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ABSTRACT

Over the last few years the area of cooperative communica-
tions has regained attention within the physical layer com-
munity. However, existing works on cooperative random ac-
cess protocols are relatively scarce and biased towards their
physical layer properties, thus leaving unattended impor-
tant problems of the medium access control (MAC) sublayer
such as calculation of the backlog delay, design of appropri-
ate back-off retransmission strategies, and stability evalua-
tion, among many others. This paper partially fills this gap
by studying the general performance of a symmetrical Slot-
ted ALOHA protocol in which a cooperative relaying phase
is enabled in order to improve the decoding probability of
collision-free transmissions. Infinite and finite user schemes
are used, and for the latter, Bernoulli and Markov models are
further employed to study the steady- and the dynamic-state
properties of the protocol, respectively. A stochastic recep-
tion model is presented which fairly describes the underlying
physical layer events from the perspective of the MAC sub-
layer, including correct packet decoding probabilities, relay
node availability, and error detection capabilities. Important
results regarding the boundaries for optimum performance
of cooperative relaying schemes and useful guidelines for the
design of optimum relaying strategies are here derived and
discussed.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
architecture and design- packet switching networks, wireless

communications.

General Terms

Algorithms.
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1. INTRODUCTION
A useful method to counteract the degrading effects of in-

terference and fading in wireless communications is by col-
lecting and appropriately combining independent received
copies of the transmitted signal. Such copies are commonly
obtained from diversity sources that span frequency, code,
time or spatial domains. The latter is a particular feature of
wireless networks that has been typically exploited by means
of multiple antennas located either at the receiver, at the
transmitter, or at both locations [2]. However, due to size
limitations of modern mobile terminals, the minimum spac-
ing between antennas required to achieve diversity might be
unfeasible. As an alternative approach, the area of coopera-
tive communications attempts to obtain such diversity gains
by means of user cooperation schemes that efficiently exploit
the spatial configuration of the network [3].

1.1 Cooperative diversity
Achieving diversity through user cooperation critically re-

lies on the existence of a set of users who are willing to
cooperate and who are located at the appropriate position
in the network. These cooperative users are listening to
the transmissions from the active users, and when they are
requested to, they proceed to relay to the destination ei-
ther a processed or an amplified version of their received
packet (decode and forward (DF), or amplify and forward
(AF), respectively). Finally, the destination combines the
received copies of the signal thereby potentially achieving
similar gains to an equivalent multi-antenna system [4].

From the physical layer perspective, the performance of
cooperative diversity schemes critically depends on the char-
acteristics of the channels between source and destination,
source and relay, and relay and destination. The source-
destination channel is also called direct channel, whereas the
one composed of the direct and the source-relay-destination
channel is called relay channel. The statistics of such re-
lay channel determine the relaying protocol, modulation and
coding schemes, and whether to activate the relaying phase
or not. For example, AF relaying protocols are optimum
when the relay node is close to the destination, whereas DF
is optimum when the relay node is close to the source [3].
Describing all the physical layer properties of cooperative di-
versity is, however, out of the scope of this paper. Instead,
we refer the reader to the papers of Van der Meulen in [5];
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Cover and El Gamal in [6]; and to the papers by Sendonaris
in [7] and [8]. A summary of recent works can be found in
the compilation made by in Fitzek and Katz in [3].

In cooperative diversity systems, variables across differ-
ent layers closely interact with each other [9]. For example,
when a relaying phase is activated in half-duplex systems,
one or more time-slots of the system are used to transmit the
relayed packets thereby affecting the delay and throughput
at the medium access control (MAC) sublayer [10]. There-
fore, the achieved gain in diversity should greatly compen-
sate the loss in throughput and delay due to such relaying
phases. One of the goals of this paper is assessing this mini-
mum required gain for cooperative diversity schemes, which
is an interesting cross-layer design problem.

Another example of cross-layer interaction is the selection
of the relaying nodes, particularly in half-duplex systems
[10]. In a real system configuration, a relay node must have
traffic load of its own that needs to be transmitted in addi-
tion to the relayed packets from other users, which consti-
tutes a complex queuing theoretical problem. In this paper
we will follow the approach used in [11], where the authors
propose using the inactive users of a random access network
as relaying nodes, which greatly reduces the complexity of
the analysis. More cross-layer issues related to cooperative
communications can be found in [3], [4], and [9].

