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ABSTRACT
In cognitive radio networks (CRN), spectrum sensing re-
quires each secondary user to efficiently and effectively de-
tect the presence of primary users. In this paper, we study
cooperative spectrum sensing (CSS), which is based on count-
ing rules. Particularly, we first derive the optimal sensing
strategy of CSS to minimize the sensing error, and then pro-
pose a simple algorithm to calculate the optimal parameter
settings for CSS. Numerical results have been conducted and
also validated that our proposed approach can achieve sat-
isfying performance.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
Spectrum sensing, optimization, error

Keywords
Cognitive radio, cooperative spectrum sensing, counting rule,
sensing error

1. INTRODUCTION
The demand of radio spectrum is increasing significantly in
recent years. However, the majority of available spectrum
resources has been allocated to licensed use, leaving limited
room for new wireless services. It has been observed that,
the average spectrum occupancy of the primary (licensed)
spectrums is only 5.2% in current wireless communications
systems [1]. This discrepancy motivates the idea of cognitive
radio networks [2, 3], where secondary (unlicensed) users are
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allowed to transmit and receive data over unused primary
(licensed) spectrum.

To avoid interference to primary users caused by secondary
users, spectrum sensing, as a fundamental problem in cog-
nitive radio networks, requires secondary users to efficiently
and effectively detect the presence of the primary users. To
limit the interference from secondary network to primary
system, secondary network is intentionally designed to be
far from primary transmitter, which results in low signal-to-
noise-ratio (SNR) of the primary signals at the secondary
detectors. In addition, fading and shadowing environments
make spectrum sensing more involved. Longer sensing time
can enhance sensing performance. However, secondary users
can not transmit date over a primary channel if this channel
is sensed. Otherwise, this primary channel will be sensed
to be occupied by primary users even if it is not. Thus,
longer sensing time will lead to shorter time of secondary
data transmissions.

An alternative approach is to employ multiple secondary
users to sense spectrum simultaneously. Cooperative spec-
trum sensing (CSS), where local sensors sense the existence
of primary users and send information to the center, has
been studied to improve sensing performance [4]-[8]. An
AND rule based on CSS has been proposed in [4] and it
also has been proven that CSS can significantly improve the
sensing performance. Performance of CSS based on OR rule
in a fading channel has been analyzed in [5]. In [6], link bud-
get of CSS has been developed. To make the mathematical
analysis more tractable, optimal methods based on a linear
combination of the local sensing measurements are proposed
in [7]. In [8], a liner-quadratic (LQ) strategy has been devel-
oped to combat the detriment effects of correlation between
different secondary users.

As we know, AND rule and OR rule are two special cases
of the counting rule, in which the network center makes de-
cision according to the number of the secondary users that
claiming the existence of primary users. The optimal linear
cooperation for spectrum sensing proposed in [7] is simpler
than counting rule, but it requires more data transmission
between the secondary users and the network center. Al-
though the performance of counting rule is worse than that
of LQ detector when the correlation between the secondary
users is strong, the former one announces a superior perfor-
mance to the latter one in a weak-correlation case [8]. How-
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ever, according to the exponential correlation model, which
has been proposed in [9], the correlation coefficient between
two secondary users far apart about 60m is only approxi-
mately 0.003 in an urban environment, and this weak cor-
relation motivates a further study of counting rule. In this
paper, we consider the counting rule as a fusion strategy of
decisions of secondary detectors.

Regarding local sensing techniques, we consider both matched
filter [10] and energy detection[11]. It is well known that
matched filter is optimal when secondary users know the
characteristics of primary signals, whereas the energy detec-
tion is a natural choice.

To the best of our knowledge, most of existing sensing ob-
jectives are based on Neyman-Pearson (NP) criterion [4]-[8].
One of the NP criterion is to maximize probability of detec-
tion Pd with the constraint of maximum probability of false
alarm Pf , where Pd denotes the probability that a primary
channel is sensed to be occupied when it is actually occu-
pied, Pf denotes the probability that a primary channel is
sensed to be occupied when it is actually idle. Another of
the NP criterion aims to minimize Pf with the constraint of
minimum Pd. According to these definitions

”
1−Pd denotes

the probability that sensing error happens when a channel
is occupied and and Pf denotes the probability that sensing
error happens when a channel is idle. The total sensing er-
ror is a combination of 1−Pd and Pf . In this paper, we aim
to minimize the sensing error under the constraint of the
maximum probability of false alarm. Therefore, this sensing
objective jointly consider the sensing error of 1 − Pd or Pf .

