
Programming in Mobile Ad Hoc Networks

Justin Collins
Mobile Systems Lab

Computer Science Department
University of California, Los Angeles

Los Angeles, California 90095

collins@cs.ucla.edu

Rajive Bagrodia
Mobile Systems Lab

Computer Science Department
University of California, Los Angeles

Los Angeles, California 90095

rajive@cs.ucla.edu

ABSTRACT

The possibility for spontaneous ad hoc networks between
mobile devices has been increasing as small devices become
more capable of hosting useful networked applications. These
applications face the challenges of frequent disconnections,
highly dynamic network topologies, and varying communi-
cation patterns, a combination unique to mobile ad hoc net-
works. This is the first survey to examine current MANET
programming approaches including tuple spaces, remote ob-
jects, publish/subscribe, and code migration through anal-
ysis and experimental results. We suggest that these ap-
proaches are essentially extensions to existing distributed
and parallel computing concepts and new abstractions may
be necessary to fully handle the programming issues pre-
sented by MANETs.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.1.3 [Concurrent Programming]: Distributed
Programming

1. INTRODUCTION
Mobile ad hoc networks (MANET) composed of small

portable devices are becoming more and more common. Many
PDAs, smartphones, portable game systems and most lap-
top computers now have the capability to form wireless ad
hoc networks. Mobile applications are no longer limited to
stand-alone or client-server programs, but can interact and
form useful networks directly with each other. Such net-
works are ideal for situations in which there is no time to
set up a fixed access point, or when there is no fixed infras-
tructure available.

The ad hoc nature of these networks, combined with the
mobility of the nodes, introduces new challenges. Dynami-
cally formed groups of mobile nodes must be able to coor-
dinate between themselves to perform routing and resource
discovery. Routes between nodes and available resources

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICON ’08 November 17-19, 2008, Maui, Hawaii, USA
Copyright 2008 ICST 978-963-9799-36-3.

may change rapidly, requiring flexible protocols. Nodes can-
not rely on knowing the addresses of remote resources ahead
of time or from a central directory, but must discover them
dynamically. Disconnections become commonplace rather
than exceptional, due to mobility and wireless channel vari-
ations.

Many new applications, particularly in the consumer space,
are being applied to MANETs. These include disaster recov-
ery scenarios, collaborative software such as shared white-
boards, impromptu networks for communication and en-
tertainment, and peer-to-peer applications for file sharing.
Much work has been done on protocol development for MANETs,
such as AODV [1] and OLSR [2], but systems supporting de-
velopment of applications which can be used in a MANET
are an active area of research.

This paper focuses on the approaches used in recent and
ongoing projects which provide environments in which to de-
velop generic applications for the general case of MANET.
Section 2 provides an overview of the requirements and is-
sues specific to developing applications to run on MANETs.
Section 3 is an overview of several projects which have been
proposed and developed to meet those requirements, while
Section 4 discusses the various solutions used by the projects
in more detail. In Section 5, we attempt to gain a better un-
derstanding of techniques required for MANET application
development by writing two sample applications using three
different projects. Experimental evaluation of those three
projects are presented in Section 6. Section 7 lists some
related projects and Section 8 presents our conclusions.

2. MANET REQUIREMENTS
Mobile applications face several challenges when compared

with programs intended for standard desktops. Mobile de-
vices are generally constrained in many ways: the screen
size, processor power, memory, and battery power are often
limited. Development platforms for mobile devices typically
provide basic libraries for application support such as menus
and access to data stored on the device. Networking, how-
ever, is generally limited to sockets, TCP/IP, and HTTP.
In particular, applications are expected to either be stand-
alone, like a calculator, or to only be using the network in
a client-server manner, such as accessing websites or email
servers.

However, the distinguishing characteristic of a MANET
context is not the mobile device or platform itself, but the ad
hoc communication between devices. The primary medium
for communication is wireless, with no fixed infrastructure,
and nodes which tend to be highly mobile. In such an

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

environment, the following become important requirements
when developing applications:

Disconnection handling: In a MANET, nodes are highly
mobile and disconnections occur frequently, either due to
channel condition variation or the mobility of destinations
and intermediate nodes. Disconnections may be prolonged,
brief, or intermittent and applications must handle all three.
Traditional networking treats disconnections as failures, but
a programming environment for MANETs needs to handle
disconnections as a natural element of the environment.

Addressing and discovery: The lack of infrastructure in
a MANET requires a decentralized method for finding and
addressing resources. Traditional approaches such as DNS
cannot be maintained in a MANET, so alternative means of
discovering and addressing resources must be provided. The
spontaneous nature of MANETs also dictates that discovery
be dynamic, as the network topology cannot be known ahead
of time and may change rapidly.

Flexible communication: Both unicast and multicast com-
munications are common in MANET applications, which are
often group-based or collaborative. Being able to provide
flexible communication is crucial to developing applications
for MANETs.