1.2 Cooperative random access protocols
Despite the extensive literature on cooperative diversity,

cooperative random access protocols are relatively scarce.
Existing works have been focused more on the physical layer
attributes rather than considering medium access control
(MAC) sublayer parameters which include stability, retrans-
mission schemes, backlog delay and bandwidth loss due to
signalling. A recent work on the analysis of the achievable
maximum stable throughput (MST) of cooperative random
access protocols can be found in [11], where the authors
have shown that cooperative protocols over fading chan-
nels asymptotically achieve the MST of simple random ac-
cess protocols over additive Gaussian noise channels. Using
another perspective, a cooperative random access protocol
called ALLIANCES has been proposed in [12]. The authors
have used the diversity created by subsequent retransmis-
sions from the relay nodes not only to achieve decoding gains
but also to resolve packet collisions and reduce multiple ac-
cess interference. This means that in a system without any
diversity source other than relaying retransmissions, a colli-
sion of K users would be resolved by a succession, in a time-
division manner, of at least K − 1 relaying retransmissions
plus the initial transmission. At the central node, all the col-
lected transmissions and retransmissions are processed using
source separation tools to finally obtain the original packets
[12]. This is similar to the non-cooperative retransmission
diversity multiple access protocol called NDMA (network as-
sisted diversity multiple access) proposed in [13], in which
the retransmissions are provided by the contending users
themselves and not by the relaying nodes.

Unlike NDMA, which is affected by correlation between
successive retransmissions and by channels with deep and
long term fades, the ALLIANCES protocol exhibits resilience
to these problems due to the diversity provided by the spa-
tially distributed relay nodes. The relevance of NDMA-type
protocols for the work presented in this paper is that the
effects of relaying phases at the MAC sublayer are basi-

cally the same as the effects of subsequent retransmissions
in NDMA and ALLIANCES. These effects were first recog-
nized in [14], where the author has coupled the effects of
cooperative relaying phases with the retransmission scheme
of an H-ARQ (hybrid automatic repeat request) protocol.

1.3 Cross-layer random access protocols
ALLIANCES and NDMA belong the category of cross-

layer random access protocols. This area has recently been
subject of considerable research efforts due to two important
facts: the advent of new physical layer schemes that allow
multipacket reception (MPR) capabilities, and the develop-
ment of stochastic reception models that accurately describe
the effects of wireless channels such as fading and interuser
interference [15]. This approach is different to the conven-
tional collision model in which any packet collision repre-
sented the loss of all the transmitted information, and where
successful or correct packet reception was only achieved in
transmissions containing a single packet [16].

Perhaps the most relevant examples of cross-layer random
access protocols are two different versions of the Slotted
ALOHA (S-ALOHA) protocol with stochastic MPR capa-
bilities. The first one, presented in [17], considers an infinite
user scheme with symmetrical configurations (i.e., all users
present the same reception and traffic parameters), while
the second one in [18] assumes finite and asymmetrical pop-
ulations. Although these works fairly characterize MPR ca-
pabilities along the space, frequency or code dimension, the
first system with adaptive MPR capabilities along the time
dimension was the NDMA protocol proposed in [13]. The
formulation for training-based NDMA systems in [13] and
later in [19] consists of useful but inaccurate stochastic re-
ception model based on probabilities of detection and false
alarm. Enhanced reception models for NDMA which are
based on the model used in [18] for the S-ALOHA protocol
have been proposed in [20] for the perfect user detection case
and in [21] for the imperfect user detection case.

The model presented in this paper is a particular variation
of the reception model used in [20] adapted to the particu-
lar case of cooperative diversity systems without MPR ca-
pabilities. As the formulation is based on the MPR models
discussed in this subsection, the extension of our model to
considering MPR capabilities is straightforward.

1.4 Paper contributions
This paper presents a detailed study on the general per-

formance of a symmetrical S-ALOHA protocol in which a
cooperative relaying phase is enabled for collision-free trans-
missions. A two hop scheme with only one relaying retrans-
mission has been considered. To cover all the aspects of the
behavior of the protocol we reuse here the tools commonly
employed in the past for the analysis of the conventional
ALOHA protocol (see [16]). We first use an infinite user
scheme which is known to provide a fair analysis of the maxi-
mum stable throughput and queuing delay of random access
protocols under the assumptions of large numbers of users
and finite traffic loads. In this scheme both new incoming
and previously incorrectly decoded packets (i.e., backlogged
packets) are considered as new users joining the active pop-
ulation, thus avoiding analysis of complex buffering strate-
gies. Additionally, we also use a finite-user scheme which
provides a fair evaluation of the system performance consid-
ering low numbers of users and high traffic loads. Within

Digital Object Identifier: 10.4108/ICST.WICON2008.4900 
http://dx.doi.org/10.4108/ICST.WICON2008.4900 



this finite-user scheme we further use two different mod-
els. The first one, called Bernoulli model, uses a generalized
probabilistic description of the queuing statistics thus be-
ing useful for steady-state analysis. The second one, called
the Markov model, is useful in designing back-off retrans-
mission strategies, in assessing stability, and in studying the
dynamic behavior of the algorithm.

