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ABSTRACT

We consider congestion games in wireless sensor networks
that offer quantitatively distinct classes of routing paths.
Each routing class is characterized by a service cost. Within
a routing class, the maximum link congestion is also an
important metric for measuring the quality of the paths.
Here, we study routing games where each player i selfishly
selects a path with a respective routing class that simul-
taneously minimizes its maximum edge congestion Ci and
service cost Si, in other words minimizes Ci +Si. We exam-
ine the quality of Nash-equilibria and prove that the price
of stability is 1. The price of anarchy is bounded above
by min(C∗, S∗) · m log n, where m is the number of routing
classes, n is the size of the graph, and C∗ and S∗ are the op-
timal coordinated congestion and service costs. Thus, under
certain circumstances, the player’s selfishness does not hurt
the social welfare and actually the equilibria can give good
approximations for the coordinated optimal social cost.

Categories and Subject Descriptors

C.2.2 [Computer-communication networks]: Network
Protocols—routing protocols; F.2.2 [Analysis of algo-

rithms and problem complexity]: Nonnumerical algo-
rithms and problems—Routing and layout

General Terms

Algorithms, Theory

Keywords

Algorithmic game theory, congestion games, Nash equilib-
rium, price of stability, price of anarchy
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1. INTRODUCTION
Routing is a fundamental task in wireless sensor net-

work [13]. Routing algorithms provide paths for packets
that will be sent over the network. Motivated by the selfish
behavior of entities in wireless sensor networks networks, we
study routing games where each packet’s path is controlled
independently by a selfish player.

Wireless sensor networks are extremely energy-limited.
The rate of energy consumption and hence the overall life-
time at a node depends on the rate at which information
flows through it. Most of the communication energy at a
node is spent on forwarding packets from various flows. In
heterogenous sensor networks, different nodes have varying
capabilities for supporting traffic flows through forwarding.
This aspect of heterogeneity should form an important part
of the routing framework.

Game-theoretic models have been extensively used to
model traffic flows in networks. Routing games based on
node/link congestion reflect energy consumption and hence
network lifetimes. In traditional congestion games, the opti-
mal social objective is to route traffic so as to minimize over-
all congestion or maximize the minimum battery lifetime in
the network whereas individual nodes are concerned with
choosing routes that maximizing their connection lifetimes
i.e minimizing congestion (energy consumptions) along their
routes.

In this paper, we are interested in evaluating games of
traffic flow in heterogenous sensor networks. Given the in-
creasing presence of heterogeneity in sensor networks (for
example, sensor networks in SCADA systems [31]), it makes
sense to consider the availability of different traffic routing
classes in the network. Analogous to the idea of Quality of
Service classes in wired networks. A particular routing class
may be composed of nodes with a specific range of available
energies. A given routing class can thus guarantee minimal
connection lifetimes based on the number of nodes partici-
pating in that class. A node can pay a given service cost to
participate in routes belonging to a particular traffic class.
Each class guarantees a minimum routing quality. How-
ever if too many nodes select a particular class, the quality
of routing will obviously deteriorate. We can assume that
nodes in a particular routing form a separate subnetwork
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and only route traffic flows in the class. Thus nodes in dif-
ferent classes do not affect energy consumptions and hence
congestion in each other.

In this paper we develop routing games based on the avail-
ability of different traffic routing classes. We characterize
each routing class by a fixed service cost which reflects the
connection/energy guarantees provided by the class. A class
with high service costs may correspond to a subnetwork of
nodes with high available energies. Since these nodes can
transmit at higher powers, they can guarantee lower delays
and higher successful transmission probabilities. However
nodes with higher service costs may be attractive for these
reasons and thus have higher congestion which degrades per-
formance. Hence the metric which reflects overall costs to
participants in a routing class is the sum of a fixed service
cost and variable congestion costs.