3. PROJECT OVERVIEWS
The current projects for developing software in MANETs

fall into three broad categories: runtimes, languages, and
middleware, which offer increasing levels of abstraction for
the developer. They can also be combined: a middleware so-
lution can be written in a language which uses one of the ba-
sic runtimes for mobile devices. In many cases projects also
provide additional resources for software development such
as debuggers and emulators for testing code. Table 1 sum-
marizes the projects discussed in this paper with respect to
the requirements in Section 2. A broader overview focusing
only on middleware for MANETs can be found in [3]. The
following projects were chosen because they are both recent
and representative of varying approaches taken to address
programming in a MANET.

3.1 Runtimes
Runtimes in this context are virtual machines for lan-

guages which are specifically intended for use on small, resource-
constrained mobile devices. Runtimes are useful because
they provide good portability for applications and thereby
simplify some of the application development process.

Two common runtimes for mobile devices are Java ME [4]
and the .NET Compact Framework [5]. A third runtime,
BREW [6], is a proprietary product from Qualcomm. These
runtimes focus on using few resources and providing libraries
for application development, especially user interfaces. They
do not provide much networking support beyond basic sock-
ets and HTTP support. While it is possible to use these
runtimes as foundations for better abstractions, they pro-
vide little on their own to support MANET applications
and will not be considered in the following comparisons.

3.2 Languages
A language in this paper refers to any language, language

extension, or library which provides new language constructs
for programming in a MANET. Languages often include
their own runtime or are built on top of existing runtimes.
Libraries and language extensions are likely to be easier for

developers to use if they are already familiar with the base
language.

M2MI [7], AmbientTalk [8], and SpatialViews [9] are three
language-based projects intended for MANETs. Many-to-
Many Invocation (M2MI) avoids costly ad hoc routing and
discovery by broadcasting messages. Messages are addressed
by object type, so if a device hosts an object of the addressed
type, it will pass the message to that object.

The advantage of M2MI is simplicity. As messages are
simply broadcast without expectation of reply, there is no
need to worry about return values or blocking while waiting
for confirmation. At the language level, there is no differ-
ence on the sender’s side between a message which is actually
received and one which is not received by anyone. Though
this provides simplicity, it also means more work for the pro-
grammer. As there is no guarantee of message delivery, any
functionality beyond simple unidirectional message passing
must be implemented on top of M2MI.

AmbientTalk is a complete object oriented language in-
spired in part by M2MI’s message passing. AmbientTalk
implements a higher level abstraction of resource discovery
and disconnection handling which is absent from M2MI, but
retains the idea of object handles and remote method invo-
cations. All remote events are handled asynchronously by
AmbientTalk through the registration of callbacks. A block
of code may be registered to be invoked when discovering a
certain resource type. AmbientTalk also adds the ability to
receive values from method invocations on remote objects
through the use of futures. By default, messages sent to
remote objects are buffered until they can be sent. The pro-
grammer can also choose to break the connection and recall
buffered messages.

SpatialViews takes a completely different approach than
M2MI and AmbientTalk. SpatialViews is a language ex-
tension to Java ME which allows programs to iterate over
groups of devices. The code inside the loop is executed on
the initial device and then migrates to the next, eventually
making its way back to the initial node. This allows for
complex operations to be written easily, as the language has
built-in support for such things actions as reduction oper-
ations. The iteration itself is generally done according to
some physical layout, although it is possible to iterate over
all objects or to use logical locations instead.

3.3 Middleware
Middleware is software which manages interaction and

communication between applications, as well as providing
various services which may be used by applications. Mid-
dleware may also include supporting libraries which can be
used by applications.

LIME (Linda in mobile environment) [10] is a well-established
implementation of tuple spaces [11] for mobile environments.
Each device or agent has its own tuple space, which can
merge with remote tuple spaces when they come into range
of each other. Tuples can be read and written from specific
locations, but can also be read or written to the “federated”
tuple space which includes the local tuple space and any tu-
ple spaces which are currently merged with it. However, the
tuple will reside in a particular tuple space, so when that
device or agent moves away, the tuples in that tuple space
will move with it and be out of reach. LIME does not cur-
rently have an implementation intended for mobile devices
smaller than laptops, though there are variations of LIME

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

Table 1: Projects Summary

Project Category Disconnection Handling Addressing and Discovery Communication
LIME Middleware Tuple removal Merged tuple spaces Tuple space

MESHMdl Middleware Tuple removal Tuple exchange Tuple space
TOTA Middleware Connectionless Tuple propagation Tuple space

STEAM Middleware Connectionless Event content Publish/subscribe
SyD Middleware Object proxies Object type Message passing

M2MI Language Connectionless Object type Message passing
AmbientTalk Language Flexible references Object type Message passing
SpatialViews Language Connectionless Object type Code migration

.NET CF Runtime None URL Sockets
Java ME Runtime None URL Sockets

intended for sensors.
MESHMdl [12] is another tuple space implementation, but

varies slightly from the LIME model. In MESHMdl, there is
a single tuple space shared between all applications on a de-
vice. All communication between applications is performed
via this shared tuple space. Remote tuple spaces are not
shared like in LIME, but are accessible for reads and writes
only: it is not possible to remove tuples from a remote tuple
space. MESHMdl supports mobile agents and recommends
using them if actions need to be performed on a remote tu-
ple space. MESHMdl also adds the idea of being able to
automatically write, read, or block tuples from other tuple
spaces.

