n)
≤ min

8

<

:

1

2
,
δ

2
+

log
“

Pn
k=1 hk(n)

n

”

log(n)

9

=

;

+
log(c)

log(n)
.

(9)
Taking the limit of (9) we have the result.

In Figure 2 we plot the feasible region of the rate exponent
R(δ) as a function of δ. In Figure 3, we plot the correspond-
ing region for the delay exponent. These two regions are
related by the above theorem.

Suppose all the packets reach the destination in an equal
number of hops,

hi(n) = nγ , γ < 1.

We then see that it is not beneficial to have γ greater than
(1 − δ)/2. If we use nearest neighbor routing, the average
number of hops requires for a packet to route a distance
n−δ/2 is n(1−δ)/2. So we have δ/2 + (1 − δ)/2 = 1/2 which
implies that the TC scales like

√
n for nearest neighbor rout-

ing.
In a packetized network, each hop incurs some cost. The

cost may be for initiating the hop or to maintain the link
until the packet is transmitted. So if we assume that the
overhead associated with each packet is proportional to the

2When the flow rates are not equal and the source-
destination pair distances are not equal, we have
Pn

k=1 λk
L2

k
hk(n)

≤ A where Lk is the distance between the

source and the destination of the k-th flow.
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number of hops required to reach its destination, we then
have from the previous theorem

λ ≤ A
Average packet overhead

n1−δ

In the next theorem we provide a bound on R(δ) for a given
H(δ).

Theorem 2. We have

R(δ) + 1 ≤ min



1

2
,
δ

2
+ H(δ)

ff

Proof. Let each node have information about kn other
nodes. Denote the set of nodes which have information
about node i by Ai. We then have

n
X

i=1

|Ai| = nkn

Since only |Ai| nodes know how to route the packet i, the
number of hops hi(n) of this packet between the source i
and the destination is bounded by

hi(n) ≤ |Ai|
So we have

n
X

i=1

hi(n) ≤ nkn. (10)
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Figure 4: The upper bound on R(δ) + 1, i.e., the

exponent of total TC versus δ and β. We have chosen

H(δ) = β/2, β ∈ [0, 1] independent of δ.

Dividing the above equation by n on both sides and taking
logarithms we have

log(kn) ≥ log

 

1

n

n
X

i=1

hi(n)

!

.

Using the above in (9), we have

log(TC(n))

log(n)
≤ min



1

2
,
δ

2
+

log(kn)

log(n)

ff

+
log(c)

log(n)

Taking the limit as n → ∞ and using the definition of
H(δ) = limn→∞ log(kn)/log(n) we have the result.

The above Theorem also implies that the routing table ex-
ponent H(δ) need not be more than (1 − δ)/2.

4. ACHIEVING THE TRADE-OFF
If each source communicates with its destination in a sin-

gle hop, the maximum per-node throughput scales like n−1.
We can schedule the nodes using TDMA. In such a scheme
the routing-table size is zero. Each node transmitts its
packet in the allotted time slot and only the intended re-
ceiver keeps the packet while the others discard it. So in
this case we have R(δ) = −1 and H(δ) = 0.

On the other hand, when multi-hopping is permitted a
maximum per-node throughput of 1/

√
n can be achieved

when interference is treated as noise and the source destina-
tion distance is Θ(1), i.e., δ = 0. We will now analyze two
schemes which achieve R(0) = −1/2.

Gupta Kumar (GK) Scheme: Gupta and Kumar [4] pro-
vide a scheduling and routing scheme which obtains a TC
of Θ((n/ log(n))1/2). They employ a common transmission
range and the source destination distance is Θ(1). They
use geographical routing and a packet is routed through the
nodes whose Voronoi cells are intersected by the straight line
joining the packets source and its destination. In this routing
each node serves a maximum of Θ(

p

n log(n)) flows, i.e., the

routing table size of each node should be O(
p

n log(n)). The
routing table must indicate to which Voronoi neighbor each
packet has to be routed. So H(0) = 1/2 and R(0) = −1/2.
So in this case we have R(0)+1 = H(0). In the GK scheme,
one need not consider the Voronoi tessellations to route the

traffic. It is sufficient to consider tessellations of the unit
square S by smaller squares of side length

p

log(n)/n. Also
one can use the Manhattan grid kind of routing as illus-
trated in the introduction by considering each sub-square as
a node. See Figure 1.