1.1 Quality of Routing Congestion Games
We consider network congestion games where there is a

set of N players and each player has to select a path from a
source node to a destination node in the network. We con-
sider atomic congestion games where the flow of each player
is unsplittable, that is, all the traffic flow of the player is
sent along one path from the source to the destination. The
paths selected by different players may interfere with each
other when they have common edges. We use as a path
interference metric the edge congestion, where the conges-
tion of an edge is the number of player paths that use the
edge. Each selected path has a cost which is related to the
congestion of its bottleneck edge (the most congested edge
along the path). The players select paths that minimize the
costs, that is, they prefer paths with lower congestion. Edge
congestion is an appropriate cost metric which relates to the
energy required to transmit packet along that edge, that is,
the higher the congestion on an edge the more the energy
needed to transmit the packets. Thus, lower congestion im-
plies increased lifetime for the network. Further congestion
is related to the scheduling time for sending the packets, the
higher the congestion, the faster the packet delivery sched-
ule.

We introduce here the quality of routing congestion games
(QoR games), where the paths are partitioned into m rout-
ing classes Q1, . . . , Qm, where each routing class Qj has a
service cost S(Qj). Each path in the network (and hence
the path selected by a player) is assigned to exactly one of
those routing classes. The paths in different routing classes
do not affect each other, that is, any two paths in different
routing classes do not cause congestion to each other. This
non-interfering property can be achieved by selecting the
paths of different classes to be edge-disjoint, or by assigning
the paths of each routing class to a different transmission
channel (e.g. with frequency or time-division multiplexing).
Thus, only players within the same routing class can cause
congestion to each other (analogous to packets on the same
frequency channel causing congestion to each other in a fre-
quency multiplexed routing scheme).

For a player i the cost function is defined as Ci+Si, where
Si is the service cost of the routing class that the path of i
belongs to, and Ci is the congestion of the bottleneck edge of
the player’s chosen path, where the congestion is measured
only among the paths that belong to the same routing class
as player i.

Each player selects a path with the smallest cost possible.

The player is allowed to select its path in any of the routing
classes. A player is locally optimal with its current choice
if no other path choice yields lower cost for the player. We
are interested in network states where every player is locally
optimal, such a state is called a Nash Equilibrium. In partic-
ular, we examine pure Nash equilibria, where a strategy is a
deterministic choice of a path, in contrast to mixed equilib-
ria where the strategies are probability distributions among
the paths.

We first show that QoR games always have pure Nash
equilibria, which can be obtained with best response dynam-
ics, where each player greedily improves its path whenever
possible. We then examine the quality of the Nash equi-
libria. A natural problem is to determine the effect of the
players’ selfishness on the welfare of the whole communica-
tion network. The welfare of the network is measured with
the social cost, SC, which is the maximum cost experienced
by any player. We can write SC = C + S, where C is the
congestion and S is the cost of the respective routing class
of the the worst cost player. Let SC∗ = C∗ + S∗ denote
the optimal social cost, where an optimal coordinated off-
line algorithm assigns paths to players with the objective to
minimize the social cost without considering the local opti-
mality of the players.

QoR games may possibly have multiple Nash equilibria.
We quantify the effect of selfishness with the price of stability
and price of anarchy [15, 23], which express how much larger
is the social cost in a Nash equilibrium compared to the
social cost in the optimal coordinated solution. Price of
stability (PoS) is the ratio of the best Nash equilibrium
social cost to the optimal social cost. We show that PoS =
1, that is, there is always a Nash equilibrium that achieves
optimal social cost.

Price of anarchy (PoA) is the ratio of the worst Nash equi-
librium social cost to the optimal social cost. We examine
restricted-QoR games where the service cost of each class is
at least the length of each path that the class contains. Such
games are interesting when different routing classes corre-
spond to different ranges of path lengths; for example, it
could be more costly to use longer paths than shorter paths.
We show that the price of anarchy in any restricted-QoR
game is bounded as:

PoA = O(min(C∗, S∗) · m log n),

where n is the number of nodes in the underlying graph.
Therefore, when either of C∗ or S∗ is small (e.g. a constant),
and the number of classes m is small, the Nash equilibrium
provides a very good approximation to the coordinated rout-
ing problem. Thus, in those scenarios the effect of selfishness
is small, which is an important result that shows that the
local optimality and selfishness can provide good outcomes
for the global social welfare.

1.2 Related Work
Routing games (on congestion) were introduced and stud-

ied in [21, 25]. The notion of price of anarchy was intro-
duced in [15]. Since then, many routing game models have
been studied which are distinguished by the topology of
the network, cost functions, type of traffic (atomic or split-
table), nature of strategy sets, and kind of equilibria (pure or
mixed). Specifically, pure equilibria with atomic flow have
been studied in [2, 3, 18, 25, 30] (our work fits into this cat-
egory), and with splittable flow in [26, 27, 28, 29]. Mixed
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equilibria with atomic flow have been studied in [6, 7, 8, 10,
11, 12, 14, 15, 19, 20, 23], and with splittable flow in [4, 9].