Tuples on the Air (TOTA) [13] also implements a tuple
space for MANETs, but differs from LIME and MESHMdl.
Rather than storing tuples on a particular device, tuples
in TOTA are propagated through the network according to
rules specified per tuple. As the tuples move through the
network, they can acquire context information about the
network, such as how many hops they have traveled from
the source.

SyD (System on Mobile Devices) [14] is a complete middle-
ware solution for MANETs. The middleware centers around
the idea of object registries which allows service registration
and look up. Methods can then be invoked on these re-
mote objects. Disconnection is handled by allowing objects
to also provide proxy objects. If an object is unavailable,
the method invocation will be handled by the proxy object,
which can then perform an action specific to that service.
For example, the proxy may buffer the request and send it
later, or send back a cached or default response.

STEAM (Scalable Timed Events and Mobility) [15] is an
event-driven middleware which uses a publish/subscribe [16]
mechanism for propagating events. STEAM uses the con-
cept of proximity groups for communication, limiting events
to the local geographic area. Events are propagated by sub-
scribers only when the subject and proximity match. Events
are further filtered on the subscriber side by content, which
determines if an event is delivered to the local application.

4. APPROACHES TO REQUIREMENTS

4.1 Disconnection Handling
The main challenge in MANETs is handling disconnec-

tions, which may be intermittent, prolonged, or permanent.
For example, at a busy conference there may be many mobile
devices in contact with each other, but distance and physi-
cal obstacles may cause intermittent disconnections. Routes

may also break and re-form due to mobility or channel vari-
ations, possibly causing prolonged disconnections, but con-
nections are eventually regained. When the attendees all
leave, it becomes unlikely their devices will ever be in con-
tact with each other again, making the disconnection per-
manent. A programming environment for MANETs must
be able to handle all three kinds of disconnections.

One solution, used in LIME, MESHMdl, and TOTA, is to
use tuple spaces for communication. Tuple spaces exhibit
both spatial and temporal decoupling, meaning that mes-
sages being sent do not need to be addressed to a particular
recipient nor does the recipient need to be present when the
message is sent. Tuple spaces generally operate by reading,
writing, and taking tuples to and from a shared location.
Rather than sending a message directly to a recipient, a tu-
ple is written to the tuple space and can be read or taken
from the tuple space by other clients. This allows the tuple
space to withstand disconnections.

For example, a tuple may be written out to the tuple
space and then retrieved by a different client an arbitrary
amount of time later. The client which retrieves the tuple
may not even be in existence when the tuple was written.
However, there is still a problem if the writer of the tu-
ple disconnects before the tuple is read by a receiver. For
LIME and MESHMdl, where the tuple space is associated
with a particular devices, the tuple space is only available
when the sender and the receiver are able to communicate
directly with each other. In TOTA, tuples are disseminated
throughout the network and can survive even if the original
sender disconnects.

A different approach, used by M2MI and STEAM, is to
forgo connections completely. Messages in M2MI are sent
with no expectation of reply. In the general case, messages
are sent to a particular object type, to be processed by any
device hosting an object of that type. Messages are broad-
cast with no buffering whether or not there is a receiver
available. This provides even more decoupling than tuple
spaces, but tuple spaces have the advantage of having some
feedback about a tuple’s status. The sender can check if a
tuple has been removed from the tuple space or not. If it has,
the sender can have some assurance the tuple was received
by someone, otherwise it will be available until removed by
the original sender or another client.

STEAM avoids connections by filtering events on the sub-
scriber’s side. This eliminates the need for publishers to
keep track of subscribers and completely decouples the two.
However, publish/subscribe in a MANET environment does
not provide any message reliability. Any message reliability

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

1. def print(doc) {

2. when: Printer discovered: { |printer|

3. when: (printer<-print(doc)) becomes: {|res|

4. system.println("Status: " + res);

5. };

6. };

7. };

Figure 1: Printer Discovery in AmbientTalk

or disconnection feedback would need to be implemented on
top of the publish/subscribe framework.

Code migration, the approach used by SpatialViews, does
not maintain connections, but can be affected by disconnec-
tions if the device currently executing the mobile code fails
or leaves the network before completion. Most of the devices
in the network will not be involved in executing code at any
particular moment, in which case their failure or disconnec-
tion from the network would not have an effect. When it
does have an effect, however, it may cause the entire itera-
tion to fail. This can be mitigated by using a form of parallel
iteration over the devices. Since the iteration order in Spa-
tialViews is nondeterministic, it does not provide message
reliability.

A third approach, implemented in AmbientTalk, relies on
event handling and futures. Event handlers can be registered
for various events, such as discovery of a service or discon-
nection of a remote object. Figure 1 illustrates the use of
two of these callbacks to discover a printer service. Once a
printer is discovered, a document is sent to be printed and
a status message is returned. If a remote object is discov-
ered and later moves out of range, AmbientTalk can call the
disconnection code. By default, messages sent to a discon-
nected remote object will be buffered until it is possible to
send them. This provides a solution for intermittent and
even prolonged disconnections. If a remote object is discon-
nected for too long, the programmer can recall all buffered
messages and close the connection.