An interesting result is the derivation of the minimum per-
formance required by cooperative diversity schemes in order
to provide a gain in maximum stable throughput with re-
spect to the non-cooperative version of the protocol. The
analysis is carried out under different assumptions regard-
ing the activation of the relaying phase, using a stochastic
model in which the relaying mechanism can be dependent
on the decoding events from the direct transmission or not.
Also, this probabilistic model absorbs other random vari-
ables that may affect the activation of the relaying phase
such as availability of relaying nodes. However, a detailed
analysis of relay selection strategies is topic of future works.

The stochastic reception model used in this paper fairly
describes the underlying physical layer events from the per-
spective of the MAC sublayer. In particular, it absorbs the
gain provided by considering either the direct channel only,
or the relay and the direct channel together. As previously
mentioned, it is an extension of the model used in [20] but
without considering MPR capabilities. A basic optimization
of the protocol expressions reveals a close relationship be-
tween the aforementioned parameters from the physical layer
and their counterparts in the MAC sublayer. Important re-
sults regarding the boundaries for optimum performance of
cooperative relaying schemes and useful guidelines for the
design of optimum relaying strategies are here derived and
discussed. Details are given in subsequent sections.

The structure of this paper is as follows. Section 2 formu-
lates the protocol rules and system assumptions. Section 3
presents the performance analysis, while Section 4 presents
the optimization of the protocol. Finally, Section 5 presents
the results and Section 6 draws conclusions.

2. SYSTEM DESCRIPTION
This section describes the assumptions made for the anal-

ysis of the system. First, subsection 2.1 describes the general
operational principles of the protocol, and then subsections
2.2 and 2.3 define the population schemes to be employed.

2.1 Protocol description and reception model
Consider a slotted multi-access network with centralized

infrastructure or base station (BS) towards all the direct
and relayed packet transmissions are forwarded. For conve-
nience, we will only consider a two-hop relaying scheme and
a maximum of only one relaying retransmission. Whenever
the users of the network are allowed to transmit at the be-
ginning of a collision resolution period or epoch slot, they
do so provided they have a packet ready to be transmit-
ted. If it happens that more than one user is transmitting
in the same time slot then we say that a collision has oc-
curred and that all information is lost, i.e. the collision is
unresolvable. On the other hand, if such time-slot presents a
packet transmission with no collisions, then we assume that
the BS attempts the decoding of the packet. Due to wire-
less channel impairments, this decoding process is prone to
errors. Therefore, a packet can be correctly (or successfully)
decoded with probability pd. We will also call this term the

probability of correct or successful packet decoding in the
direct transmission. By correct or successful packet decod-
ing it is meant that either the information of the decoded
packet or the signal to noise and interference ratio of the
user are above a prescribed quality of service threshold.

In a cooperative diversity scenario, the system should de-
cide whether the relaying phase should be activated or not.
However, in the decision process many variables come into
play such as relay node availability, detection of errors in the
direct transmission, availability of relay channel state infor-
mation, etc. To absorb all these random effects we say that
the system switches to a cooperative relaying phase with
probability prel. To explicitly indicate the possible statisti-
cal dependency of the relaying mechanism with respect to
the outcome of decoding process in the direct transmission,
prel|co and prel|in will denote the probabilities of relaying
dependent on the correct or incorrect packet decoding pro-
cess in the direct transmission, respectively. Note that the
cooperative relaying phase is activated only when the ini-
tial packet transmission has no collisions, which is a relaxed
assumption as in real systems the collision detection mecha-
nism is also prone to errors. During the relaying phase only
one relay node is allowed to transmit and all the other users
are requested to wait for the next time-slot. Our approach
is similar to the consideration made in [11], where inactive
users may act a potential relay nodes. The total probability
of relaying prel is thus given by:

prel = pdprel|co + p̄dprel|in, (1)

where (̄·) = 1 − (·). Additionally, the probability of cor-
rect packet decoding with the relaying channel is given by
pc, where the inequality pc > pd indicates the availability
of a cooperative physical layer algorithm that, in average,
outperforms the decoding processes for the direct transmis-
sion. Note that here we are using a special type of enhanced
decoding capability along the time dimension but no MPR
capabilities are being used at all. A future research topic is
to study MPR capabilities using the reception models pro-
posed in [20] and [21].

It is worth mentioning that we have assumed statistical
independence between the decoding events from the relay-
ing and direct transmissions. This is both an optimistic and
a pessimistic assumption since an incorrect decoding event
in the direct transmission might reduce the decoding proba-
bility in the relay transmission, or, on the other hand, high
decoding probabilities in the direct transmission do not nec-
essarily yield high decoding probabilities in the relay chan-
nel.

