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ABSTRACT
The wirelessnetwork community has become increasingly aware
of the benefits of data-driven link estimation and routing as com-
pared with beacon-based approaches, but the issue of biased link
sampling (BLS) has not been well studied even thoughit affects
routing convergence in the presence of network and environment
dynamics. Focusing ontraffic-induced dynamics, we examine the
open, unexplored question of how serioustheBLSissueisand how
to effectively addressit when the routing metric ETX is used. For
a wide range of traffic patterns and network topologies and using
both node-oriented and network-wide analysis and experimenta-
tion, we discover that the optimal routing structure remains quite
stable even thoughthepropertiesof individual li nksandroutesvary
significantly as traffic pattern changes. In cases where the optimal
routingstructuredoeschange, data-driven link estimationandrout-
ing iseither guaranteed to converge to the optimal structure or em-
pirically shown to converge to a close-to-optimal structure. These
findingsprovide the foundation for addressing theBLSissue in the
presenceof traffic-induced dynamics andsuggest approaches other
than existing ones. Thesefindings also demonstrate that it i spossi-
ble to maintain an optimal, stable routing structure despite the fact
that the properties of individual li nks and paths vary in response to
network dynamics.

Categor iesand Subject Descriptors
C.2.2 [Network Protocols]: Routing protocols

General Terms
algorithms, measurement, performance

Keywords
Low-power wireless networks, sensor networks, data-driven link
estimationandrouting, biased link sampling, convergence, stabilit y
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1. INTRODUCTION
Wirelesscommunication assumes complex spatial and temporal

dynamics [1, 14, 34, 35], thus estimating link properties is a basic
element of routing in wirelessnetworks. One commonly used link
estimation method is letting neighbors exchange broadcast beacon
packets, and then estimating link properties of unicast data trans-
missionsviathoseof broadcast beacons. Nonetheless, there aresig-
nificant differences between unicast and broadcast link properties
[2, 18], and it is difficult to precisely estimate unicast link prop-
erties via those of broadcast due to temporal correlations in link
properties and dynamic, unpredictable network traffic patterns [26,
30, 31]. To addressthedrawbacksof beacon-based link estimation,
the method of data-driven link estimation has been proposed [9,
10, 13, 15, 16, 30, 31] and shown to significantly improve routing
performance[31].

In data-driven link estimation, information about the properties
of a link is provided by the MAC feedback for unicast data trans-
missions along the link. If a link is not currently used for data
transmission, its current properties will most likely be unknown to
the associated node (since the precise correlation among links as-
sociated with the same node tends to be complex and difficult to
predict). This introduces the issue of biased link sampling (BLS)
where properties of actively used links are constantly sampled and
updated but properties of unused links are not sampled and un-
known. BLS is not a problem if link properties are mostly static
and do not change temporally. Nonetheless, temporal li nk dynam-
icsisusually unavoidabledueto dynamicsin network trafficpattern
and traffic-induced interference[30, 31], dynamics in environment
[4, 17, 22], and/or node mobilit y. For instance, Figure 1 shows
the network conditions in the presence of different traffic condi-
tions, where network condition is represented by the unicast ETX
(i.e., expected number of transmissionsrequired to successfully de-
liver aunicast packet) for linksassociated with arandomly selected
node in the Kansei testbed (see Section 2). We see that unicast
ETX changes significantly (e.g., up to 32.44) as traffic pattern and
thus co-channel interference varies [31]. Therefore, one may ex-
pect that, in the presence of temporal li nk dynamics, data-driven
link estimation and routing may not converge to the optimal solu-
tionsince, due to BLS, a node may be unable to discover the route
that is not currently used but has become optimal.

Even though data-driven link estimation has been used in vari-
ous forms, the severity that BLS affects routing optimality has not
been well studied, and only ad hoc, if any, solutionshavebeen pro-
posed in existing data-driven link estimation and routing schemes.
For instance, CARP[15], four-bit-estimation [9], and NADV [ 16]
do not examine the BLS issue; LOF [30] and SPEED [10] explo-
ratively sample alternativeroutesat randomized but highfrequency
(i.e., once every few and every single packet transmission respec-
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Figure 1: L ink unicast ETX in the presence of different net-
work traffic pattern. d denotes the probabili ty that a node
haspackets to transmit whenever thewirelesschannel becomes
idle, and d = 0 denotesthe caseof no traffic in thenetwork and
thus zero co-channel interference. The data is for XSM motes
(an enhanced version of MICA2 motes) and the B-MAC proto-
col, but we have observed similar phenomena for other MAC
protocols (e.g., S-MAC) and radios (e.g., 802.15.4 and 802.11b
radios) too.

tively), which can reduce routing performance as we will show in
Section 6; EAR [13] implicitl y addresses the BLS issue by letting
every node constantly overhear unicast transmissionsaroundit, but
overhearing is not energy-efficient in battery-powered sensor net-
works (sinceoverhearing increases nodes’ duty cycles), and it can
lead to estimation errors since, due to MAC coordination mech-
anisms such as RTS-CTS handshake, the properties of overheard
unicast transmissions may be different from those of unicast trans-
missions to a node itself (due to hidden terminals for instance).
Thus, the lack of a thorough understanding of the BLS issue is an
important problem since it affects the performance of a basic ser-
vicein sensor networks — routing.