AmbientTalk also offers AmbientReferences [17], which
are related to the M2MI model of object handles. Ambi-
entReferences have a specified flexibility which determines
how disconnections are handled. Sturdy is the default model
of using buffered messages which will be delivered upon re-
connection. Elastic references wait a specified amount of
time before severing the connection and rebinding to an-
other object of the same type. Fragile references will break
immediately upon disconnection and rebind to another ob-
ject.

The approach used by SyD is to offer the ability for the
application designer to specify how to handle disconnections.
In SyD, it is possible to provide proxy objects which will be
called when the actual remote object is unavailable. These
objects can then handle the invocation in an object-specific
manner, such as buffering or returning a default value.

4.2 Addressing and Discovery
Unlike a wired network with a fixed infrastructure, MANETs

cannot depend on centralized look up services like DNS to
find peers. Since devices are constantly joining and leaving
the network and it is not possible to maintain IP addresses
or URLs to locate resources, applications must be able to
locate them dynamically.

1. spatialview v = ChatService;

2.

3. visiteach c : v {

4. c.receive(sender, message);

5. }

Figure 2: Simple Messaging in SpatialViews

The tuple space implementations of LIME, MESHMdl,
and TOTA automatically discover neighboring tuple spaces.
LIME will merge tuple spaces with the same name, while
MESHMdl does not merge tuple spaces, but uses special tu-
ples to provide a method of addressing a remote tuple space.
Tuple spaces can be used for service discovery by writing out
tuples which describe available services, or by writing out tu-
ples intended for a specific service, which will read the tuples
when it is available. Addressing is not necessary in general
in tuple spaces, as it can be assumed a given service and a
client will have pre-agreed upon tuple template to use for
communication.

Object types for discovery and addressing is used by M2MI,
AmbientTalk, and SpatialViews. This is based on the as-
sumption that objects with the same name will implement
the same services. M2MI and AmbientTalk use this with
object handles which refer to a specific object type. When
methods are invoked on a given handle, the remote object
will correspond to the type of the object handle. M2MI,
however, does not provide a method for discovery beyond
manually sending out messages periodically and waiting for
replies. AmbientTalk offers event handlers to be automat-
ically called when objects of a specific type are discovered.
These can be called exactly once or each time one is discov-
ered.

SpatialViews uses object types along with spacial prop-
erties to define a “view” of the network. Once a view is
created containing a given object type, SpatialViews pro-
vides a method of iterating over the available nodes within
that view. The code within the iterator is executed locally
on the remote devices. After the code is run, the device lo-
cates another nearby node hosting an object of the correct
type and the code migrates there. Within the iteration, the
code can synchronously invoke methods on the local service
through an object handle. In Figure 2, a simple SpatialView
is created to broadcast a message in a chat application.
The code within the visiteach block (line 4) is executed
locally. Therefore, unlike the AmbientTalk printer example,
c.receive(...) is a local method call, not a remote call.

SyD also uses objects to invoke remote services, but it
requires that these objects register themselves with neigh-
boring devices, as well as locally.

The publish/subscribe model used by STEAM relies on
subscribers knowing ahead of time what subscriptions are
interesting to them. The publishers do not need to explicitly
know who is subscribed, as messages are simply broadcast.
However, it is possible to send out messages periodically or
on demand which describe available subscriptions.

4.3 Flexible Communication
Basic communication between devices in a network is gen-

erally accomplished in a one-to-one unicast manner. How-
ever, in a MANET, group communication is also common,
due to the broadcast nature of wireless networking and the

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

1. Container result = new Container();

2. spatialview v = Printer;

3. visiteach p : v {

4. if(result.isEmpty()) {

5. String result = p.print(document);

6. if(result == "success")

7. result.addElement(p.getName());

8. }

9. }

Figure 3: Printer Discovery in SpatialViews

limitations of bandwidth. Collaborative applications, net-
worked games, and streaming media also benefit from group
communication. Having both one-to-one and group commu-
nication available in the programming environment is nec-
essary, though it may be possible to implement one with the
other.

Tuple spaces lend themselves naturally to group commu-
nication. Tuples are written to shared storage space, which
is globally accessible. Since tuples can be read without being
removed from the tuple space, tuples are inherently one-to-
many. One-to-one communication is not as directly sup-
ported by tuple spaces. However, tuples can be sent to a
specific recipient by setting one of the fields in the tuple to
an agreed-upon address. The specified recipient can look
for tuples addressed to itself and take them from the tu-
ple space.LIME, MESHMdl, and TOTA support this type
of communication.

M2MI and AmbientTalk support object references which
can refer to all objects of a type, a selected subset of those
objects, or a particular object. These handles directly cor-
respond to broadcast, multicast, and unicast. Since Ambi-
entTalk expects return values from messages, it is possible to
receive multiple replies when sending a multicast or broad-
cast message, resulting in event handlers running multiple
times or the return value being set more than once.

Communication in SpatialViews is done through code and
variable migration. This makes it very simple to perform
complex group operations such as reductions over several
devices, but it makes one-to-one communication difficult.
Figure 3 shows how it is necessary to set a variable to ensure
a document is only printed by a single printer. There is also
no method to provide reliable message delivery, other than
iterating until a prearranged flag is set.