Franceschetti et al. (FDTT) Scheme: Using percolation
theory Franceschetti et al. were able to show that the max-
imum throughput scales like

√
n when the assumption of a

common transmission range is removed [2]. Their routing
scheme consists of information highways (vertical and hori-
zontal). Each node dumps data to a node in these highways
and the information is routed horizontally and vertically be-
fore being broadcast to the destination. If one considers a
dense network and a source-destination pair at distance Θ(1)
apart, then the information has to flow through a minimum
of one highway. Each highway consists of O(

√
n) nodes. So

each source-destination path is served by O(
√

n) nodes. So
on an average each node should have information of O(

√
n)

flows.
When each node is allowed have a routing table of size

O(nδ/2), δ ∈ [0, 1] we use a combination of TDMA and the
GK scheme to achieve the optimal throughput. We now
show that when the source-destination pairs are distance
p

K log(n)/n apart, then Θ(1/ log(n)) per-node throughput
can be achieved.

Lemma 1. Consider n transmitters uniformly distributed
on a unit square. If the destinations for any transmitter
are located at a distance

p

K log(n)/n then a throughput
of Θ(1/ log(n)) can be achieved when the transmitters are
simultaneously transmitting.

Proof. Consider a tessellation of the unit square by squares
Sij of side an =

p

K log(n)/n. Then with high probability
each cell holds at least one point and no more than ke log(n)
nodes. Let d be some integer greater than zero. Now allow
only those squares Sij which are dan apart to transmit in
each time slot. Only schedule one of the Ke log(n) nodes in
the square. The interference can then be bounded by

I ≤ d−α
∞
X

i=1

(ian)−α

= d−αa−α
n ζ(α)

Since the receiver at the origin is at a distance an from its
transmitter, the SINR at this receiver is lower bounded by

SINR >
a−α

n

N + d−αa−α
n ζ(α)

=
1

Naα
n + d−αζ(α)

This can be made larger than ν by appropriately choosing
d and large n. The rate than can be achieved is given by
(4d2e log(n))−1 = Θ(1/ log(n))

We now find the per-node throughput in the GK scheme
when the source destination distance is Θ(n−δ/2). We also
use nγ , γ ∈ [0, 1] number of nodes. We use nγ instead of

n so as to distinguish the two scales of distances n−δ/2 and
n−γ/2. We also assume that each source picks its destination
randomly at a distance Θ(n−δ/2). This can happen with
high probability when δ < γ.

Lemma 2. GK Scheme: Consider an ad hoc network with
nγ , γ ∈ [0, 1] nodes uniformly distributed in [0, 1]2. If each
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node has a destination at distance Θ(n−δ/2), δ < γ, then
the per-node transport capacity by using GK scheme is

Θ

 

n−γ/2

p

log(n)

!

where the scaling is with respect to n. Each node requires
information of O(n(γ−δ)/2

p

log(n)) other nodes (flows).

Proof. See Appendix.

We now provide a scheme which achieves the optimal
throughput for a given routing overhead. Let each node
(source) choose its destination randomly at a distance Θ(n−δ/2).
Choose 0 < γ < 1.

1. Divide the n nodes into n1−γ groups denoted by Gi,
with nγ nodes in each group. This can be done using
random thinning so that the nγ nodes in each group
are uniformly distributed on the unit square S.

2. Consider a group Gi. Each node in Gi has a desti-
nation which may not be in the group Gi. For each
x ∈ Gi find the node in Gi which is nearest to the
destination y of x and denote it Di(x). For a binomial
point process on the unit square the void probability
is given by

P

 

‖Di(x) − y‖ >

r

K log(nγ)

nγ

!

=

„

1 − πK log(nγ)

nγ

«nγ

≤ exp

„

−nγ πK log(nγ)

nγ

«

= n−πKγ

→ 0 (11)

for some constant K and γ *= 0.

3. Now operate each group of nodes Gi in a time-sharing
fashion with a time share nγ−1. From Lemma 2,
each of these groups can support a per-node rate of
Θ(1/

p

nγ log(nγ)) when GK scheme is used. At the
end points, the packet is transmitted from D(xi) to
y using the TDMA method illustrated in Lemma 1.

Since ‖D(xi)− y‖ <
q

K log(nγ)
nγ with high probability,

the rate that can be supported is Θ(log(nγ)−1) . So
the total rate that can be supported is

Θ(1/
p

nγ log(nγ)).

4. Taking into account that each group operates only for
a time share of nγ−1, the per-node rate that each node
can support in the GK scheme is

O

 

nγ−1

p

nγ log(nγ)

!