Theobjectiveof thispaper isto studytheopen, unexplored ques-
tion of how serious theBLSissue isand how to effectively address
it in the presenceof (potentially unpredictable) network dynamics.
Wefocuson traffic-induced dynamics (i.e., varying network condi-
tionsdueto changes in network traffic pattern) in thispaper, andwe
relegate detailed study of other network dynamics (e.g., mobilit y,
external interference from other wirelessnetworks) to our future
work. Therefore, we focus on mostly static deployment scenarios
where environment conditions and nodes are mostly static, even
thoughenvironment conditions may change slowly and nodes may
fail or join the network. Not all sensor network deployments are
mostly static, for instance, deployments where environment con-
ditions may frequently change due to interference from other co-
existing networks (e.g., 802.11 networks) or due to movement of
persons or objects within the deployment space(e.g., a building),
or deployments where sensor nodes themselves may be mobile.
Nonetheless, mostly static deployment does represent a subclass
of sensor network deployments, for instance, in applications where
nodesarestatically deployed in remote areasfor environment mon-
itoring. Moreover, traffic-induced dynamicsareuniversally present
in sensor networks, thus addressing the issue in mostly static de-
ployment scenarios may shed light on how to addressthe issue in
other deployment scenarios and how to addressother network dy-
namics.

In studyingtheimpact of BLSonrouting optimality, we consider
the routing metric ETX which is commonly used in wireless net-
works (e.g., sensor networks and mesh networks). Throughmath-
ematical analysis and testbed-based experimentation, we examine

the stabilit y of optimal routes and the severity of BLS. For a wide
range of dynamic traffic scenarios (e.g., dynamic events, dynamic
data collection, and their mix) and network setups (e.g., grid and
random networks) westudy, wefind out that nodes’ best forwarders
and the optimal routing structure are rather stable even thoughthe
properties of individual li nks and routes may vary significantly as
traffic pattern and network condition change. In cases where the
optimal routing structure does change, we prove that data-driven
link estimationandrouting isguaranteed to convergeto theoptimal
structure when network conditions worsen, and the convergence is
quick (e.g., with amedian samplesizerequirement of nomorethan
7); when network conditions improve, the optimal forwarder cho-
sen for heavy traffic load tends to remain a goodsuboptimal for-
warder for lighter traffic load, even though data-driven routingmay
not converge to the optimal structure.

These findings provide the foundation for addressing the BLS
issue in the presence of traffic-induced dynamics. In contrast to
existing approaches, for instance, these findings demonstrate the
need to address the BLS issue, the drawbacks of frequent explo-
rative sampling in mostly static networks, and the feasibilit y of an
energy-efficient, light-weight approach to addressing the BLS is-
sue. These findings also demonstrate that it i s possible to main-
tain an effective, stable routing structure despite the fact that the
propertiesof individual li nksand pathsvary in response to network
dynamics. Since routing stabilit y enables consistent, predictable
routing performance, these findings also suggest that we may re-
gard stabilit y as a basic evaluation criterion for routing metrics.

The rest of the paper is organized as follows. We briefly dis-
cussin Section 2 the routing metric, the routing protocol, and the
experimental facilit y weusein this study. Wethen analyzethe con-
vergence properties of data-driven link estimation and routing in
Section 3. We study the dynamics of best forwarders and the rout-
ing stabilit y in Section 4 and 5 respectively, and we discusshow
to addressthe BLS issue in Section 6. We discussrelated work in
Section 7and make concluding remarks in Section 8.

2. PRELIMI NARIES
In this section, we discuss the routing metric, the routing pro-

tocol, and the experimental facilit y that we use in the analytical
and/or experimental study of this paper.

Routing metr ic and protocol. We use the routing metric ETX
(i.e., expected number of transmissionsfor deliveringadatapacket)
[3, 27] in our study, andwe use thedata-driven link estimationand
routing method L-ETX [31, 32] for estimating the ETX metric for
each link and path. L-ETX behaves almost in the same way as the
data-driven routing protocol LOF [30] does except that LOF uses
the ELD (for expected MAC latency per unit-distance to destina-
tion) instead of the ETX metric. In L-ETX, MAC feedback for
unicast data transmissions are used to calculate the reliabilit y PDR
of individual unicast-physical-transmissions1 alonga link, then the
ETX of this link is derived as 1

PDR; the ETX metric of a path is
the sum of the ETX values of the individual li nks along the path.
Similar to LOF, L-ETX uses an initial sampling phase to bootstrap
the link estimation process(before any actual data is transmitted).
In the initial sampling phase, a node takes a few (e.g., 7) samples
of the quality of the link to each of its neighbors when it boots up;

1In many MAC protocols such as the B-MAC [20] and the IEEE
802.15.4 MAC, a unicast packet is (re)transmitted until being suc-
cessfully delivered or until the number of transmissions exceeds a
certain threshold value (e.g., 8). For convenience, we regard each
individual transmission involved in transmittingaunicast packet as
aunicast-physical-transmission.
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to reduce the overhead of the initial sampling in dense networks,
we can ignore neighbors who are unlikely to be the best forwarder
of the node, and these neighbors can be identified throughcoarse-
grain, approximate link estimationmechanism such asoverhearing
based estimationas used in EAR [13].