Similarly, publish/subscribe naturally supports group com-
munication, but attempting to send a message to a partic-
ular recipient is not directly supported by the middleware.
Publish/subscribe is intended to be used in situations with a
single sender and multiple receivers and does not adapt well
to sending a message to a single receiver. To do so would
require the sender and receiver using a predefined address-
ing, similar to setting an agreed-upon tuple value in tuple
spaces. Successful message delivery in the publish/subscribe
is less likely than in a tuple space, since messages are not
persistent in the way that tuples are.

5. APPLICATIONS
To better understand the effect of using different program-

ming approaches when developing applications, two separate
applications were written using AmbientTalk, LIME, and

1. LimeTupleSpace lts =

2. new LimeTupleSpace();

3. lts.setShared(true);

4. ITuple printjob =

5. new Tuple().addFormal(PrintJob.class);

6. UbiquitousReaction ur =

7. new UbiquitousReaction(printjob,

8. this, Reaction.ONCEPERTUPLE);

9. lts.addWeakReaction(new Reaction[] {ur});

Figure 4: LIME: Print Job Reaction

SpatialViews. These projects were selected because they
represent very different approaches and had publicly avail-
able implementations. For each application, we discuss is-
sues with disconnections, discovery, and communication.

5.1 Printer Discovery
The printer discovery application illustrates how the dif-

ferent projects can be used to approach the problem of re-
source discovery in a changing network. The client needs to
locate a device offering a printer service. Next it sends the
print job to a printer it has found, then waits for a reply.
The printer processes the job and sends back a success or
failure message.

Disconnection can occur at different points in this pro-
cess. The printer may go out of range after the client has
discovered it, but before the job is sent, or it may go out of
range after the job is sent, but before the result is returned.
In AmbientTalk, the default way of handling both cases is
to wait until the printer can be contacted again and then
resume the connection. The print job or result message will
be buffered until the connection can be made again and then
the message will be delivered. This works well in the case
where there is only transient disconnection, but if a client
has permanently left the area of the printer the application
may wait forever unless the programmer explicitly uses a
timeout.

In SpatialViews, the only way to communicate between
nodes is to visit them in the course of an iteration over all
nodes which offer a given service. With the SpatialViews
implementation of printer discovery, disconnection after dis-
covery and before sending back the success message are es-
sentially the same. The iteration will never complete and
the originating node will eventually timeout.

One of the strengths of tuple spaces is temporal decou-
pling. The sender and receiver do not both need to be
present at the same time for a message to be sent. The
LIME version of printer discovery does not face the discon-
nection issues above, partially because a print job remains
in the tuple space until a result tuple is received. A printer
which reads the print job and then goes out of range does
not affect the operation. If the client is not in range when
the result tuple is sent, but reconnects later, the result tuple
will still be available for it to read. Even if the client perma-
nently leaves an area, a different printer can pick up the print
job instead. The downside of this approach is that multiple
printers may process the same job, wasting resources.

In this example, addressing and discovery are needed to
find a printer service and also to send the result message.
AmbientTalk and SpatialViews handle addressing with in-
terface types. The printer offers a service with a typed in-

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

terface and the client is able to find nearby services of a
given type. Discovery is also built into both AmbientTalk
and SpatialViews. In AmbientTalk, a callback function is
set up to be called when the printer service is discovered,
as shown previously in Figure 1. SpatialViews uses the idea
of an iterator which loops over objects of a certain type
nearby. In this respect, AmbientTalk is more reactive, while
SpatialViews is proactive. The disadvantage to the Spa-
tialViews approach is the service must be available at the
time of the iteration, otherwise it will complete without a
result. It will then be up to the programmer to retry the
iteration until it is successful.

Discovery in LIME merely requires the registration of re-
actions to tuple templates. Addressing the printer is not
necessary, but the result message contains a print job iden-
tifier so the client knows which job it represents.

Printer discovery does not really involve group communi-
cation, but there is one-to-one communication in the sending
of the print job and the result message. In AmbientTalk, an
object handle to the remote printer service is created when
the the printer is found. The print job is then sent by invok-
ing a method on the handle and waiting for a return value.
On the printer side, it only needs to return a value, it does
not require any knowledge of the client.

For SpatialViews, care must be taken to make sure the
print job only goes to a single printer. Since the only method
of communication is to visit every printer available, it is
necessary to set a flag in a shared variable indicating the
print job was already successfully printed and subsequent
printers do not need to address it, as seen in Figure 3. Again,
the printer does not need to know anything about the client.

In LIME, all communication is also inherently group com-
munication, so the result tuple needs to be explicitly ad-
dressed to the client using a some sort of identification. The
client will be waiting for a tuple with that specific ID.

5.2 Chat
The second example is a chat application. Clients can

send out public or private messages. Public messages are
delivered to all other chat clients nearby, while private mes-
sages are directed to a specific recipient. As in most chat
applications, there is no history and clients do not expect to
receive messages sent earlier or when disconnected. Discon-
nection can occur at any time while clients are exchanging
messages.

Disconnection has less effect in this application than with
printer discovery, as the clients do not depend on the deliv-
ery of messages to continue operating, although the Ambi-
entTalk implementation does buffer both public and private
messages. LIME also handles disconnection well in this case,
since there is no need to guarantee message delivery.