In this paper, we deeply do research on the CSS using count-
ing rule for cognitive radio networks. Firstly, we derive an
optimal settings of sensing for both matched filter and en-
ergy detection to minimize the total sensing error. Then,
we propose a simple algorithm to calculate the parameters
of the optimal settings for CSS. Based on our theoretical
analysis, the randomized rule and non-randomized rule, de-
veloped for distributed detection system, are also discussed
in detail.

The rest of the paper is organized as follows. We first il-
luminate the system model in Section 2, and analyze the
randomized and non-randomized counting rules in Section
3. We then develop the optimal strategy to minimize the
total sensing error in Section 4, and simulation results are
given and have been validated to our proposed schemes in
Section 5. Finally, conclusions are drawn in Section 6.

2. SYSTEM MODEL
Consider M sparsely dispersed secondary users in a sec-
ondary network whose size is smaller than the distance be-
tween the secondary network and the primary network. In
this paper, we assume that: 1) the primary signals received
by secondary users are identical and independent distributed
(i.i.d.) random variables; 2) the noise power is constant for
different secondary users, and 3) similar to [4, 5], the same
decision rule is adopted for all secondary users.

Let H0 and H1 denote the absence and the presence of pri-
mary users, respectively. The main function of spectrum
sensing is to make a decision between the following two hy-

potheses:

H0 : yi(k) = εi(k), i = 1, . . . , M,

H1 : yi(k) = hi s(k) + εi(k), i = 1, . . . , M,

where k=1, . . . , N , and N is the sample size [11]. yi(k) is
the signal received by the ith secondary detector, and s(k)
is the signal transmitted by primary users. hi denotes the
channel amplitude gain at the ith sensor, and εi is the zero-
mean additive white Gaussian noise noise (AWGN) at the
ith secondary user.

2.1 Matched Filter
It is well known that the optimal detector is matched filter
in cognitive radio networks when the characteristics of pri-
mary signals, such as preambles, pilots and synchronization
symbols, are obtainable for secondary detectors [12]. Let
Ps and σ2 denote the signal power and noise power, respec-
tively. P m

d and P m
f denote the probability of detection and

probability of false alarm for matched filter, respectively.
Thus, P m

d and P m
f can be formulated as [12]

P m
f = Q(λm) (1)

P m
d = Q

(
λm −√

γ
)

(2)

where λm is the threshold, and γ = N Ps

σ2 denotes SNR. The

definition of Q(z) function is Q(z) =
∫ ∞

z

1√
2π

exp (− y2

2
)dy.

In a fading channel, P m
f is the same as that in AWGN chan-

nel. The average probability of detection P
′m
d may be de-

rived by averaging (2) over fading statistics as

P
′m
d =

∫

γ

Q
(
λm −√

γ
)
f(γ)dγ (3)

where f(γ) is the probability density function (PDF) of SNR
in fading channels.

2.2 Energy detection
When secondary users do not know the features of primary
signals, the energy detection is a natural choice [13] as the
optimal detector. The decision statistic for energy detec-
tion at the ith secondary user can be formulated as Yi =
1

2N

∑2N

k=1 |yi(k)|2, where N is the time bandwidth product
[13]. For simplicity, we omit the subscript “i” of Yi and PDF
of Y can be written as follows since yi is independent and
identically distributed.

fY |H0
(y) =

1

2NΓ(N)
yN−1e−

y
2 (4)

fY |H1
(y)1 =

1

2

( y

2γ

) N−1

2

e−
2γ+y

2 IN−1(
√

2γy) (5)

where fY |Hi
(y) is the PDF of y under Hi (i = 0, 1). Γ(·) is

a gamma function and Iν(·) is the νth order modified Bessel
function of the first kind.