For the analysis of Sections 3 and 4, we also use a localized,
geographic routing metric ETD (for ETX per unit-distance to des-
tination) in evaluating the goodnessof forwarder candidates. ETD
isa geographic version of ETX, and it isdefined as follows. Given
a sender S, a neighbor R of S, and the destinationD, the ETD via
R is defined as

(

ETXS,R

LS,D−LR,D
if LS,D > LR,D

∞ otherwise
(1)

whereETXS,R is the ETX of the link from S to R, LS,D denotes
the distance from S to D, and LR,D denotes the distance from R

to D. Wewill show in Section 5that phenomena observed through
ETD based analysis and measurements in Sections 3 and 4 carry
over to cases where the measurements are based on ETX; Zhang
et al. [31] have shown that this local, geographic metric performs
in a similar way as the global, distance-vector metric ETX for uni-
formly distributed networks.

Experimental facili ty. For the experimental study in Sections 3,
4, and 5, weuse thepublicly availablesensor network testbed Kan-
sei [8]. In an open warehouse with flat aluminum walls (seeFig-
ure 2(a)), Kansei deploys 98 XSM motes [7] in a 14×7 grid (as
shown in Figure 2(b)) where the separation between neighboring
grid points is 0.91 meter (i.e., 3 feet). The grid deployment pattern

(a) Kansei (b) 14×7 grid

Figure 2: Sensor network testbed Kansei

enables experimentation with regular, grid topologies, as well as
random topologies (e.g., by randomly selecting nodesof thegrid to
participate in experiments). XSM is an enhanced version of Mica2
[23] mote, andeach XSM isequipped with aChipconCC1000[24]
radio operatingat 433MHz. To form multihop networks, thetrans-
mission power of the CC1000radios is set at -14dBm (i.e., power
level 3) for the experiments of this paper unlessotherwise stated.
XSM uses TinyOS [25] as its operating system. For all the ex-
periments in thispaper, thedefault TinyOSMAC protocol B-MAC
[20] is used; a unicast packet is retransmitted, upon transmission
failure, at the MAC layer (more specifically, the TinyOS compo-
nent QueuedSend) for upto 7timesuntil thetransmissionsucceeds
or until the 8 transmissions have all failed; a broadcast packet is
transmitted only once at the MAC layer (without retransmission
even if the transmission has failed).

3. BIASED LINK SAMPLING AND ROUT-
ING CONVERGENCE

Taking the data-driven link estimation and routing method L-
ETX [31] asan example, we analyzein this sectionthe convergence

propertiesof data-driven routingin thepresenceof biased link sam-
pling (BLS) and traffic-induced dynamics (i.e., network dynamics
introduced by varying network traffic patterns).

When network traffic pattern changes, the quality of a link may
become worse (e.g., when receiver-side interference increases) or
better (e..g., when receiver-sideinterferencedecreases). It turnsout
that these two types of link quality changes have different impact
on data-driven protocols, as we show below.

PROPOSITION 1. In the presence of biased link sampling and
when an unused route becomes better than the currently used one,
the convergenceof data-driven routing dependsontherelative change
in the quality of the unused route; routingconverges to the optimal
if the quality of the unused route has deteriorated, otherwise rout-
ingmay not converge. 2

Proof sketch: Consider a node S that is currently using a routeP0

throughforwarder/neighbor R0. Without lossof generality, let us
consider another routeP1 throughforwarder candidateR1.

If thequality of P1 becomesbetter than both itsown earlier qual-
ity and the current quality of P0, node S may not know, due to the
issue of biased link sampling, that P1 has become better than P0

andwill continueusingthesuboptimal routeP0 instead of theopti-
mal routeP1; this is the case when the current quality of P0 is still
better than the earlier quality of P1. Therefore, data-driven routing
does not converge to the optimal solution in thiscase.

On the other hand, if the quality of P1 becomes worse than its
own earlier quality but better than the current quality of P0,2 the
current quality of P0 will be worse than P1’s quality before the
network condition change. SinceS keeps in its routing table P1’s
quality before the conditionchange, S will regard P1 beingabetter
route than P0 andwill change to P1. OnceS starts to useP1, it re-
samples P1 and link estimation will converge to the latest quality
of P1.

2

From Proposition 1, we can analyze the behavior of L-ETX in
cases of improving network conditions and deteriorating network
conditions separately. Wefirst analyzethe convergencespeed when
network condition deteriorates (i.e., link and route quality wors-
ens). To this end, we first analyze the sample size requirement in
L-ETX for identifying thebest forwarder. We assumethat theETD
metric (i.e., the geographic-version of the distance-vector protocol
L-ETX) is used sinceit enables us to have a closed-form solution
as shown below.

PROPOSITION 2. Given asender S, thedestinationD, andtwo
of S’sforwarder candidatesK1 andK2 that are closer toD thanS

itself andwhose corresponding unicast-physical-transmission reli -
abilit y is P1 and P2 respectively, the sample size n that is suffi-
cient to distinguish the relativegoodnessof K1 andK2 at 100(1-

α)% confidencelevel is (
Z1−α/2(L1

√
P1(1−P1)+L2

√
P2(1−P2))

L1P1−L2P2
)2,

whereL1 is thedistancefromS to D minus that fromK1 to D, L2

is the distancefromS to D minus that fromK2 to D, andZ1−α/2

is the (1-α/2)-quantile of the standard Gaussian variable N(0, 1).
2

Proof sketch: For a link with unicast-physical-transmission reli -
abilit y P that is calculated based on n number of physical trans-
missions, the confidence interval (CI) for the packet delivery rate
2Note that this can happen only if P0’s quality has deteriorated
more than P1’squality does.
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at significancelevel α (i.e., at 100(1-α)% confidencelevel) is [P −
Z1−α/2

q

P (1−P )
n

, P +Z1−α/2

q

P (1−P )
n

] [12]. Thus, for thetwo
links with packet delivery rate P1 and P2 respectively, the corre-
sponding CIs are as follows:

CI1 = [P1 − Z1−α/2

q

P1(1−P1)
n1

, P1 + Z1−α/2

q

P1(1−P1)
n1

]

CI2 = [P2 − Z1−α/2

q

P2(1−P2)
n2

, P2 + Z1−α/2

q

P2(1−P2)
n2

]

TheCIsfor thecorresponding routingmetric ETDsaretherefore as
follows:

CI ′
1 = [ 1

L1(P1+Z1−α/2

r

P1(1−P1)
n1

)

, 1

L1(P1−Z1−α/2

r

P1(1−P1)
n1

)

]

CI ′
2 = [ 1

L2(P2+Z1−α/2

r

P2(1−P2)
n2

)

, 1

L2(P2−Z1−α/2

r

P2(1−P2)
n2

)

]

Without lossof generality, we assume that we take equal number
n of samples for both links (i.e., n1 = n2), and suppose that we
want to calculate the required sample sizen so that K1 isnoworse
a forwarder candidate than K2. Then a sufficient condition [12] is
as follows:

1

L1(P1 − Z1−α/2

q

P1(1−P1)
n1

)
≤ 1

L2(P2 + Z1−α/2

q

P2(1−P2)
n2

)

which implies that

n ≥ (
Z1−α/2(L1

p

P1(1 − P1) + L2

p

P2(1 − P2))

L1P1 − L2P2
)2

Thus the minimum sample sizerequired is

(
Z1−α/2(L1

p

P1(1 − P1) + L2

p

P2(1 − P2))

L1P1 − L2P2
)2

2

To get numerical resultsonthesamplesizerequirement, we con-
sider the casewhere thesender on the left end of themiddle row of
Figure 2(b) needs to select the best next-hop forwarder amongthe
set of receivers in the middle row, and the destination is far away
from thesender but in thedirectionextendingfrom thesender along
the middle row to the right. (Phenomena similar to what we will
present have been observed for other sender-receiver pairs too.) To
calculate thesample sizerequired by thesender to identify thebest
forwarder, we need to measure the unicast-physical-transmission
reliabilit y from the sender to each receiver. To this end, we let
the sender transmit 15,000 unicast packets to each of the receivers
where each packet has adatapayload of 30 bytes. Based on packet
reception status (i.e., successor failure) at the receivers, we mea-
sure the unicast-physical-transmission reliabilit y for each link. Us-
ingthesedata, we calculate thesamplesizerequired for comparing
every two links, and then the sample size required to identify the
best forwarder is the maximum of the sample sizerequirement for
pair-wise comparison.

To understandthepotential impact of traffic-induced interference
on sample size requirement, we randomly select 42 motes out of
the light-colored (of color cyan) 6 rows of Figure 2(b) as inter-
ferers, with 7 interferers from each row onaverage. Each interferer
transmits unicast packets (of payload length 30 bytes) to a destina-
tion randomly selected out of the other 41 interferers. (Note that,
even thoughthe overall t raffic pattern in low-power wireless sen-
sor networks tends to follow certain regular patterns, e.g., flowing
from sources to a common sink, the local traffic pattern aroundthe
neighborhood of a node tends to be much more irregular. We will
also show in Section 5 that the phenomena observed via the local,

random traffic patternscarry over to experimentswheresensor net-
work specific traffic patterns are studied.) The load of the interfer-
ing traffic is controlled by letting interferers transmit packets with
a certain probabilit y d whenever the channel becomes available. In
our experiments, we measure the unicast-physical-transmission re-
liabilit y from the sender to its receivers when d is 0, 0.01, 0.04,
0.07, 0.1, 0.4, 0.7, and 1 respectively. Thus the interfering traffic
pattern is controlled byd in this case. (Phenomena similar to what
wewill present havebeen observed for other interfering traffic pat-
terns, for instance, with different spatial distribution and different
number of interferers.)

Based onProposition 2, we analyzethesamplesizerequirements
in the above interference scenarios, and Table 1 shows the me-

d 0 0.01 0.04 0.07 0.1 0.4 0.7 1
Median

sample size 4 3 5 4 5 7 5 4

Table 1: Median sample size required to identify the best for-
warder at 95% confidencelevel

dian sample size required to identify the best forwarder at 95%
confidence level. We see that the number of required physical-
transmission-samples tends to be small; for instance, it may only
take a very few number of unicasts to collect the required sam-
ples. Thisimpliesthat data-driven link estimationtendsto converge
quickly. The quick convergence in link estimation implies that the
routing structure in L-ETX can converge to the optimal one in a
timely manner when network condition worsens (e.g., when net-
work traffic load increases) to the degreethat the optimal structure
changes.

From Proposition 1, we know that, due to BLS, L-ETX may not
convergeto theoptimal solutionwhen network condition improves.
So, the questions are how this issue of potential divergenceaffects
routing optimality and how to address it. We explore answers to
these questions in the next section.

4. DYNAMI CSOF BEST FORWARDERS
To provide guidelines on addressing the BLS issue in the pres-

enceof traffic-induced dynamics, we study in this section how the
best forwarder of a node may change with traffic pattern. We first
study the dynamics of best forwarder throughmathematical analy-
sis so that we can examine the issue in generic, different network
setups, and then we verify the analytical results through testbed
based experimentation.