Finally, we define the random variable that describes the
length of the collision resolution period or epoch slot as l.
From a particular user perspective, a resolution period is rel-
evant or irrelevant depending on whether the user is trans-
mitting or not in such an epoch, respectively. Their lengths
will be denoted by the random variables lr and lir, respec-
tively.

2.2 Infinite user scheme
In this subsection we use an infinite population with finite

and Poisson distributed traffic arrival rate with parameter
λ packets/time-slot. Such traffic rate is composed of both
new incoming and backlogged packets, i.e., packets that were
incorrectly decoded in previous slots and need to be retrans-
mitted with a uniform probability pr. This means that back-
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logged packets rejoin the active population as new users thus
avoiding the analysis of complex buffering schemes.

2.3 Finite user scheme
Within the finite user scheme, we will use two separate

models that are useful in the analysis of different properties
of the protocol.

2.3.1 Bernoulli model

In this subsection we define a network with a finite popula-
tion of J active users, each one with an overall transmission
probability described by a Bernoulli process with param-
eter p. We recall that in this model accurate steady-state
throughput values can be predicted whereas the delay values
are less reliable.

2.3.2 Markov model

In this model we consider a finite population of J users
from which n of them are said to be in the backlog state.
We remind the reader that a user in the backlog state means
that the user previously attempted to transmit a packet and
it was incorrectly delivered to the central node, thus the
user is attempting the retransmission of such packet with a
uniform probability pr. It is considered that new arriving
packets are transmitted with probability pa and that a user
in the backlog state does not receive new packets. A par-
ticular user is in the backlog state with probability Pb and
in the idle state with probability Pi. In the strict sense, the
complete dynamic state of the network of a buffered system
is given by the vector of queue lengths. However, it has been
proved that the number of backlogged users, as in our ap-
proach, represents a useful variable that fairly summarizes
the dynamic state of symmetrical systems [22].

3. PERFORMANCE ANALYSIS
In this section, the main performance metrics of the pro-

tocol, i.e. throughput, delay, etc, are defined, derived and
discussed.

3.1 Infinite user scheme
As it is commonly used in the analysis of infinite user

schemes (e.g. [21]), it is convenient to define the matrix of
transition probabilities between epoch slots of length i to
epoch slots of length j, which in our case can be written as:

Pi,j =















1 − prelλie−λi, j = 1

prelλie−λi, j = 2

where the term λie−λi denotes the probability of arrival of
exactly one packet due to the Poisson process. Therefore,
the term prelλie−λi denotes the probability of relaying pro-
vided that only one packet is present in the direct trans-
mission. The matrix of transition probabilities in eq.(2) can
be easily proved to be a positive recurrent Markov chain.
This allows us to calculate the vector of steady-state epoch
lengths, denoted here by x = [x1, x2]

T , by solving the fol-
lowing eigen-value problem:

x = Px, subject to
∑

l

xl = 1,

where the summation is taken over all values of l and where
P is the matrix with elements given by Pi,j in eq.(2). Once

obtained the steady-state statistics, the system throughput
is defined as the ratio of average correctly or successfully
transmitted packets, denoted by E[s], to the average length
of an epoch slot, denoted by E[l]. This results in the follow-
ing formula:

T =
E[s]

E[l]
, (2)

where the numerator is given by averaging over all the pos-
sible cases as follows:

E[s] =
∑

l

xlpsλle
−λl

.

The term ps denotes the total probability of correct or suc-
cessful packet decoding in the absence of collision in the
direct transmission, and it is given by the contribution of
all the possible outcomes of epoch lengths with at least one
correct packet decoding event. Epochs with one time slot
and correct packet decoding occur with probability pdp̄rel|co.
Epochs with two time slots, correct decoding in the direct
transmission and incorrect decoding in the cooperative re-
laying phase occur with probability pdp̄cpr|co, whereas when
the decoding in the direct transmission is incorrect and the
decoding in the relaying phase is correct occurs with proba-
bility p̄dpcprel|in. Finally, both outcomes are successful with
probability pdpcprel|co. Therefore ps is given by adding all
these probabilities as follows:

ps = pdp̄rel|co + pdp̄cprel|co + p̄dpcprel|in + pdpcprel|co,

which can be further simplified to:

ps = pd + p̄dpcprel|in (3)

Particular cases of the above formula are given when the ac-
tivation of the relaying phase is independent of the outcome
of the decoding process in the first transmission. In this case
prel|co = prel|in = prel, so ps reduces to:

ps = pd + p̄dpcprel. (4)

Consider now a system that has a perfect error detection
mechanism and that the relaying phase can be activated
exactly when the decoding of the direct transmission has
failed. Therefore, we have prel|in = 1 and prel|co = 0, which
results in the following expression for ps:

ps = pd + p̄dpc, (5)

which is clearly larger than the value in eq.(4) and eq.(3).
Finally, the denominator of eq.(2) can be calculated by av-
eraging the epoch length over all the probabilistic space as
follows:

E[l] =
∑

l

lxl.