Most of the work in the literature uses a single cost met-
ric which is related to the network congestion. The most
common metric for the player cost is the sum of the conges-
tions on all the edges of the player’s path [3, 12, 27, 28, 29,
30]. Games with similar player costs have been studied in
the literature [3, 4, 6, 7, 8, 9, 10, 14, 15, 20, 23, 26], and
other variations have been studied in [11, 18, 19, 25]. The
vast majority of the work on routing games has been per-
formed for parallel link networks, with only a few exceptions
on general network topologies [2, 3, 4, 26].

Bottleneck congestion games have been studied in [1]. Our
work is closer to [2] where they also study bottleneck conges-
tion routing problems. We extended some results presented
in [2] to apply to different routing classes and service costs,
instead of using the single criterium of congestion. Specifi-
cally, the techniques that we use to prove existence of Nash
equilibria with best response dynamics, and also to prove
upper bounds on the price of anarchy, were originally intro-
duced in [2]. Here, we modified and extended appropriately
these techniques in a non-trivial way to apply to the setting
of different quality of routing classes.

Outline of Paper

We proceed as follows. In Section 2 we give basic defini-
tions. We study the stability of QoR games in Section 3. In
Section 4 we estimate the price of anarchy. We finish with
a discussion in Section 5.

2. DEFINITIONS
Here we describe the quality of routing congestion games

(QoR games). An instance of a QoR game is a tuple R =
(N , G,P,Q), where the constituents of the tuple are defined
as follows:

• N = {1, 2, . . . , N} is the set of players,

• G = (V, E) is a graph with nodes V and edges E,

• P is a set of available paths in G that the players can
choose. We can write P =

⋃
i∈N Pi, where Pi is a

collection of available paths in G for player i. Each
path in Pi is from a source node ui ∈ V to destination
node vi ∈ V .

• Q = {Q1, . . . , Qm} is a set of routing classes. Each
routing class Qj imposes a fixed service cost S(Qj) to
each path that uses it, where 1 ≤ S(Qi) < S(Qj), for
any 1 ≤ i < j ≤ m. The paths in P are partitioned
so that each path p ∈ P belongs to one routing class,
denoted Q(p).

Each path in Pi is a pure strategy available to player i.
A pure strategy profile p = [p1, p2, · · · , pN ] is a collection of
pure strategies (paths), one for each player, where pi ∈ Pi.
We refer to a pure strategy profile as a routing. We use
the standard notation p−i to refer to the collection of paths
{p1, · · · , pi−1, pi+1, · · · , pN}, and (pi;p−i) as an alternative
notation for p which emphasizes the dependence on pi.

Consider now a routing p. For any pi ∈ p, we will use
the notation Si(p) = S(pi) = S(Q(pi)). We will denote by
Q(p) the maximum class that any path in p belongs to, and
S(p) = S(Q(p)). For an edge e and routing class Qj we de-
fine the congestion of edge e at class Qj , denoted C(e,Qj)(p),

as the number of paths in p that belong to class Qj and use
edge e. We denote with Ce(p) the largest congestion of edge
e at any class, namely Ce(p) = maxj∈{1,...,m} C(e,Qj)(p).
For any path pi ∈ p we define the path congestion Cpi

(p)
(alternatively, player i’s congestion), to be the maximum
congestion at class Q(pi) of any of the edges of path pi;
namely, Cpi

(p) = maxe∈pi
C(e,Q(pi))(p). Note that only

paths of the same routing class can cause congestion to each
other. We will use the notation Ci(p) to denote the conges-
tion of player i’s path in p, that is, Ci(p) = Cpi

(p). Let
CQj

(p) denote the congestion of routing p at routing class
Qj , which is the maximum congestion experienced by any
player in that class; namely, CQj

(p) = maxpi∈Qj
Cpi

(p).
We denote by C(p) the maximum congestion experienced
by any player in routing p, namely, C(p) = maxi∈NCi(p).
Whenever the context is clear, in the notations we will drop
the dependence on p, for example, we will write C instead
of C(p).