4.1 Mathematical analysisof best forwarders
To get closed-form solutions, we use the ETD metric to eval-

uate the goodness of different forwarder candidates as we did in
Section 3. We first present the analytical methodand then the nu-
merical results for different network setups.

Analytical method. To evaluate thegoodnessof aforwarder can-
didate using the ETD metric, we need to analyze the packet deliv-
ery rate(PDR) of the corresponding link in thepresenceof dynamic
traffic/interferencepatterns. To this end, we need to analyze the
interference at the forwarder candidate in different traffic scenarios
so that we can calculate the signal-to-interference-and-noise-ratio
(SINR) based onwhich we calculate the PDR.

To calculate the interference at a forwarder candidate (which is
the packet receiver from the perspective of the sender), we adapt
theinterferencemodel proposed byQiu et al. [21] to determinethe
concurrent transmissions (and thus the interference) in a network.
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In Qiu’s model, the behaviors of IEEE 802.11 MAC in multi -hop
networksaremodeled usingaMarkov chain where thestatei is the
set Si of nodes that are transmitting concurrently at a certain time
moment. To adapt Qiu’s model to the analysisof B-MAC, weneed
to adapt theprobabilit y P01(m|Si) that anode m starts to transmit
when thesystem isat state i. This isbecause TinyOS B-MAC [25]
differs from 802.11 in how channel accessis coordinated. Due to
the limitation of space, we relegate to [33] the detailed derivation
of the adapted model.

Using the adapted model, we can calculate the stationary prob-
abilit y πi for each state i. Then, for each pair of transmitter t and
receiver s, the interference that concurrent transmissions have at
node s is

X

i:t∈Si

X

j:j∈Si,j 6=t

πiPow(j, s),

where Pow(j, s) is the received signal strength at s for signals
coming from j. Pow(j, s) can be calculated using the log-normal
path loss model as in [35]. Then, the SINR at receiver s, denoted
by SINR(t, s), calculates as follows:

SINR(t, s) =
Pow(t, s)

N0 +
P

i:t∈Si

P

j:j∈Si,j 6=t πiPow(j, s)

where N0 is the background noise. Accordingly, we can calculate
the packet delivery rate PDR(t, s) from t to s as a function of
SINR(t, s), using the model proposed by Zuniga et al. [35], and
thuswe can calculate the corresponding ETD metric value. Having
derived the ETD metrics for each forwarder candidate of a node,
we can determine which is the best forwarder with the minimum
ETD metric value.

Numerical results. Usingthe abovemodels, we analyzethePDR
and ETD in different scenarios, includingrandomly distributed and
regularly distributed nodes, and for indoor and outdoor environ-
ments. In our network setups, radio transmission power is set as
-14dBm, path loss exponent is set as 3.3 and 4.7 for indoor and
outdoor environments respectively, and background noise is set as
-105dBm and -100dBm for indoor and outdoor environments re-
spectively. Given the high space complexity of Qiu’s model [21],
we can only run in Matlab the adapted model with no more than
44 transmitting nodes in our computer (which is a Dell Optiplex
GX620with 4GB memory). Thuswerun themodel in networks of
around 40transmitting nodes.

Due to the limitation of space, here we only discuss the case
of indoor, randomly distributed interferers, and we refer interested
readers to [33] for other cases where similar phenomena are ob-
served. We consider a network setup that is the same as what have
presented in Section 3except that 1) thegrid spaceis15×7 and 2)
the distancebetween any two closest grid points is 1 meter. Then,
welet thenode at theleft end of themiddlerow serve asthesender,
the rest nodes in themiddle row serve as forwarder candidates, and
the destination is far away from the sender in the direction extend-
ing from the sender to the forwarder candidates. Figure 3 shows
thePDR and ETD in this setup. Weseethat PDR and ETD change
significantly with interferencepatterns, especially for linksof lower
PDR. Yet the best forwarder remains rather stable: it i s node n5

that is 5 meters away from the sender, except for the cases when
d = 0.7 and d = 1 where the best forwarder is node n4 that is 4
meters away from the sender. With other protocols (e.g., conges-
tion control) in place, a network usually works under load much
lighter than d = 0.7; in fact, Ng et al. [19] showed that the op-
timal traffic injection rate d is 0.245 in a regular linear topology,
and the optimal d will be even lower in common, two-dimensional
networks. Therefore, the optimal forwarder will not change if the
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Figure 3: PDR and ETD in an indoor environment with 42ran-
domly distr ibuted interferers

network congestion level is well controlled (e.g., throughconges-
tion control). Moreover, the ETD value of n4 is lessthan 5.51%
more than that of n5; this implies that, even thougha node may be
unable to find the optimal forwarder when network condition im-
proves (i.e., interferencelevel decreases), it may still be okay for a
node to use the suboptimal forwarder sinceitsperformanceisvery
close to the optimal.