SpatialViews suffers from the same issue in the printer
discovery example: if the code migrates to a section of the
network which then becomes disconnected from the rest of
the network, or the current node goes down, the iteration
just stops. Since each message is a separate iteration, it will
not affect the overall operation of the application.

Addressing is handled similarly to the printer discovery
example, except the user needs to know the names of other
users when sending private messages. The AmbientTalk ver-
sion notifies the user when other clients come into range and
adds their name and object handle to a list. Figure 5 shows
the implementation of the methods for sending messages.

1. def all := ambient: Chatter

2. withCardinality: omni

3. withElasticity: fragile;

4. def sendAll(message) {

5. all<-send(message, name);

6. };

8. def send(buddy, message) {

9. def b := buddy_list.get(buddy);

10. b<-send_private(message, name);

11. };

Figure 5: Chat in AmbientTalk

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160 180 200

C
a
rr

ie
d
 L

o
a
d
 (

P
a
c
k
e
ts

/s
)

Offered Load (Messages/s)

AmbientTalk
LIME

SpatialViews

Figure 6: Communication Overhead with Wired

Links

Public messages are sent out to an AmbientReference, de-
fined in line 1, which only needs to know the interface name
and implicitly tracks individual clients.

SpatialViews, like in the printer discovery application, it-
erates over all nodes with the chat interface, delivering the
message to each as it visits. This is shown in Figure 2. For
private messages, it still must iterate in the same manner,
but the recipient is encoded in the message. Unfortunately,
this means private messages still require visiting every node,
possibly without even reaching the recipient in the case of
disconnection. Likewise, LIME must rely on encoding the
recipient in the message tuple and assuming no one but the
intended client will read the message.

Group communication is natural for public messages and
one-to-one communication for private messages. All three
projects handle group communication well. AmbientTalk
has omni-handles which refer to all interfaces of a given
type and will broadcast the message to all nearby clients.
The only communication in SpatialViews and LIME are es-
sentially group communication, so for one-to-one communi-
cation, SpatialViews and LIME require the programmer to
implement an addressing scheme on top of the group com-
munication. The client side of the application needs to pick
out private messages intended for it and ignore the rest.

6. EXPERIMENTAL RESULTS
This section compares the performance of AmbientTalk,

LIME, and SpatialViews in a regular wired LAN and in a

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
a
rr

ie
d
 L

o
a
d
 (

P
a
c
k
e
ts

/s
)

Offered Load (Messages/s)

AmbientTalk
LIME

SpatialViews

Figure 7: Communication Overhead with Simulated

Wireless Links

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
e
ra

g
e
 R

o
u
n
d
tr

ip
 D

e
la

y
 (

m
s
)

Receivers

AmbientTalk
LIME

SpatialViews

Figure 8: Group Communication with Wired Links

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
e
ra

g
e
 R

o
u
n
d
tr

ip
 D

e
la

y
 (

m
s
)

Number of Receivers

AmbientTalk
LIME

SpatialViews

Figure 9: Group Communication with Simulated

Wireless Links

MANET context using the QualNet and the IP Network
Emulation library [18], which allowed us to evaluate real
applications on actual nodes with simulated mobility and
wireless network.

The wired LAN environment provides a nearly ideal net-
work in which the cost of communication is very low, there
is little contention for the communication channel, all nodes
are connected directly to each other, and collisions are min-
imal. By minimizing these factors, it is possible to focus
the experiment results on the overhead of the programming
environments. In these experiments, all nodes were directed
connected to a 100Mb/s switch, providing essentially an in-
dependent, one hop channel for each pair of nodes

However, it is also desirable to perform tests which reflect
the requirements from Section 1. QualNet provides an em-
ulated wireless protocol stack and simulation of the wireless
channel and mobility. The results from the experiments us-
ing QualNet more accurately reflect the MANET environ-
ment. For these experiments, all communication was per-
formed through QualNet, which emulated an 802.11 ad hoc
wireless network with an available bandwidth of 11Mb/s.

6.1 Communication Overhead
AmbientTalk, LIME, and SpatialViews use very different

messaging systems. This experiment demonstrates the over-
head for each using a client-server setup as the simplest base
case. Messages are sent out from the sever to the client at
an increasing rate. The number of IP packets generated by
doing so include control and discovery packets. Each node
is within wireless range of the others so all communication
is performed over single hop routes. Figure 7 and Figure 6
show the results from wired LAN and QualNet, respectively.

AmbientTalk has the lowest overhead, as it is simply per-
forming a method call on a remote object and there is no
return value. LIME requires some communication to alert
merged tuple spaces of the messages’ presence and then more
communication to actually transfer the tuple. SpatialViews
shows the highest amount of overhead, which is expected
since it is migrating code and data to communicate a simple
message.

Although the results were similar in the wired LAN and
QualNet, the performance of SpatialViews was consider-
ably slower, peaking at 20 msgs/s, while in the wired LAN
it was possible to reach 117 msgs/s. This is due to con-
tention for the wireless channel. It is also worth consid-
ering that LIME and AmbientTalk use asynchronous mes-
sages while SpatialViews uses a blocking synchronous mes-
sage send. This allows LIME and AmbientTalk to take ad-
vantage of system level buffers, while SpatialViews cannot.