For energy detection, the probability of detection P e
d and

Digital Object Identifier: 10.4108/ICST.WICON2008.4954 
http://dx.doi.org/10.4108/ICST.WICON2008.4954 



the probability of false alarm P e
f can be evaluated as [13]

P e
f = P{Y > λe|H0} =

∞∫

λ

fY |H0
(y)dy =

Γ
(
N, λ

2

)

Γ(N)
(6)

P e
d = P{Y > λe|H1} =

∞∫

λ

fY |H1
(y)dy = QN (

√
2γ,

√
λ)(7)

where λe is the threshold, and Γ(·, ·) is the incomplete gamma
function. QN (·, ·) is the generalized Marcum Q-function.

In a fading channel, the probability of detection is the same
as that in AWGN channel. The detection probability in

fading environments P
′e
d can be derived by averaging (7) as

P
′e
d =

∫

γ

P e
d (γ) f(γ) dγ, (8)

The rest of this section is organized as follows. In Lemma
1, we first give a proof the probability of detection is a con-
cave function of probability of false alarm for matched filter
and for energy detection when the channel is an AWGN. In
Theorem 1, we prove these convexities also hold in fading
environments.

Lemma 1. In an AWGN channel, given sampling size N
and SNR γ, P m

d is a concave function of P m
f , and P e

d is a
concave function of P e

f .

PROOF: See Appendix A.

For simplify analysis, let Pd denote the probability of detec-
tion and Pf denote the probability of false alarm for either
matched filter or energy detector in an AWGN channel. Sim-
ilarly, P ′

d denotes the probability of detection, and P ′
f de-

notes the probability of false alarm for either matched filter
or energy detector in a fading channel. Thus, we extend
Lemma 1 to fading environments, as elaborated in Theorem
1.

Theorem 1. Given N , for any fading channels, P ′
d is a

concave function of P ′
f , and following inequalities hold.

d2P ′
d

d(P ′
f )2

< 0. (9)

1 − P ′
d

1 − P ′
f

<
dP ′

d

dP ′
f

<
P ′

d

P ′
f

. (10)

PROOF: See Appendix B.

3. ANALYSIS OF RANDOMIZED AND NON-

RANDOMIZED COUNTING RULES
For counting rule, we define Λ as the number of secondary
users that claim the existence of primary users. The decision
strategy for counting rule can be expressed as




if Λ > K, decide H1,

if Λ = K, decide H1 with β probability,

decide H0 with 1 − β probability, (0 ≤ β < 1),

if Λ < K, decide H0,

where K=0, 1, . . . , M is the threshold at the center, and β
means if there are K secondary users claim the existence of
a primary user, the center decides the primary user exists
with probability β. It is well known that when β = 0, it is
“non-randomized rule”, and when 0 < β < 1, we refer to it
as “randomized rule” [16], [17].

In [16], it has been proven that the randomized tests can not
be optimal in two sensor cases when local observations have
continuous distributions; that is, the non-randomized rule
can even be locally optimal if local (secondary user) obser-
vations have a continuous distributions. However, this proof
has been found to be incorrect as explained in [17]. In [17],
authors gave conditions for a randomized rule to be locally
optimal and showed that a randomized fusion rule can be
optimal with more restrictive assumptions than constraints
in [16]. However, these more restrictive conditions described
by several inequalities in [17] are too complicated to obtain
explicit conclusions for a randomized fusion rule. In fact, it
is of no significance for practical detection systems. There-
fore, in this paper, we take a further step and derive some
theoretical analysis results as follows.

According to the definitions of non-randomized and random-
ized rules, the final probability of false alarm Qf and final
probability of detection Qd can be written as, respectively

Qf =

M∑

i=K+1

B(i; M, P ′
f ) + βB(K; M, P ′

f ), (11)

Qd =

M∑

i=K+1

B(i; M, P ′
d) + βB(K; M, P ′

d), (12)

where B(k; n, p)=
(

n

k

)
pk(1 − p)n−k and B(M + 1; M, x)=0.

For a given N and γ, P ′
d is a function of P ′

f . Obviously, both
Qf and Qd are functions of K, β and P ′

f from (11) and (12).
Therefore, in this paper, we aim to find the optimal K, β
and P ′

f to minimize the sensing error.