4.2 Experimental analysisof best forwarders
To experimentally verify the analytical observations, we use the

data collected in Section 3 for network conditions in the Kansei
testbed. As in Section 3, we consider the case where the sender
on the left end of the middle row of Figure 2(b) needs to select the
best next-hop forwarder among the set of receivers in the middle
row, and the destination is far away from the sender but in the di-
rectionextendingfrom thesender alongthemiddlerow to theright.
Figure 4 shows the PDR and ETD in different interference/traffic
scenarios. The results are more complex than in analysis in the
sense that the PDR and ETD are not monotonic functions of the
sender-forwarder-distance due to real-world factors such as hard-
ware heterogeneity. Nonetheless, the dynamics of the best for-
warder assumes a similar pattern: despite the huge variations in
PDR acrossdifferent interference scenarios, the best forwarder is
the node that is 9.15 meters (i.e., 30 feet) away from the sender in
all the scenarios except for the case when d = 1; when d = 1, the
best forwarder is 2.74 meters (i.e., 9 feet) away from the sender.
This result is rather consistent with the indoor, analytical results
as shown in Figure 3, even thoughthere is slight differences due
to differences in network setup and environment conditions. As
we have discussed earlier, well -controlled traffic load in multi -hop
wirelessnetworks is usually much lighter than 0.7 and 1[19], thus
the best forwarder remains the same acrossdifferent interference
scenarios. We discussexceptional scenarios of extreme traffic load
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Figure 4: PDR and ETD in the Kansei testbed with 42 ran-
domly distr ibuted interferers. Note that the radio of the mote
at ∼8 metersdoesnot work very well , thusthePDR isquitelow
and ETD is quite large for the mote.

in Section 6.

4.3 Summary
From the above mathematical andexperimental analysisfor ran-

dom and grid topologies and for indoor and outdoor environments,
weobservethat thebest forwarder remainsquitestable even though
PDR (and even ETD) changes with dynamic traffic patterns. Even
thoughthe best forwarder may change when traffic load dynamics
passes througha threshold traffic load value, the best forwarder re-
mains the same for a wide range of traffic scenarios. An intuitive
explanation for this high stabilit y in best forwarder, in contrast to
the much more dynamic link reliabilit y and routing metric value,
are that there is usually a guard margin between the routing met-
ric values of the best forwarder and other forwarders, and that, due
to the positively correlated impact that each interferer’s signal has
onthebest and other forwarders, it may take asignificant change in
traffic (andthus interference) pattern to overcometheguard margin
as wehave seen in our analysis. That is, theguard margin between
the best forwarder and the other forwarders tends to mask the im-
pact of traffic-induced dynamics.

In the varieties of scenarios we studied, moreover, the threshold
valueiseither very low (e.g., lessthan 0.07) [33] or very high(e.g.,
greater than 0.7). When the threshold load is low, it does not mat-
ter much even if routing doesnot converge to theoptimal forwarder
when network traffic load decreasesto passthelow threshold value;
this is because the chosen suboptimal forwarder may well be close
to optimal in performance, and optimality is lessof a concern for
light traffic load (when it is easy to ensure packet delivery relia-
bilit y) [33]. When the threshold load value is high, it i s rarely the
case that wewould expect to seenetwork traffic load exceeding the
threshold in practice when other protocols are in placeto control

the network congestion level, and thus the best forwarder tends to
remain the same acrossdifferent admissible traffic scenarios.

In the next section, we corroborate these observations by exam-
ining the behaviors of L-ETX in different dynamic traffic patterns
and network setups. We discuss in Section 6 how to address the
exceptional cases where best forwarders may change in a manner
that significantly affect network performance.

5. ROUTING WITH DYNAMI C TRAFFIC
PATTERNS

Having analyzed the convergencebehaviors of data-driven rout-
ingand the dynamics of best forwarders, we experimentally evalu-
atethebehaviorsof L-ETX in thepresenceof threetypesof sensornet-
specific dynamic traffic patterns: dynamic events, dynamic peri-
odic data, and mixed dynamic events and periodic data. We also
use both grid and random network topologies in this experimental
study. Due to the limitation of space, here we only discuss the
case of dynamic events and grid network topology, and we refer
the readers to [33] for other cases (e.g., random network topology)
where similar phenomena are observed.

We use apublicly available event traffic tracefor a field sensor
network deployment [28] to generate dynamic events in our study.
Sincethe traffic traceis collected from 49 nodes that are deployed
in a 7 × 7 grid, we randomly select and use a7×7 subgrid of the
Kansei testbed (as shown in Figure2(b)) for experimentation. The
mote at one corner of the subgrid serves as the base station, the
other 48 motes generate data packets according to different traf-
fic patterns, and the destination of all the data packets is the base
station.

We use the event traffic tracementioned above, but we control
the set of nodes that actually generate source packets to control
the event size, throughwhich we generate dynamic events. More
specifically, we study the following dynamic events which contain
7 event configurations:

1 × 1 → 3 × 3 → 5 × 5 → 7 × 7 → 5 × 5 → 3 × 3 → 1 × 1

where each configuration specifies the subgrid of traffic sources.
For instance, “3 × 3” specifies that the nodes in the farthest 3 × 3
subgrid from the base station generate event traffic. For each
event configuration, we generate the associated event 40 times and
measure the performanceof L-ETX for thisevent configuration.

Examining the routes taken by packets from each node, we ob-
servethat there arevery few route changes during thewhole exper-
iment. For instance, Table 2 shows the statistics of comparing the

Consecutive Same Diff. route, same Increased Decreased
routes hoplength hoplength hoplength

Radio (%) 99.98 0 0 0.02

Table 2: Routing stabili ty in the presence of dynamic events:
gr id network

routes taken by every two consecutive packets from a same node:
99.98% of the time, consecutive packets use the same route, and
only 0.02% of the time the route changes to be alonger one. The
high stabilit y of routes in the presence of dynamic traffic patterns
are due to the following reasons: 1) estimation in L-ETX is very
accurate andstable [31]; and 2) thebest forwarder does not change
much across different network traffic conditions as discussed in
Section 4.