6.2 Group Communication
In this experiment we consider the common situation where

one node needs to request information from the rest of the
network and then collect the results, with increasing num-
bers of receivers. The application sends out a message then
measures the time elapsed for responses. For SpatialViews,
this involves visiting each node and that node then visiting
the sending node. The AmbientTalk version uses an omni-
handle, as in the chat application, to broadcast the handle
of the sender and then the receivers use the handle to send
a return message. For LIME, each message is sent as a tu-
ple, to which the receivers send a response tuple. Again, the
network is set up so that no node is farther than one hop

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

 0
 10
 20
 30
 40
 50
 60
 70

 0 5 10 15 20 25 30

AmbientTalk

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

R
e
c
e
iv

e
d
 T

h
ro

u
g
h
p
u
t
(m

s
g
s
/s

)

Lime

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25 30

Time (seconds)

SpatialViews

Figure 10: Disconnection Recovery

Figure 11: Simulated Mobility Scenario

from any other node. Figures 9 and 8 show the results.
In the wired LAN, LIME shows the least variation as the

number of receivers increases. This is because the sender
writes out a single tuple and each receiver can respond in-
dependently and in parallel. SpatialViews slows down con-
siderably as the number of receivers increases, since Spa-
tialViews visits each receiver in turn and waits on a response
before continuing. The delay for AmbientTalk is the high-
est but does not increase quite as quickly as SpatialViews.
Although AmbientTalk uses a single send at the applica-
tion level, messages to individual receivers are sent serially,
causing the delay for the last receiver to be higher than the
first.

When run using QualNet, the effect of using the wireless
channel is seen again. The delay with AmbientTalk and
LIME increases, but not as dramatically as SpatialViews,
which reaches a delay of about 1 second with 5 receivers,
while a single receiver averages 134 ms. As in the previous
experiment, the traffic generated by SpatialViews quickly
creates conflicts in the wireless channel, causing retransmis-
sion and delay at the MAC layer.

6.3 Mobility and Disconnection
In order to isolate and examine disconnection recovery,

a simpler experiment in a wired LAN was performed, still
using the same client-server application. In this case, a 5
second disconnection was caused by turning the network in-
terface off and then turning it back on. Each project reacted
similarly, as shown in Figure 10 though LIME showed the
fastest recovery time. Interestingly, SpatialViews exhibited

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100

Lime

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
e
iv

e
d
 T

h
ro

u
g
h
p
u
t
(m

s
g
s
/s

)

AmbientTalk

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

Time (seconds)

SpatialViews

Figure 12: Client-Server Throughput with Mobility

delivery of buffered messages. As SpatialViews does not
buffer messages itself, this buffering was the result of the
operating system attempting to locate the remote node.

Using QualNet, it was possible to evaluate the projects in
a mobile environment which provided disconnections, rout-
ing changes, and multi-hop communication. For this exper-
iment, the network layout and mobility pattern shown in
Figure 11 was used. Node 1 user the same client-server ap-
plication as in the first experiment and is attempting to send
messages to Node 4. The distance between the two nodes
forces a multi-hop route through the intermediate nodes.
Node 1 moves from left to right at a constant rate during a
time period of 100 seconds. This experiment again measures
message delivery rate. Results are shown in Figure 12.

The large spikes for the AmbientTalk and LIME results in-
dicate the delivery of buffered messages. For AmbientTalk,
the sender did not begin until the receiver was discovered,
while LIME began sending messages immediately. The flat
part of the graphs indicates when Node 1 was in between
Node 3 and Node 5 and was outside the range of both. Spa-
tialViews did not perform well in this experiment because
it lacks the sophisticated disconnection handling and mes-
sage buffering of the other two experiments. Also, the code
migration was difficult, more time consuming, and more sus-
ceptible to disconnections. As in the previous experiments,
this demonstrates the difference between experiments using
a wired LAN compared to a simulated wireless network.

7. RELATED PROJECTS
The following projects have been included for complete-

ness and because they exhibit unique features, but were ex-
cluded from the main discussion.

JANE [19] works by providing an event-based model with
guaranteed network feedback. JANE also provides mobility
and network emulation software which allows programs to
be tested on simulated devices as well as real devices.

Pervaho [20] is another publish/subscribe middleware for
MANETs, but includes the concept of persistent publica-
tions. This provides the temporal decoupling missing from
STEAM.

TypeCast [21] is a recent project which uses type hierar-
chies to provide efficient routing for messages in a MANET.

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

The type of an object provides addressing and routing in-
formation.

EgoSpaces [22] is another tuple space middleware which
focuses on context awareness.

8. CONCLUSIONS
This paper has discussed challenges specific to mobile ad

hoc applications. We presented and evaluated existing projects
based on tuple spaces, remote object handles, event han-
dling, publish/subscribe, and code migration. Two applica-
tions were developed using three selected projects in order
to evaluate their advantages and disadvantages with actual
applications. Finally, several experiments were run on both
a wired and simulated wireless network to quantify differ-
ences between AmbientTalk, LIME, and SpatialViews. The
difference in resulting performance showed the necessity of
testing these programming environments in a MANET con-
text and the impact of expensive communication schemes.
Future work would include more complex mobility and rout-
ing scenarios.