The player cost pci is defined as the sum of the congestion
of the chosen path and the service cost of the routing class
that the chosen path belongs; namely,

pci(p) = Ci(p) + Si(p).

The social cost of the game is defined as the largest player
cost in any routing class, namely,

SC(p) = max
j∈{1,...,m}

(CQj
(p) + S(Qj)).

Player i is locally optimal in routing p if pci(p) ≤
pci(p

′
i;p−i) for all paths p′

i ∈ Pi. A routing p is in a Nash
Equilibrium (we say p is a Nash-routing) if every player is
locally optimal. A routing p∗ is an optimal pure strategy
profile if it has minimum attainable social cost: for any other
pure strategy profile p, SC(p∗) ≤ SC(p).

We quantify the quality of the Nash-routings by the price
of anarchy (PoA) (sometimes referred to as the coordination
ratio) and the price of stability (PoS). Let P denote the set
of distinct Nash-routings, and let SC∗ denote the social cost
of an optimal routing p∗. Then,

PoS = inf
p∈P

SC(p)

SC∗
, PoA = sup

p∈P

SC(p)

SC∗
.

3. PRICE OF STABILITY
Here, we show that QoR games have Nash-routings and we

also estimate the price of stability. The existence of Nash
routing relies on finding an appropriate potential function
and a total order of the routings. We prove that given
an arbitrary initial state any greedy move of a player can
only give a new routing with smaller order. Thus, repeated
greedy moves converge either to the smallest order routing
or to a routing where no player can improve further. In
either case, a Nash-routing is reached.

Here we define the potential function that we will use.
Let R = (N , G,P,Q) be a QoR game. Let r = N +S(Qm).
For any routing p we define the routing vector M(p) =
[m1(p), . . . , mr(p)], where mi(p) is the number of players
in p whose cost is i. Note that if SC(p) = k then mk 6= 0
and m′

k = 0 for all k′ > k.
We give total order on the routings based on their lex-

icographic ordering. Let p and p′ be two routings, with
M(p) = [m1, . . . , mr], and M(p′) = [m′

1, . . . , m
′
r]. We say

that M(p) = M(p′) if mi = m′
i for all 1 ≤ i ≤ r, and
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M(p) < M(p′) if there is a j, 1 ≤ j ≤ r, such that mk = m′
k

for all k > j, and mj < m′
j . We order the p and p′ according

to the order of their respective vectors, that is p ≤ p′ if and
only if M(p) ≤ M(p′). Note that for any two p and p′ it
either holds that p = p′ or p < p′, that is, the routings are
totally ordered.

Consider an arbitrary routing p. If p is not a Nash-
routing, there is at least one user i which is not locally
optimal. Then a greedy move is available to player i in
which the player can obtain lower cost by changing the
path from pi to some other path p′

i with lower cost. In
other words, the greedy move takes the original routing
p = (pi;p−i) to a routing p′ = (p′

i;p−i) with improved
player cost pci(p

′) < pci(p). We show now that any greedy
move gives a smaller order routing:

Lemma 3.1. If a greedy move by player i takes a routing
p to a new routing p′, then p′ < p.

Proof. Let pi and p′
i denote the paths of i in routings p

and p′, respectively. Let pci(p) = Ci(p) + S(pi) = z1 and
pci(p

′) = Ci(p
′) + S(p′

i) = z2. Since player i decreases its
cost in p′, z2 < z1. Consider now the vectors of the routings
M(p) = [m1, . . . , mr] and M(p′) = [m′

1, . . . , m
′
r]. We will

show that M(p) < M(p′).
Let S(pi) = k1 and S(p′

i) = k2. Let Y denote the set
of players whose cost increases in p′ with respect to their
cost in p. Next, we show that for any j ∈ Y it holds that
pcj(p

′) ≤ pci(p
′), which will help us to prove the desired

result.
Let pj be the path of player j ∈ Y , and let also S(pj) = k3

(note that j does not switch paths and routing classes be-
tween p and p′). If k3 6= k1 and k3 6= k2 then the cost
of j remains unaffected between p and p′. Thus, either
k3 = k1 or k3 = k2. If k3 = k1, then the cost of j can
only decrease from p to p′, since path pi no longer affects
path pj . Therefore, it has to be that k3 = k2. Suppose,
for the sake of contradiction, that pcj(p