Theorem 2. The non-randomized rule is locally optimal
if P ′

d is a concave function of P ′
f .

PROOF: See Appendix C.

Theorem 2 means that the performance of “K-out-of-M”
(non-randomized rules) points is better than that of their
neighboring points (randomized rules). Furthermore, ac-
cording to (34) and (35), for a given K and Qf , Qd is not a
concave function of β in the region of β∈(0, 1). That is to
say, even if the randomized rule is optimal, it is still difficult
to obtain the optimal β of randomized rule solution by using
iterative searching. Therefore, we consider the ‘K-out-of-M”
(non-randomized) rules in the rest of this paper.

Fig. 1 and Fig. 2 illuminate Qd as a function of K+1−β
under an AWGN channel and a Rayleigh fading channel,
respectively, where Qf=0.1, N=5, M=3 and average γ =
1.58. Under Rayleigh fading channel, the SNR γ follows an
exponential distribution given by [13, Eqn. (15)]

f(γ) =
1

γ
exp(−γ

γ
),

Digital Object Identifier: 10.4108/ICST.WICON2008.4954 
http://dx.doi.org/10.4108/ICST.WICON2008.4954 



0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K+1-β

Q
d

Matched filter

Energy detection

 

Figure 1: Qd as a function of K+1−β under an
AWGN with both matched filter and energy detec-
tion.
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Figure 2: Qd as a function of K+1−β under a
Rayleigh fading channel with matched filter and en-
ergy detection.

where γ is the average SNR. From Fig. 1 and Fig. 2, it is
obvious that Theorem 2 has been validated. It also can be
observed from Fig. 1 and Fig. 2 that matched filter has sig-
nificantly better performance than that of energy detection.

The strategy of the “K-out-of-M” rules can be reformulated
as follows {

if Λ > K, decide H1,

if Λ ≤ K, decide H0,

where K=0, 1, . . . , M−1. Then, Qf and Qd can be rewritten
as

Qf =

M∑

i=K+1

B(i; M, P ′
f ) (13)

and

Qd =

M∑

i=K+1

B(i; M, P ′
d) (14)

where K=0, 1, . . . , M−1. Therefore, we aim to find the opti-
mal pair of K and P ′

f to minimize sensing error for cognitive
radio networks.

4. MINIMIZATION OF SENSING ERROR
In this paper, we assume that f(γ) is known to secondary
users in cognitive radio networks. Obviously, this assump-
tion is nonrestrictive since f(γ) can be obtained in advance
using long-time measurements. To derive the global optimal
solution, we adopt a “divide and compare” strategy, we first
obtain the local optimal P ′

f to optimize the optimization ob-
jective of interest for every K (0≤K≤M−1), then compare
them and choose the global optimal solution.

Let c2 and c1=1−c2 denote the existence probability and
absence probability of primary user, respectively. Therefore,
the objective is to minimize the sensing error Φ = c1Qf +
c2(1 − Qd). Thus, the sensing issue can be formulated as

Minimize Φ = c1Qf + c2(1 − Qd),

Subject to Qf ≤ ν (15)

Since higher Qf leads to lower opportunity to potentially
use idle channels, maximum probability of false alarm corre-
sponds to minimum secondary system capacity. Let Υν de-
note the achieved secondary system capacity when Qf = ν,
then the constraint Qf ≤ ν means the optimal solution of
problem (15) should guarantee the corresponding secondary
system capacity is not less than Υν . We add this constraint
based on the following principle: if Qf is too large, the sec-
ondary system capacity will be too small to make cognitive
radio an attractive approach.

Considering

dΦ

dP ′
f

= π1(π2 − 1) (16)

with

π1 = −c1M

(
M − 1

K

)
P ′K

f (1 − P ′
f )M−K−1 < 0

and

π2 =
c2P

′K
d (1 − P ′

d)M−K−1

c1P ′K
f (1 − P ′

f )M−K−1

dP ′
d

dP ′
f

> 0

Therefore

Lemma 2. For 0≤K≤M−1, π2(P
′
f ) is a monotonically

decreasing function of P ′
f .

PROOF: See Appendix D.