The approaches presented in this paper are not unique
to MANETs, but have been adapted from familiar parallel
and distributed computing concepts. Although the simple
applications in Section 5 used languages specifically made
for MANETs, it was still necessary to work around limi-
tations of the approaches taken. Programming abstractions
designed specifically for MANETs are necessary to fully han-
dle the frequent disconnections, dynamic topologies, and
varying communication patterns inherent to MANETs. Ap-
plications for MANETs are a currently expanding field and
useful abstractions along with tools for testing can increase
their rate of development and deployment.

9. REFERENCES

[1] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
on-demand distance vector (aodv) routing, 2003.

[2] T. Clausen, P. Jacquet, and P. Jacquet. Optimized
link state routing protocol (olsr), 2003.

[3] S. Hadim, J. Al-Jaroodi, and N. Mohamed.
Middleware issues and approaches for mobile ad hoc
networks. Consumer Communications and Networking
Conference, 2006. CCNC 2006. 3rd IEEE, 1:431–436,
8-10 Jan. 2006.

[4] Sun Microsystems. http://java.sun.com/javame/.

[5] Microsoft.
http://msdn.microsoft.com/en-us/netframework/.

[6] Qualcomm. http://brew.qualcomm.com/brew/.

[7] Alan Kaminsky and Hans-Peter Bischof.
Many-to-many invocation: a new object oriented
paradigm for ad hoc collaborative systems. In
OOPSLA ’02: Companion of the 17th annual ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 72–73, New York, NY, USA, 2002. ACM.

[8] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez
Boix, Jessie Dedecker, and Wolfgang De Meuter.
Ambienttalk: Object-oriented event-driven
programming in mobile ad hoc networks. In SCCC
’07: Proceedings of the XXVI Intern. Conf. of the
Chilean Society of Comp. Sci., pages 3–12,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu
Iftode. Programming ad-hoc networks of mobile and
resource-constrained devices. SIGPLAN Not.,
40(6):249–260, 2005.

[10] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin
Roman. Lime: A coordination model and middleware
supporting mobility of hosts and agents. ACM Trans.
Softw. Eng. Methodol., 15(3):279–328, 2006.

[11] S. Ahuja, N. Carriero, and D. Gelernter. Linda and
friends. Computer, 19(8):26–34, Aug. 1986.

[12] Klaus Herrmann, Klaus Herrmann, Gero Mühl, Gero
Mühl, Michael A. Jaeger, and Michael A. Jaeger.
Meshmdl event spaces - a coordination middleware for
self-organizing applications in ad hoc networks.
Pervasive Mob. Comput., 3(4):467–487, 2007.

[13] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications with the tota
middleware. Perv. Comp. and Comm., 2004. PerCom
2004. Proceedings of the Second IEEE Annual
Conference on, pages 263–273, 14-17 March 2004.

[14] Sushil K. Prasad, Vijay Madisetti, et al. Syd: a
middleware testbed for collaborative applications over
small heterogeneous devices and data stores. In
Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on
Middleware, pages 352–371, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[15] René Meier and Vinny Cahill. Steam: Event-based
middleware for wireless ad hoc network. In ICDCSW
’02: Proc. of the 22nd Intern. Conf. on Distributed
Computing Systems, pages 639–644, Washington, DC,
USA, 2002. IEEE Computer Society.

[16] Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, and Anne-Marie Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv.,
35(2):114–131, 2003.

[17] Tom Van Cutsem, Jessie Dedecker, et al. Ambient
references: addressing objects in mobile networks. In
OOPSLA ’06: ACM SIGPLAN conference on
Object-oriented programming systems, languages, and
applications, pages 986–997, New York, NY, USA,
2006. ACM.

[18] Qualnet. http://www.scalable-networks.com.

[19] Daniel Gorgen, Hannes Frey, and Christian Hiedels.
Jane-the java ad hoc network development
environment. In ANSS ’07: Proceedings of the 40th
Annual Simulation Symposium, pages 163–176,
Washington, DC, USA, 2007. IEEE Computer Society.

[20] Patrick Eugster, Benoit Garbinato, and Adrian
Holzer. Pervaho: A development and test platform for
mobile ad hoc applications. Mobile and Ubiquitous
Systems - Workshops, 2006. 3rd Annual Intern. Conf.
on, pages 1–5, 17-21 July 2006.

[21] Jinsong Lin, Thomas Phan, and Rajive Bagrodia.
Typecast: Type-based routing in wireless ad-hoc
networks. Mobile and Ubiquitous Systems: Networking
& Services, 2006 Third Annual Intern. Conf. on,
pages 1–10, July 2006.

[22] C. Julien and G.-C. Roman. Egospaces: Facilitating
rapid development of context-aware mobile
applications. IEEE Transactions on Software
Engineering, 32(5):281–298, May 2006.

Digital Object Identifier: 10.4108/ICST.WICON2008.4932
http://dx.doi.org/10.4108/ICST.WICON2008.4932