′) > pci(p
′). Then,

Cj(p
′) + k3 > Ci(p

′) + k2. Since k3 = k2, it has to be
that Cj(p

′) > Ci(p
′). Since j ∈ Y , Cj(p) < Cj(p

′). The
increase in congestion of pj in p′ can only be caused by
p′

i due to a common edge e with pj that has congestion
C(e,k3)(p

′) = Cj(p
′). Therefore, Ci(p

′) ≥ Cj(p
′), a contra-

diction. Therefore, pcj(p
′) ≤ pci(p

′).
Consequently, in vector M(p′) all the entries in positions

z2 +1, . . . , r do not increase with respect to M(p). Further,
since player i switches paths from cost z1 to z2 with z1 > z2,
we obtain mz1

> m′
z1

. Thus, M(p) < M(p′), as needed.

Since there are only a finite number of routings, Lemma
3.1 implies that starting from arbitrary initial state, every
best response dynamic converges in a finite time to a Nash-
routing, where every player is locally optimal.

Theorem 3.2 (Existence of Nash-routings). In
any QoR game, starting from an arbitrary initial routing,
best response dynamics converge to a Nash-routing.

Since the routings are totally ordered, there is a rout-
ing pmin which is the minimum, that is, for all routings
p, pmin ≤ p. The minimum routing is also a Nash-routing,
since no greedy move can improve from it. As we show next,
the minimum routing pmin achieves also optimal social cost,
which implies that the price of stability is 1.

Lemma 3.3. The minimum routing pmin achieves optimal
social cost, that is, SC(pmin) ≤ SC(p) for any routing p 6=
pmin.

Proof. Suppose for contradiction that there exists a
routing p ≥ pmin with SC(p) < SC(pmin). Let SC(p) =
k1, and SC(pmin) = k2. Clearly, k1 < k2. Therefore, in
the vector M(p) = [m1, . . . , mr] it holds that mk1

6= 0 and
mk = 0 for k > k1. Similarly, in the vector M(pmin) =
[m̂1, . . . , m̂r] it holds that m̂k2

6= 0 and m̂k = 0 for k > k2.
Therefore, M(pmin) > M(p), contradicting the fact that
p ≥ pmin.

Corollary 3.4 (Price of stability). For any QoR
game, the price of stability is PoS = 1.

4. PRICE OF ANARCHY
From Theorem 3.2, every QoR game has at least one Nash-

routing. Here, we bound the price of anarchy. Consider a
QoR game R = (N , G,P,Q), where G has n nodes, and
Q has m routing classes. We will consider restricted-QoR
games where the routing classes have the following restric-
tion for the path lengths of the packets that they contain:

For any path p ∈ Q(p) it holds that |p| ≤
S(Q(p)), where |p| denotes the length of p.

So, assume that R is a restricted-QoR game. Consider also
a Nash-routing p. Let C = C(p) and S = S(p). Let p∗

be the optimum (coordinated) routing with minimum social
cost. Denote C∗ = C(p∗) and S∗ = S(p∗). Note that each
payer i ∈ N has a path in pi ∈ p (with congestion Ci and
service cost Si) and a corresponding “optimal” path p∗

i ∈ p∗

(with congestion C∗
i and service cost S∗

i ). We obtain:

Lemma 4.1. In Nash-routing p, for any player i with
Ci ≥ C − x, where x ≥ 0, it holds that Si ≤ S∗

i + x + 1.

Proof. Suppose for the sake of contradiction that there
is a player i with Ci ≥ C − x and Si > S∗

i + x + 1. Then,
pci = Ci + Si > C − x + S∗

i + x + 1 = C + S∗
i + 1. If

user i was to switch to path p∗
i its cost would be pc′i ≤

C + 1 + S∗
i , since p∗

i has congestion at most C before player
i switches its path, and the congestion of path p∗

i increases
to at most C + 1 after player i switches to it. Therefore,
pc′i ≤ C + 1 + S∗

i < pci. Thus, in p player i would not be
optimal, which is a contradiction, since p is a Nash-routing.
Therefore, Si ≤ S∗

i + x + 1, as needed.