As regards the average delay, it is defined here as the average
number of time-slots that a packet takes from its arrival to
the system to be correctly delivered to the BS. It consists of
three terms which are simply related in the following way:

D = (Db + 1)(Ds + Dq) = (Db + 1)
∑

l

xl ·

[

l

2
+ Dq|l

]

(6)

where Ds is the service time delay, defined as the average
number of time-slots that a packet in the head of the queue
takes to be processed either correctly or incorrectly by the
system; and Dq is the queuing delay, defined as the average

Digital Object Identifier: 10.4108/ICST.WICON2008.4900 
http://dx.doi.org/10.4108/ICST.WICON2008.4900 



number of time slots that a packet takes from its arrival
to the system to reach the head of the queue. It is also
known that the backlog delay, defined here as the average
number of time slots that a user is in the backlog state,
can be approximated, when the retransmission probability
is constant, by using Little’s theorem as follows [16]:

Db =
E[sin]

E[s]
− 1, (7)

where

E[sin] =
∑

l

xlλl

is the input traffic due to the Poisson traffic. Finally, the
queuing delay conditioned on the length of a previous epoch
can be written as:

Dq|l = prele
−λl + 1, (8)

which indicates the length of the collision resolution period
of a particular packet that arrived during a previous con-
tention period and that in the current one is contending
with other users with a Poisson arrival rate. The term e−λl

stands for the probability of no packet collision and the term
prele

−λl indicates the probability of activation of the relay-
ing phase given no packet collision is present in the first time
slot of the epoch.

3.2 Bernoulli model
Let us now reconsider the throughput in eq.(2) but this

time in the context of the Bernoulli model. Therefore, it is
possible to write the following expression for E[s]:

E[s] = Jppsp̄
J−1

,

which denotes the probability that one user out of J cor-
rectly transmits a packet with probability Jpps and that the
remaining J − 1 users do not transmit in the same time-slot
with probability p̄J−1. Finally, E[l] in eq.(2) is given, in the
case of the Bernoulli model, by the contribution of epochs
with length two time-slots with probability Jpprelp̄

J−1 and
epochs with one time-slot with probability (1−Jpprelp̄

J−1):

E[l] = 2Jpprelp̄
J−1 + (1 − Jpprelp̄

J−1),

which further reduces to:

E[l] = Jpprelp̄
J−1 + 1.

A useful expression that relates the Bernoulli parameter p

with a Poisson distribution per user with parameter λ̂ is
given by the following balance traffic equation [23]:

p = λ̂E[l] (9)

As regards the delay we write a modified version of eq.(6)
in which the formula of an M/G/1 system accounts both
service and queuing delay:

D = (Db + 1)DM/G/1, (10)

where Db is derived in a similar way to eq.(7) by considering
Little’s theorem:

Db =
Jp

E[s]
− 1, (11)

and DM/G/1 can be written as follows [13]:

DM/G/1 = E[lr] +
λ̂E[l2r ]

2(1 − λ̂E[lr])
+

E[l2ir]

2E[lir]
. (12)

The terms E[lr], E[l2r ], E[lir], and E[l2ir] stand for the first-
and second-order moments of the length of a relevant and ir-
relevant epochs, respectively. We recall from [13] that, from
a particular user perspective, a relevant epoch is the one in
which such user transmits, whereas an irrelevant epoch is the
one in which the user is idle. We also recall from [13] that
eq.(12) considers that relevant and irrelevant epochs are sta-
tistically independent, which is an approximation valid only
at low values of the traffic loads. The expressions for the
first- and second-order moments of both kinds of epochs can
be easily derived by considering that a relevant epoch has
length one with probability (1 − prelp̄

J−1) and length two
with probability prelp̄

J−1; whereas the irrelevant epoch has
length one with probability (1−(J−1)prelpp̄J−2) and length
two with probability (J − 1)prelpp̄J−2. These distributions
finally yield to the following expressions:

E[lr] = prelp̄
J−1 + 1, E[l2r ] = 3prelp̄

J−1 + 1

E[lir] = (J−1)prelpp̄
J−2+1, E[l2ir] = 3(J−1)prelpp̄

J−2+1.

This completes the analysis related to the Bernoulli model.