Theorem 3. For a given K, when P̃f is the root of Qf (P ′
f )=ν,

P̃f is the optimal solution of (15) if π2(P̃f )>1. If π2(P̃f )<1,
the root (P f ) of π2(P

′
f )=1 is the optimal solution of (15).

PROOF: See Appendix E.
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To obtain the optimal solution of (15), we need to calculate
the root of equation Qf (P ′

f ) = ν or equation π2(P
′
f ) = 1.

Newton-Raphson method [18] can be employed to calculate
the root of function g(x)=0 as follows:

1. Choose tolerance ε and the initial guess x(i), let i=1;

2. If |g(x(i))|<ε, stop; Otherwise, go to step 3;

3. Let x(i+1)=x(i)−g(x(i))/g′(x(i)), and i=i+1, go to
step 2.

Similarly, when a K is given, the processing of calculating
the optimal settings can be listed as follows:

1. Calculate the root (P̃f ) of Qf (P ′
f )=ν. If π2(P̃f ) ≥ 1,

P̃f is the optimal solution; else go to step 2;

2. Calculate the root (P f ) of Ω(P ′
f )=0, and P f is the

optimal solution.

When we obtain the optimal solution for each K, the global
optimization can be obtained by direct comparing them to
choose the best one.

5. SIMULATION RESULTS
In this section, we present numerical results of total sensing
error with different local probability of false alarm P ′

f . The
simulation results are obtained using the following param-
eters: average SNR γ = 8, sample size N = 5, number of
local secondary detectors M = 4, c1 = 0.4 and c2 = 0.6.

Fig. 3 and Fig. 4 demonstrate the total sensing error Φ vary-
ing with local probability of false alarm P ′

f when matched
filter is used under AWGN and Rayleigh-fading channel en-
vironments, respectively. Fig. 5 and Fig. 6 show the to-
tal sensing errors Φ are different when the local probability
of false alarm P ′

f is different when the energy detection is
used under AWGN and Rayleigh-fading environments, re-
spectively. From Fig 3 ∼ Fig. 6, it can be observed that
for each K = 0, 1, 2, 3, there exists only minimum Φmin

for each case. In addition, Φ decreases with P ′
f increas-

ing when Φ < Φmin, and Φ increases with P ′
f increasing

when Φ > Φmin. Obviously, Theorem 2 can be validated.
It also can be observed that the total sensing error, that is
achieved by the optimal sensing settings, can be much lower
than non-optimal sensing error.

Fig. 7 illuminates comparisons of Φ when matched filter and
energy detection is used, respectively, in AWGN channel
and Rayleigh-fading channel, respectively, for the threshold
K = 1. Similarly, Fig. 8 shows comparisons of Φ when
matched filter and energy detection is used, respectively, in
AWGN channel and Rayleigh-fading channel, respectively,
for the threshold K = 2. From Fig. 7 and Fig. 8, we can
make some conclusions: 1) fading increases the sensing error,
e.g., either matched filter or energy detection under Rayleigh
fading channel have higher sensing error; 2) the matched
filter has lower sensing error than that of energy detection
under the same fading channel.
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Figure 3: Sensing error Φ as function of local prob-
ability of false alarm P ′

f under an AWGN channel
with matched filter.
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Figure 4: Sensing error Φ as function of local proba-
bility of false alarm P ′

f under a Rayleigh fading chan-
nel with matched filter.
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Figure 5: Sensing error Φ as function of local prob-
ability of false alarm P ′

f under an AWGN channel
with energy detection.
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Figure 6: Sensing error Φ as function of local proba-
bility of false alarm P ′

f under a Rayleigh fading chan-
nel with energy detection.
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Figure 7: Comparisons of matched filter and energy
detection under AWGN and Rayleigh-fading chan-
nels with threshold K = 1.
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Figure 8: Comparisons of matched filter and energy
detection under AWGN and Rayleigh-fading chan-
nels with threshold K = 2.