For each edge e ∈ G let Πe(p) denote the set of players
whose paths in routing p use edge e. For any edge e, we
define F (e, i) to be the set that contains all edges e′ ∈ p∗

i

with C(e′,Q(p∗

i
))(p) ≥ Ci − S∗. Let F (e) = ∪i∈Πe(p)F (e, i),

and for any set of edges X, F (X) =
⋃

e∈X
F (e). We have:

Lemma 4.2. In Nash-routing p, for every player i and
edge e it holds that |F (e, i)| ≥ 1.

Proof. Suppose that |f(e, i)| = 0. Then for every edge
e′ ∈ p∗

i it holds that C(e′,Q(p∗

i
))(p) < Ci − S∗. Therefore,

Cp∗

i
(p) < Ci −S∗. If player i was to choose path p∗

i its cost

would be: pc′i ≤ Cp∗

i
(p) + 1 + S∗

i < Ci − S∗ + 1 + S∗ =

Ci +1 ≤ Ci +Si = pci(p). Thus, pc′i < pci(p) which implies
that player i is not locally optimal in Nash-routing p, a
contradiction.
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We continue with the following result:

Lemma 4.3. Let Z be the set that contains all edges e with
congestion Ce(p) ≥ C − 2S∗ · lg n. If C > 2S∗ · lg n, then
there is a set of edges X ⊆ Z with |F (X)| ≤ 2|X|.

Proof. We recursively define sets of edges E0, . . . , E2 lg n,
such that Ei = Ei−1 ∪ F (Ei−1), and set E0 contains all the
edges e with congestion Ce(p) = C. We show now that there
is a j, 0 ≤ j ≤ 2 lg n, such that |F (Ej)| ≤ 2|Ej |. Suppose for
contradiction that such a j does not exist. Thus, for all j,
0 ≤ j ≤ 2 lg n, it holds that |F (Ej)| > 2|Ej |. In this case, it
it straightforward to show that |Ek| > 2|Ek−1|, for any 1 ≤
k ≤ 2 lg n. Since |E0| ≥ 1, it holds that |E2 lg n| > 22 lg n =
n2. However, this is a contradiction, since the number of
edges in G cannot exceed n2. Thus, there is a j, 0 ≤ j ≤
2 lg n, with |F (Ej)| > 2|Ej |; we set X = Ej .

It only remains to show that X ⊆ Z. It suffices to show
that for any Ek and e ∈ Ek, Ce(p) ≥ C−kS∗, where 0 ≤ k ≤
2 lg n. We prove this claim by induction on k. For k = 0 we
have that every edge in e has Ce(p) = C = C−0·S∗, thus the
claim trivially holds. For the induction hypothesis, suppose
that the claim holds for any k = t < 2 log n. In the induction
step we will prove that the claim holds also for k = t + 1.
We have that Et+1 = Et ∪ F (Et). By induction hypothesis,
for any e ∈ Et, Ce(p) ≥ C − tS∗. Therefore, for any e ∈ Et,
Ce(p) ≥ C − (t + 1)S∗. Since C > 2S∗ · lg n and t + 1 ≤
2 lg n, Ce(p) ≥ 1. Thus, or any e ∈ Et there is at least one
player i ∈ Πe(p) whose path pi uses edge e, and therefore
Ci ≥ C − tS∗. By definition, every edge e′ ∈ F (e, i) has the
property that C(e′,Q(p∗

i
))(p) ≥ Ci−S∗ ≥ C−(t+1)S∗. Thus,

Ce′(p) ≥ C − (t + 1)S∗. From the definition of F (Et), it
follows that for any edge e′ ∈ F (Et), Ce′(p) ≥ C−(t+1)S∗.
By considering the union Et+1 = Et∪F (Et), we obtain that
for any e ∈ Et+1, Ce(p) ≥ C − (t + 1)S∗, as needed.

Lemma 4.4. In Nash-routing p it holds that C ≤ 10C∗ ·
S∗ · lg n.

Proof. If C ≤ 2S∗ · lg n, then the claim holds imme-
diately. So, assume that C > 2S∗ · lg n. From Lemma
4.3, there is a set of edges X with |F (X)| ≤ 2|X|, where
for each edge e ∈ X it holds that Ce(p) ≥ C − 2S∗ · lg n.
Let Π =

⋃
e∈X

Πe(p), that is, Π is the set of players that
their paths in p use edges in X. Let M =

∑
e∈X

Ce(p) de-
note the total utilization of the edges in X. We have that
M ≥ |X|(C − 2S∗ · lg n).