3.3 Markov model
This subsection deals with the analysis of the dynamic

properties of the algorithm using the well known Markov
model for the backlog states of the system. First we state a
modified version of the transition probabilities of a conven-
tional S-ALOHA protocol in [22] and [16], but this time in-
cluding our reception model for cooperative diversity through
the parameter ps:

Pj,k =



































































0, k ≤ j − 2

jprpsp̄
j
rp̄

J−j
a , k = j − 1

p̄j
r(J − j)papsp̄

J−j−1

a

+[1 − jprpsp̄
j−1

r ]p̄J−j
a , k = j

(J − j)pap̄J−j−1

a [1 − psp̄
j
r], k = j + 1

(

J − j

k − j

)

pk−j
a p̄J−k

a k ≥ j + 2

,

which can be proved, as in the conventional protocol, to be
a finite and positive recurrent Markov chain. This allows us
to solve it using the following eigenvalue problem:

x̃ = Px̃, subject to
∑

n

x̃(n) = 1,

where x̃ = [x̃(0), . . . x̃(n)]T is the vector of steady-state prob-
abilities of the number of backlogged users or the backlog
states probabilities. Let us now consider again the through-
put of the system in eq.(2), where the term E[s] is given, in
the particular case of the Markov model, by:

E[s] =
J

∑

n=1

x̃(n)[(J − n)papsp̄
J−n−1

a p̄
n
r + nprpsp̄

J−n
a p̄

n−1

r ]

=
J

∑

n=1

x̃(n)Sout(n)

where Sout(n) indicates the output traffic when n users are
in the backlog state. Details of the derivations in this sub-
section have been omitted as they can be easily obtained
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following the tools and procedures of the Bernoulli model in
the previous subsection. Now, E[l] in eq.(2), in the context
of the Markov model, is given by:

E[l] =
J

∑

n=1

x̃(n)[(J−n)paprelp̄
J−n−1

a p̄
n
r +nprprelp̄

n−1

r p̄
J−n
a +1],

(13)
For the stability analysis we now define the drift function as
the difference between the incoming and outgoing traffic:

f(n) = Sin(n) − Sout(n), (14)

where Sin(n) = (J − n)pa. As regards the backlog delay,
it can be calculated using again Little’s theorem as follows
[22]:

Db =
E[n]

E[s]
,

and the queuing delay can be calculated using the formula
of an M/G/1 queue with vacations in eq.(6). The particu-
lar terms in eq.(6), for the case studied in this subsection,
are derived in a similar way to the terms in the subsection
dedicated to the Bernoulli model. The final expressions are
given by

E[lr] = 1 +
J

∑

n=1

x̃(n)
[

Piprelp̄
J−n−1

a p̄
n
r + P̄iprelp̄

J−n
a p̄

n−1

r

]

,

E[l2r ] = 1 +
J

∑

n=1

3x̃(n)
[

Piprelp̄
J−n−1

a p̄
n
r + P̄iprelp̄

J−n
a p̄

n−1

r

]

,

E[lir] = 1 +
J

∑

n=1

x̃(n)
[

Pi(J − n)paprelp̄
J−n−1

a p̄
n
r +

nprP̄iprelp̄
J−n
a p̄

n−1

r

]

,

E[l2ir] = 1 +
J

∑

n=1

x̃(n)
[

Pi(J − n)paprelp̄
J−n−1

a p̄
n
r +

nprP̄iprelp̄
J−n
a p̄

n−1

r

]

,

where Pb = n
J

and Pi = 1 − Pb. Finally, the total delay is
simply given by eq.(10), but this time using the expressions
for the Markov model provided in the previous lines.

4. PROTOCOL OPTIMIZATION
This section deals with the protocol optimization with re-

spect to the transmission parameters. For convenience, only
the expressions for the Bernoulli model in subsection 3.2 will
be considered. A similar approach can be used in the case of
the infinite user model, but it is out of the scope of this pa-
per. In the case of the Markov model we can use the results
provided by the Bernoulli formulation by using an elemen-
tary change of variables. Consider eq.(2) for the throughput
of the system. Strictly speaking the optimization should be
carried out jointly with respect to the following parameters:
the transmission probability p, the probability of relaying
prel, and the decoding probabilities pd and pc, which is a
complex cross-layer joint optimization problem. However,

for the sake of obtaining a basic understanding of the pro-
tocol, we will only carry out the optimization with respect
to the transmission probability as follows:

popt = arg max
p

T.

Using a simple optimization method we proceed to differen-
tiate eq.(2) with respect to p and set it to zero as follows

dT

dp
= 0.