6. CONCLUSION
In this paper, we investigated the optimal CSS strategy that
employs counting rule to minimize the total sensing error for
cognitive radio networks. The main contributions of this pa-
per include: 1) it has been proved the probability of detec-
tion is a convex function for either matched filter or energy
detection; 2) we analyzed the randomization at the center
and found that the non-randomized rules are locally opti-
mal for the i.i.d. signals in cognitive radio networks; 3) we
derived the optimal counting rule for both matched filter
and energy detection, respectively; 4) An easy-implemented
algorithm has been developed to calculate the optimal set-
tings of sensing error in cognitive radio networks. Simulation
results show that the optimal sensing settings considerably
outperforms the non-optimal settings in terms of sensing er-
ror.

7. ACKNOWLEDGMENTS
This work is partially supported by the NSF of China with
Grants 60872008 and 60702039, the Program for New Cen-
tury Excellent Talents in University of China with Grant
NCET-08-0217, and the Research Fund for the Doctoral
Program of Higher Education of the Ministry of Education
of China under Grant 200804871142.

8. REFERENCES
[1] M. A. McHenry. NSF Spectrum Occupancy

Measurements Project Summary. Shared Spectrum
Company Report.

[2] J. Mitola and G. Q. Maguire. Cognitive radios:
making software radios more personal. IEEE Personal
Communications, 6(4): 13–18, Aug. 1999.

[3] S. Haykin. Cognitive radio: brain-empowered wireless
communications. IEEE Trans. Commun., 23(2):
201–220, Feb. 2005.

[4] E. Visotsky, S. Kuffner, and R. Peterson. On
collaborative detection of tv transmissions in support
of dynamic spectrum sensing. In Proc. First IEEE
Symposium on Dynamic Spectrum Access Networks,
(Baltimore, USA, Nov. 2005), pages 131–136.

[5] A. Ghasemi and E. S. Sousa. Collaborative spectrum
sensing for opportunistic access in fading
environments,. In Proc. First IEEE Symposium on
Dynamic Spectrum Access Networks, (Baltimore,
USA, Nov. 2005), pages 338–345.

[6] S. M. Mishra, A. Sahai, and R. W. Broderson.
Cooperative sensing among cognitive radios. In Proc.
IEEE Int. Conf. Communications, (Istanbul, Turkey,
June. 2006), pages 1658–1663.

[7] Z. Quan, S. Cui, and A. H. Sayed. Optimal linear
cooperation for spectrum sensing in cognitive radio
networks. IEEE J. Select. Signal Processing., 2(1):
28–40, Feb. 2008.

[8] J. Unnikrishnan and V. V. Veeravalli. Cooperative
sensing for primary detection in cognitive radio. IEEE
J. Select. Signal Processing., 2(1): 18–27, Feb. 2008.

[9] M. Gudmundson. A correlation model for shadow
fading in mobile radio. Electr. Letters,
27(23):2145–2146, Nov. 1991.

[10] A. Sahai, N. Hoven, and R. Tandra. Some
fundamental limits on cognitive radio. In Allerton
Conference on Communication, Control, and

Digital Object Identifier: 10.4108/ICST.WICON2008.4954 
http://dx.doi.org/10.4108/ICST.WICON2008.4954 



Computing, (Oct. 2004.), pages 1658–1663.

[11] H. Urkowitz. Energy detection of unkown
deterministic signals. Proceedings of the IEEE, 55(4):
523–531, April 1967.

[12] S. M. Kay. Fundamentals of Statistical Signal
Processing, Detection Theory. Prentice-Hall, Upper
Saddle River, NJ, 1993.

[13] F. F. Digham, M.-S. Alouini, and M. K. Simon. On
the energy detection of unknown signals over fading
channels. In Proc. IEEE Int. Conf. Communications
(May 2003), pages 3575–3579.

[14] I. S. Gradshtein and I. Ryzhik. Table of Integrals,
Series, and Products. Academic, San Diego, CA, 2000.

[15] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge Univ. Press.

[16] P. Willett and D. Warren. The suboptimality of
randomized tests in distributed and quantized
detection systems. IEEE Trans. Inform. Theory,
38(2): 355–361, Mar. 1992.

[17] Y. I. Han and T. Kim. Randomized fusion rules can
be optimal in distributed neyman-pearson detectors.
IEEE Trans. Inform. Theory, 43(4): 1281–1288, July
1997.