Because of the stabilit y in routing, packet delivery performance
is rather consistent across similar network setups. Figure 5 shows
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Figure5: Event reliabili ty for dynamic events: gr id network

the boxplot of event reliabilit y for each event configuration, and
Table 3 shows the median event reliabilit y and its 95% confidence

Config. Median (%) CI (%)
#1 100 (100, 100)
#2 100 (98.44, 100)
#3 97.92 (96.92, 98.62)
#4 91.85 (91.3, 92.39)
#5 98 (96, 99)
#6 100 (98.94, 100)
#7 100 (100, 100)

Table 3: The median event reliabili ty and its 95% confidence
level confidenceinterval for dynamic events: gr id network

level confidence interval (CI) in different configurations. We see
that, despite random variations, the event reliabilit y for configura-
tions#3and #5aresimilar to each other, and their CIsoverlap with
each other. A WilcoxonRank Sum [11] test shows that configura-
tions#3and #5 have equal median event reliabilit y at the95% con-
fidencelevel. The same observation applies to other similar traffic
patterns, that is, configurations #2 and #6, and configurations #1
and #7.

We also examine thedetailed route information, for instance, the
hop length and the end-to-end transmission count of routes. Us-
ing WilcoxonRank Sum tests, we find out that, at 95% confidence
level, routes chosen by nodes equal distance away from the base
station have equal median hoplength and end-to-end transmission
count in similar network setups (e.g., configurations #3 and #5).
For instance, Figure 6 shows the (statistically) similar end-to-end
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Figure6: Timeseries of route transmission counts for a node9
gr id-hopsaway from thebasestation: dynamic eventsand gr id
network

route transmission counts for the routes taken by packets from a
node 9 grid-hops away from the base station in configurations #3

and #5. The same observations apply to parameters such as the
per-hop geographic distance and the per-hoptransmissioncount of
links used in similar network setups.

Verification. To corroborate the fact that the best forwarders are
actually stable in the presenceof the different dynamic traffic sce-
narios discussed above, we implement a variant of L-ETX, which
we call L-ETX-rcv. L-ETX-rcv is the same as L-ETX except that
the forwarder candidates of a node always try to overhear the uni-
cast packet transmissions from the node. Note that theoverhearing
in L-ETX-rcv is similar to that in EAR [13], but unlike in EAR
which studied 802.11b networks with the RTS-CTS mechanism,
the B-MAC used in our study does not use RTS-CTS handshake,
and thus overheard transmissions by a node f in L-ETX-rcv have
the same properties as those of unicast transmissions destined for
f itself. Therefore, a forwarder candidate f in L-ETX-rcv can de-
termine, based onthe overheard data transmissions, the latest link
properties for unicast data transmissions from the sender s to it-
self, and then f can share this information with s so that s can
make the right decision in choosing the optimal forwarder. Conse-
quently, biased-link-sampling is not an issue in L-ETX-rcv due to
the receiver-assisted, data-driven link estimation. We run L-ETX-
rcv in the different dynamic traffic scenarios and network setups
discussed earlier, and we find out that, similar to L-ETX, there is
very littl e route changes and the best forwarders remain stable de-
spite the traffic dynamics.

6. IMPLICATIONS FOR PROTOCOL DE-
SIGN

We see from the findings of Sections 3, 4, and 5 that, despite
BLS, L-ETX converges quickly when network condition deterio-
rates (e.g., due to increased traffic load). For the wide range of dy-
namic traffic scenarios and network setups we studied, we also see
that even though 1) data-driven protocols may, theoretically speak-
ing, not converge to the optimal solution when network condition
improves, e.g., due to decreased traffic load, and 2) link proper-
ties do change significantly as traffic pattern changes, the best for-
warders remain quite stable (in which case BLS is not a problem
any more), or the optimal forwarder chosen for heavy traffic load
may still be a very good suboptimal forwarder for lighter traffic
load [33].

In our study, wehave examined awidespectrum of dynamic traf-
fic scenarios (e.g., dynamic events, dynamic data collection, and
their mix) and network setups (e.g., grid and random networks),
but we understand that we have not covered all the scenarios that
may exist in practice. For the mostly static deployment scenarios
we studied, however, our findings on the high stabilit y of the op-
timal routing structure in spite of dynamics of link properties are
themselves not obvious and shed new light on how to addressthe
BLS issue in mostly static networks such as those for remote en-
vironmental monitoring. On one hand, we are assured of the good
performanceof L-ETX in a variety of traffic conditions even if we
do not designspecial mechanismsto addresstheBLSissue. On the
other hand, to addressthe rare cases where improved network con-
dition leads to significantly worse-than-optimal performance (e.g.,
duetoslow but significant changesinenvironment conditions[17]),
a sender can proactively sample unused links/routes, or the for-
warder candidates can proactively overhear the sender’sdata trans-
missions to estimate the latest link quality; considering the quick
convergence of L-ETX and the low probabilit y or frequency that
improved network condition may lead to significantly worse-than-
optimal performance, however, theproactivesampling or forwarder-
assisted receiver-side link estimation can be executed at very low
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frequency to reduce the overhead of proactive sampling or over-
hearing. This is in contrast to the existing approaches in LOF
[30] and SPEED [10] where anode periodically samples unused
links/routes by using them to deliver data packets, which leads to
reduced routing performance(e.g., datadelivery reliabilit y, number
of transmissions per packet delivered, and throughput) due to fre-
quent sampling of the links/routes that are not or not even close to
beoptimal. Wehaveobserved throughexperimentation that thepe-
riodic, probabili stic sampling in LOF and SPEED can lead to bad
performance, especially when traffic load is high (e.g., the 7 × 7
event traffic trace[28]). For the 7 × 7 event traffic trace, for in-
stance, the data delivery reliabilit y in L-ETX is∼15% higher than
that in LOF and SPEED, and L-ETX also reduces the number of
transmissions per packet delivered byarounda factor of 2.