Due to the simplicity of the derivation, the details have been
omitted. The optimum transmission probability results to
be identical to the solution for the conventional S-ALOHA
protocol, i.e.:

popt =
1

J
.

By substituting this expression back in eq.(2) and taking the
limit when J → ∞ we obtain the following asymptotic value
for the maximum stable throughput:

MSTcoop =
pse

−1

prele−1 + 1
,

which further reduces to:

MSTcoop =
ps

prel + e
.

By substituting in the above equation the value for ps in
eq.(3) and the total probability of relaying prel in eq.(1), we
further obtain:

MSTcoop =
pd + p̄dpcprel|in

pdprel|co + p̄dprel|in + e
. (15)

Note that by substituting prel|in = prel|co = 0 in the above
equation results in the MST for the conventional S-ALOHA
protocol with packet decoding losses:

MSTsaloha = pde
−1

.

Let us now define the gain of the cooperative protocol with
respect the conventional one as follows:

GMST =
MSTcoop

MSTsaloha
=

1 + p̄d

pd

pcprel|in

(pdprel|co + p̄dprel|in)e−1 + 1
,

(16)
and then attempt to derive the values of pc for which this
gain function is larger than one, which actually means that
the cooperative component improves protocol performance:

GMST > 1,

from which we can obtain the following meaningful expres-
sion for pc:

pc >
(pdprel|co + p̄dprel|in)e−1pd

p̄dprel|in

. (17)

This formula represents the minimum packet decoding prob-
ability pc for an underlying physical layer cooperative algo-
rithm in order to provide some gain over a non-cooperative
S-ALOHA protocol. We proceed to derive more precise
boundaries for the values of pd under which the coopera-
tive protocol is useful for our purposes. If we substitute the
value of pc = 1 in the previous equation and then we ob-
tain the value for pd the following second-order equation is
obtained:

p
2

de
−1(prel|co−prel|in)+pdprel|in(e−1+1)−prel|in = 0. (18)
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The solution for this equation denotes the value of pd above
which there is no need to do any cooperative relaying phase,
no matters how much gain the cooperative physical layer
algorithm can provide. Thus, higher the values for pd in
eq.(18) yield better performance of the cooperative relaying
scheme. An analysis of the possible solutions of eq.(18) re-
veals that, on the limit, pd equals one when prel|co is zero.
This means that the optimum relaying scheme occurs when
prel|co = 0, i.e., when the relaying phase is activated only if
necessary.

Now, we derive the lower bound for a system that instead
of using cooperative diversity uses a simple retransmission
diversity at the link layer. If in eq.(17) we substitute pc = pd

then we obtain the following inequality for pd:

pd >
(e−1

− 1)prel|in

(e−1 − 1)prel|in − prel|coe−1
, (19)

which indicates the value of pd above which a system that
simply uses retransmissions from the collision-free user stops
providing gains over the original protocol.

In the case when the relaying probability is independent of
the decoding process in the direct transmission, i.e. prel|in =
prel|co = prel, the expression in eq.(17) clearly becomes:

pc >
e−1pd

p̄d
. (20)

Note that the last expression is, as expected, independent
of the relaying probability. Now, using the same relaying
strategy the solution for eq.(18) simplifies to:

pd >
1

1 + e−1
= 0.7311, (21)

and eq.(19) reduces to:

pd > 1 − e
−1 = 0.6321. (22)

The result for a strategy with perfect detection of packet
errors, i.e. prel|co = 0 and prel|in = 1 is now derived. Under
this assumption, eq.(17) becomes:

pc > e
−1

pd. (23)

Note that the last expression is smaller by a factor of p̄d

than the value for the previous relaying strategy in eq.(20).
Also note that pc does not need to be larger than pd in order
to provide a gain in MST. Using the same relaying strategy
with perfect packet error detection, it happens that the solu-
tions for eq.(18) and eq.(19) do not exist at all, which means
that this relaying strategy always provides some gain over
the original protocol given that the decoding probabilities
comply with the last inequality in eq.(23). It is important to
mention that the results presented are valid only for the op-
erational point that gives the maximum stable throughput.
At any other operational point, the optimum values for the
system parameters should be obtained by a joint optimiza-
tion with respect to all the variables involved. However, the
results presented here and in the following section provide a
good understanding of the consequences of cooperative re-
laying at the medium access control sublayer.