[18] D. V. Griffiths and I. M. Smith. Numerical Methods
for Engineers. Blackwell Scientific, London, 2002.

APPENDIX
A. PROOF OF LEMMA 1
First, we consider the matched filter. We get the proof that
secondary derivative of P m

d over P m
f is negative, which is

equivalent to prove P m
d is a concave function of P m

f .

According to (1) and (2), we have

dP m
f

dλm
= − 1

2π
exp

(
− (λm)2

2

)
(17)

dP m
d

dλm
= − 1

2π
exp

(
− 1

2
(λm −√

γ)2
)

(18)

Define ρm=dP m
d /dP m

f , combining (17) and we have (18), we
have

ρm =
dP m

d /dλm

dP m
f /dλm

= exp
(√

γλm − γ

2

)
(19)

Therefore

dρm

dλm
=

√
γ exp

(√
γλm − γ

2

)
(20)

Then, the secondary derivative of P m
d over P m

f can be for-
mulated as

d2(P m
d )

d(P m
f )2

=
dρm/λm

dP m
f /dλm

(21)

Note that, (18) implies dP m
f /dλm < 0 and (20) means dρm/λm >

0. Therefore, d2(P m
d )/d(P m

f )2 < 0, and P m
d is a concave

function of P m
f .

Second, we consider the energy detection. Similarly, we
prove secondary derivative of P e

d over P e
f is negative. Define

ρe=dP e
d /dP e

f , according to (6) and (7), we have

ρe =
dP e

d /dλe

dP e
f /dλe

=
fY |H1

(λe)

fY |H0
(λe)

. (22)

Note that [14, Section 8.44]

IN−1(
√

2γλe) =
(γλe

2

) N−1

2

∞∑

k=0

(
γλe

2

)k

k!Γ(N + k)
, (23)

Substituting (23), (6) and (7) into (22), we have

ρe = e−γΓ(N)

∞∑

k=0

(
γλe

2

)k

k!Γ(N + k)
. (24)

Obviously, dρe/dλe>0, and then
dP e

f

dλe = −fY |H0
(λe) < 0.

Therefore, we can prove that

d2P e
d

d(P e
f )2

=
dρe

dP e
f

=
dρe/dλe

dP e
f /dλe

< 0 (25)

Therefore, P e
d is a concave function of P e

f [15].

B. PROOF OF THEOREM 1
Proof of (9) is equivalent to the proof that P ′

d is a concave
function of P ′

f .

First, we prove (9) as follow.

Combined (1) with (2) or combined (6) with (7), it is easy
to find that Pd is a function of Pf and γ. Since integral can
be represented as an infinite sum of integrand, we can write
P ′

d as

P ′
d(Pf ) =

∫

γ

Pd(γ, Pf ) f(γ) dγ =

∞∑

i=1

Pd(γi, Pf ) f(γi), (26)

where 0<γ1<γ2< . . . <∞, 0<f(γi)<1, and
∑+∞

i=1 f(γi)=1 with
i=1, 2, . . . ,∞.

Therefore, we have

d2P ′
d

dP ′2
f

=
d2P ′

d

dP 2
f

=

+∞∑

i=1

d2Pd(γi, Pf )

dP 2
f

f(γi). (27)

Recalling Lemma 1, we have
d2Pd(γ,Pf )

dP2
f

<0 for any γ, we have

d2P ′
d

dP ′2
f

< 0 (28)

In above proven, we do no specify the distribution of fading
channels, thus the conclusion is valid for any fading channels.
Therefore, (9) has been proven and P ′

d is a concave function
of P ′

f .