= O

 

nγ/2−1

p

log(nγ)

!

.

5. Routing information is required only in step 3. By
Lemma 2, each node requires a routing table of size
O(n(γ−δ)/2 log(n)) in the GK scheme. We could use
FDDT scheme instead of the GK scheme and obtain
similar results.

So the rate exponent is equal to γ/2−1 and H(δ) = (γ−δ)/2.
Since this is an achievable scheme, we have

R(δ) + 1 ≥ H(δ) + δ/2 (12)

For any given H(δ), we can achieve the optimal tradeoff if
2H(δ)+ δ < 1 by choosing γ = 2H(δ)+ δ. If 2H(δ)+ δ > 1,
operate all the n nodes with the standard GK scheme. So
for a packet to traverse a distance n−δ/2, each node requires
information about n(1−δ)/2 other nodes for routing. The per-
node TC achieved is

√
n. So in this case the rate exponent is

−1/2. Since we have proposed a scheme for which the rate

exponent is equal to min
n

1
2
, H(δ) + δ

2

o

− 1, we have

R(δ) + 1 ≥ min
n1

2
, H(δ) +

δ

2

o

.

So together with Theorem 2 we have the equality.

5. CONCLUSION
In this paper we have proved that the throughput scaling

that can be achieved by an ad hoc network depends criti-
cally on the per-node routing information. We provide an
exact trade-off between the per-node routing table size and
the per-node throughput as a function of the source desti-
nation distance. We also provide a scheme which achieves
this tradeoff.
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APPENDIX

A. PROOF OF THE GK SCHEME
We follow the proof as outlined in Chapter 5 in [5]. We

now have nγ , γ ∈ [0, 1] nodes uniformly distributed on [0, 1]2

and the transmission distance is O(n−δ/2). We tessellate the

unit square into smaller squares of side an =
q

log(nγ)
nγ . Each

source node chooses a destination node at a distance n−δ/2.
We assume γ > δ. Using an approach similar to the GK
scheme, we can show that each node can be scheduled once
in c times so that the node can communicate with its neigh-
boring cells without any interference. The only results that
change are the number of flows that a typical node serves. In
the standard GK scheme each node serves

p

n log(n) flows

thus providing an per-node throughput of
p

n log(n)
−1

. We

now prove that each node has to serve nγ/2−δ/2
p

log(nγ)
flows with probability approaching one. We use the same
notation as in [5].

Lemma 3. For every line Li and cell Sk0j0 , there exists
a constant C such that

P(Line Li intersects Skj) ≤ Cn−(3δ+γ)/2
p

log(nγ) (13)

Proof. The proof follows in the same lines as of Lemma
5.11 in [5]. The only difference is the following integral.

P(Line Li intersects Sk0j0)

≤
Z n−δ/2

an

“ann−δ

x

”

.C1π(x + an)dx

≤ Cn−(3δ+γ)/2
p

log(nγ)

Lemma 4. We have for some constant C2,

P

“

sup
kj

{# of lines Li intersecting Skj} ≤ n(γ−δ)/2
p

log(nγ)
”

→ 1

Proof. Using the same notation as in Lemma 5.11 of [5],
let Zn denote the flows served by a typical cell Skj . We have

Zn = I1 + I2 + . . . + In(γ−δ) (14)

since the length of each flow is n−δ/2, the maximum number
of flows that can reach Skj is the number of nodes in a

ball of radius nγ/2 + dn. This is equal to n(γ−δ) with high
probability. So using the Chernoff bound and Lemma 3 we
have

P(Zn > m) ≤ exp
“

n(γ−5δ)/2(ea − 1)
p

log(nγ) − am
”

Choosing m = n(γ−δ)/2
p

log(nγ) and small a, we have

P(Zn > m) ≤ exp
“

− C3n
(γ−δ)/2

p

log(nγ)
”

× exp
“

n−2δ(ea − 1)
p

log(nγ)
”

≤ C4 exp
“

− C3n
(γ−δ)/2

p

log(nγ)
”

when n is large. The rest of the proof is similar to Lemma
5.11 of [5] with

p

n log(n) replaced by n(γ−δ)/2
p

log(nγ) and
the result follows.

So the per-node rate that can be achieved is

λ(n) =
n(δ−γ)/2

p

log(nγ)
(15)

So the per-node TC that is achieved is n−γ/2/
p

log(nγ) and

the per-node information required is n(γ−δ)/2
p

log(nγ).
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