For any player i ∈ Π we have Ci(p) ≥ C−2S∗ · lg n. From
Lemma 4.1, we obtain Si ≤ S∗ + 2S∗ · lg n + 1 ≤ 4S∗ · lg n.
Let L denote the maximum path length of any player in Π.
Since R is a restricted-QoR game, for every player i ∈ Π we
have that |pi| ≤ Si, which implies that L ≤ 4S∗ · lg n.

The parameter M can also be bounded as M ≤ L|Π|.
Consequently, |X|(C − 2S∗ · lg n) ≤ L|Π|, which gives:

C ≤
L|Π|

|X|
+ 2S∗ · lg n ≤

4S∗|Π| lg n

|X|
+ 2S∗ · lg n (1)

Since from Lemma 4.2, |F (e, i)| ≥ 1, in the optimal routing
p∗ the path of each user in Π has to use at least one edge
in F (X). Thus, in the optimal routing p∗, the edges in
F (X) are used at least |Π| times. Thus, there is some edge
e ∈ F (X) which in p∗ is used by at least |Π|/|F (X)| paths.
Since there are m service classes, the congestion of e in one of
those service classes is at least |Π|/(|F (X)| · m). Therefore,

C∗ ≥ |Π|/(|F (X)| · m). Since |F (X)| ≤ 2|X|, we obtain:

|Π| ≤ 2C∗ · |X| · m. (2)

By Combining Equations 1 and 2, we get: C ≤ 8C∗ · S∗ ·
m lg n + 2S∗ lg n ≤ 10C∗ · S∗ · m lg n.

Finally, we obtain the main result:

Theorem 4.5 (Price of anarchy). For any
restricted-QoR game, PoA = O(min(C∗, S∗) · m lg n).

Proof. Suppose that p is the worst Nash-routing
with maximum social cost. We have that PoA ≤
SC(p)/SC(p∗) ≤ (C + S)/(C∗ + S∗). We examine two
cases:

• C > S/4: In this case S = O(C). From Lemma
4.4, C ≤ 10C∗ · S∗ · m lg n. Therefore: PoA =
O(C/(C∗ + S∗)) = O((C∗ · S∗ · m lg n)/(C∗ + S∗)) =
O(min(C∗, S∗) · m lg n).

• C ≤ S/4: In this case C = O(S). Let pi ∈ p be
the path with maximum cost in p. Clearly, pci(p) =
Ci + Si ≥ S. Further, 0 ≤ Ci(p) ≤ C ≤ S/4. Thus,
Si ≥ S−Ci ≥ S−S/4 = 3S/4. Since Ci ≥ 0 = C−C,
Lemma 4.1 gives Si ≤ S∗

i + C + 1 ≤ S∗ + S/4 + 1.
Therefore, 3S/4 < S∗ + S/4 + 1. Thus, S < 2(S∗ +
1) ≤ 3S∗. In order words, S = O(S∗). We obtain:
PoA = O(S/(C∗ + S∗)) = O(S∗/(C∗ + S∗)) = O(1).

By combining the two above cases we obtain the desirable
result.

5. DISCUSSION
Our work has further consequences to the problem of rout-

ing and scheduling in general networks. Given a set of
paths in a network, a well known lower bound for deliv-
ering the packets along the paths is Ω(C + D), where C is
the maximum congestion in any edge, and D is the max-
imum path length. Leighton et al. [16] have shown the
existence of packet scheduling algorithms that deliver pack-
ets along paths in time close to optimal O(C +D) [5, 16, 17,
22, 24]. Our restricted-QoR games relate to this problem.
We can assign the paths into routing classes according to
their lengths. We can have m = O(log n) routing classes,
where routing class Qi can hold paths with lengths in range
[2i, 2i+1), and the service cost of each class is 2i+1. Clearly,
the corresponding games are restricted. The Nash-equilibria
for these games give poly-logarithmic approximations to the
C + S problem (when C∗ or S∗ is small), which in turn
give poly-logarithmic approximations to the C + D routing
problem, when either C∗ or D∗ is small.
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