(9) means P ′
d is a concave function of P ′

f . After the proof of
(9), (10) can be easily illustrated from Fig. 9.
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1P
′

f

1 − P
′

f

1

1
−

P
′ d

P
′ d

Figure 9: Geometrical explanation of (10)

C. PROOF OF THEOREM 2
Given K and fixed Qf , P ′

f can be expressed as a function of
β (11). Note that, P ′

d is a function of P ′
f and Qd is a function

of P ′
d. Therefore, Qd is a function of β. Let Γ= dQd

dβ
, and

proving Theorem 2 is equivalent to proving the following two
inequalities for a given 0≤K≤M and Qf :

Γβ→0 < 0, (29)

Γβ→1 > 0. (30)

For

U(x)=

M∑

i=k+1

(
M

i

)
xi(1 − x)M−i

With
(

M

K

)
(M − K) =

(
M

K + 1

)
(K + 1)

Then, we have

U ′(x) = M

(
M − 1

K

)
xK(1 − x)M−K−1

Observing the first item on the right side of (11) and we can
find that is is in the form of U(x). Taking the first derivative
of both sides of (11) with respect to β, we have

dP ′
f

dβ
= − 1

(1 − β)(M − K) 1
1−P ′

f
+ β.K 1

P ′

f

(31)

Taking the first derivative of Qd with respect to β in (12),
we have

Γ = δ

((
(1 − β)(M − K)

1

1 − P ′
d

+ βK
1

P ′
d

) dP ′
d

dP ′
f

dP ′
f

β
− 1

)
,

(32)

with

δ =

(
M

K

)
P ′K

d (1 − P ′
d)M−K > 0

Substituting (31) into (32), we have

Γ = δ′
(

(1 − β)(M − K)

1 − P ′
d

b1 +
βK

P ′
d

b2

)
, (33)

with

δ′ = −δ
1

(1 − β)(M − K) 1
1−P ′

f
+ βK 1

P ′

f

< 0

b1 =
dP ′

d

dP ′
f

− 1 − P ′
d

1 − P ′
f

and

b2 =
dP ′

d

dP ′
f

− P ′
d

P ′
f

According to (10), we know that b1>0 and b2<0.

Therefore, we have

Γβ→0 = δ′
M − K

1 − P ′
d

b1 < 0 (34)

Γβ→1 = δ′
K

P ′
d

b2 > 0 (35)

Therefore, Theorem 2 has been proven.

D. PROOF OF LEMMA 4
According to above analysis, the first derivative of π2(P

′
f )

with respect to P ′
f can be evaluated by

dπ2

dP ′
f

= π2 × ω, (36)

with

ω =
d2P ′

d

dP ′2
f

dP ′
f

dP ′
d

+ K(
1

Pd

dP ′
d

dP ′
f

− 1

P ′
f

)

− (M − K − 1)
( 1

1 − P ′
d

dP ′
d

dP ′
f

− 1

1 − P ′
f

)
. (37)

According to (9), the first item in (37) is negative. Moreover,
according to (10), we can also prove that the second and
third items of (37) are negative. Therefore, dπ2/dP ′

f<0 is a
monotonically decreasing function of P ′

f .

E. PROOF OF THEOREM 3
Consider

lim
P ′

f
→0

π2(P
′
f )=

c1

c2

(
lim

P ′

f
→0

P ′
d

P ′
f

)K

lim
P ′

f
→0

dP ′
d

dP ′
f

=
c1

c2

(
lim

P ′

f
→0

dP ′
d

dP ′
f

)K+1

. (38)
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According to (26), we have

lim
P ′

f
→0

dP ′
d

dP ′
f

= lim
P ′

f
→0

∫

γ

dPd

dPf

f(γ)dγ =

∫

γ

lim
P ′

f
→0

dPd

dPf

f(γ)dγ.

(39)

According to (24), we also have limP ′

f
→0

dPd

dPf
= limλ→+∞ ρ =

+∞.

Since this inequality holds for any γ, from (39), we have

limP ′

f
→0

dP ′

d

dP ′

f
→+∞. Combining this result with (38), we

have limP ′

f
→0 π2(P

′
f )→+∞.

Let Ω(P ′
f )=π2−1, we can prove that limP ′

f
→0 Ω(P ′

f ) > 0.

If π2(P̃f )>1, according to Lemma 2, we have Ω(P ′
f )>0 in

range P ′
f∈(0, P̃f ). As a result, Φ is a decreasing function in

the range P ′
f∈(0, P̃f ) according to (16). Therefore, we prove

that P̃f is the solution of (15).

If π2(P̃f )<1, Φ is a decreasing function in P ′
f∈(0, P f ) but

an increasing function in P ′
f∈(P f , P̃f ). Therefore, P f is the

solution of (15).
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