5. RESULTS
This section displays graphical results for the performance

metrics of the system studied in previous sections of this
paper. Fig.1 shows the results for the system throughput

(T ) in eq.(2) vs. traffic load (λ̂J) in eq.(9) for a 16-user
S-ALOHA protocol using the Bernoulli model with differ-
ent values and assumptions for the decoding and relaying
probabilities. The purpose of this figure is to show under
which values of the decoding and relaying probabilities the
protocol assisted by cooperative diversity produces a gain
with respect to the protocol with no cooperation, and com-
pare these results with the analytical formulae derived in
the previous section. The figure illustrates two cases with
the following decoding probabilities in the direct transmis-
sion pd = 0.3, and pd = 0.9, each case combined with two
different decoding probabilities in the relay channel pc = pd

and pc = 0.95. Each combination has been further divided
into two cases, one with a relaying scheme with perfect error
detection, and the other one which is independent of the de-
coding process with a fixed value of prel = 0.5. In the case
where the decoding probability in the direct transmission is
pd = 0.3 all the relaying strategies have provided some gain
over the original protocol (shown in the figure as prel = 0).
The larger gain is obtained in the case of perfect packet er-
ror detection, i.e. prel|co = 0 and prel|in = 1, followed by
the relaying strategy that is unaware of the decoding events
in the direct transmission, i.e. prel = 0.5. However, this is
not the same situation when the decoding probability in the
direct transmission is equal to pd = 0.9, where the relaying
strategy that is unaware of the decoding events in the direct
transmission has a performance even lower that the original
protocol. This confirms the performance boundary for pd

derived in eq.(20) (pd > 0.7311).
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Figure 1: Throughput (T ) vs. traffic load (λJ) for
a 16-user S-ALOHA protocol with different relaying
strategies and different decoding probabilities.

Fig.2 displays the results for the throughput (T ) vs access-
delay (D) of a S-ALOHA system that uses a relaying scheme
with perfect packet error detection and decoding probabil-
ities given by pd = 0.4 and pc = 0.8. In the same figure
we present the results for the infinite user scheme, and for
the Markov and Bernoulli models. All the schemes have
considered a uniform retransmission probability pr = 0.15.
As observed in the figure, the three methods achieve more
or less the same maximum stable throughput, but they dif-
fer in the delay values. As mentioned in previous sections,

Digital Object Identifier: 10.4108/ICST.WICON2008.4900 
http://dx.doi.org/10.4108/ICST.WICON2008.4900 



the Markov model provides the better approximation to the
backlog delay, whereas the queuing delay is better approxi-
mated by the infinite model.
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Figure 2: Throughput (T ) vs. access delay (D) for
a 16-user S-ALOHA protocol with the optimum re-
laying strategy using the infinite user scheme, and
the Bernoulli and the Markov model.
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Figure 3: Backlog state distribution for a 50-user S-
ALOHA protocol with the optimum relaying strat-
egy prel|co = 0 and prel|in = 1, decoding probabilities
pd = 0.4 and pc = 0.8, and different traffic parameters.

Fig.4 displays the results for the backlog state probability
distribution using a Markov model for a 50-user S-ALOHA
system with the optimum relaying scheme and decoding pa-
rameters pd = 0.4 and pc = 0.8. We have used different
values for the arrival packet probability pa and for the uni-
form retransmission probability pr. Using the same system
parameters, Fig.3 shows the drift functions for each par-
ticular case. A system with good stability properties will
show a backlog state probability shifted to the left side of
the figure. Also, a stable algorithm will show only one root
for the drift function which has to coincide with the peak
of the backlog state distribution. In Fig.4 it can be ob-
served that the case with pa = 0.01 and pr = 0.3 presents
a large number of backlogged users, therefore being the less

stable case with a drift function also shifted towards high
number of backlogged users. In comparison, the case with
pa = 0.01 and pr = 0.01 provides better stability and, in
average, lower number of backlogged users with a linear be-
havior of its drift function in Fig.3. The design of adaptive
retransmission strategies that ensure stability represents a
relevant future research topic.
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Figure 4: Drift function for a 50-user S-ALOHA pro-
tocol with the optimum relaying strategy prel|co = 0
and prel|in = 1, decoding probabilities pd = 0.4 and
pc = 0.8, and different traffic parameters.

6. CONCLUSIONS
This paper presented a detailed analysis of a symmetrical

S-ALOHA protocol with cooperative diversity. The analy-
sis has yielded important conclusions about the boundaries
and required parameters from the physical layer in order to
achieve gains at the medium access control sublayer. The
most important performance metrics of the protocol have
been studied under different relaying strategies. It has been
concluded that designing a relaying scheme that is aware
of how good is the direct transmission greatly improves the
performance of the protocol. It was shown that a relay-
ing scheme with perfect error detection always improves the
performance of the protocol, even if the cooperative rely-
ing phase is only deployed as a simple retransmission from
the same user. Interesting future research topics include the
analysis of the protocol considering correlated channel out-
comes between the direct and cooperative phase, the study
of imperfect collision detection, and the inclusion of MPR
capabilities.
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