L-ETX can deal with dynamics such asnode/link failureor node
join in a straightforward manner. Node or link failure can be re-
garded as the case where the quality of the associated link(s) dete-
riorates (in fact, to be unusable), in which case L-ETX converges
quickly; nodejoin can behandled effectively throughtheinitial li nk
sampling procedure when a new node and the associated links first
come up. Besides traffic-induced dynamics, our study in thispaper
has not focused on other network dynamics such as node mobilit y
[5] and quickly changing environment conditions. Even thoughwe
expect that thequick convergence and highstabilit y of L-ETX rout-
ing may also help us design light-weight approaches to addressing
these types of network dynamics, detailed study of this is beyond
the scope of this paper, and we relegate it as a part of our future
work.

The BLS issue is unique to data-driven link estimation and not
a problem in beacon-based link estimation. Hybrid link estimation
methods that use both unicast MAC feedback and broadcast bea-
cons have also been proposed in [27] and [9]. Even though hybrid
link estimation doesnot need to addresstheBLSissue and periodic
broadcast beacons may benecessary for purposes such asdiscover-
ingand recovering from routing loops, the approach of incorporat-
ing periodic beacons in link estimation is debatable (especially for
sensor networks that aremostly static) sincebroadcast beacons can
mislead link estimation and cause larger estimation error [30, 32].
Accordingly, even though hybrid link estimation may converge, it
may well convergeto thewrongconclusion onlink propertiesin the
sameway that beacon-based link estimationconvergesto imprecise
estimationresultsand poor routing performance. This isespecially
the case in event detection sensor networks where there is no data
traffic most of the time but a short burst of data packets may need
to be delivered once an event is detected [29, 30]. Therefore, us-
ing broadcast beacons in link estimation is inherently questionable,
and data-driven link estimationas well as the associated BLSissue
isa fundamental problem in wirelessnetwork routing.

7. RELATED WORK
Data-driven link estimation where MAC feedback for unicast

datatransmissions isused for estimating unicast link propertieshas
been used in several sensor network routing protocols [9, 10, 13,
15, 16, 30, 31], and it has been shown that data-driven link estima-
tionsignificantly improves estimationaccuracy and routing perfor-
mance as compared with beacon-based approach [31]. Nonethe-
less, the impact of biased link sampling (BLS) on routing optimal-
ity and the severity of the BLS issue in the presence of network
dynamics are mostly unexplored. Lack of deep understanding of
these issues has led to ad hoc approaches to explicitl y or implicitl y
addressing the BLS issue. As a first step toward systematic treat-
ment of the BLS issue in data-driven link estimation and routing,
wehavestudied in thispaper the routingconvergence and optimal-

ity in the presence of traffic-induced dynamics, and the findings
provide new insight into the BLS issue and suggest alternatives to
existingapproaches in data-driven link estimationand routing.

Ramachandran et. al [22] studied routing stabilit y (based on
metric ETT [6]) in static wireless mesh networks. The study in
[22], however, used broadcast-beacon based link estimationmethod,
and it did not consider the errors in beacon-based link estimation.
Thestudy onroutingstabilit y in [22] wasalso based onlink quality
data collected in the absenceof data traffic, and it did not consider
theimpact of network traffic pattern onlink and path propertiesand
thusnot theimpact of traffic-induced dynamics. Daset. al [4] stud-
ied the stabilit y of different routing metrics, but they did not focus
on routing stabilit y which we have shown to be different from the
stabilit y of individual routingmetrics. It wasnot the focusof [4] to
examine the BLS issue in data-driven link estimation and routing
either.

Lin et. al [17] proposed an adaptive transmission power control
mechanism that controls radio transmission power level to ensure
consistent link properties in thepresenceof environment dynamics.
We have mainly focused on intra-network, traffic-induced dynam-
ics in this paper, and we did not focus on environment dynamics.
Nonetheless, the adaptive transmission power control mechanism
of [17], if deployed, will make the findingsof thispaper applicable
to abroader sensor network scenarios including those with quickly
changing environment conditions.

8. CONCLUDING REMAR KS
We have studied the open, unexplored issue of biased link sam-

pling (BLS) in data-driven link estimation and routing. For a wide
range of traffic patterns and network setups we studied, we dis-
cover that theoptimal routingstructureremainsquitestabledespite
thesignificant variations in link properties and route metric values.
For the rare caseswhere theoptimal routingstructuredoes change,
we prove that, despite the BLS issue, data-driven link estimation
and routing is guaranteed to quickly converge to the optimal struc-
turewhen network conditionsdeteriorate; when network conditions
improve, we empirically show that the optimal structure for heavy
traffic load tends to remain a goodsuboptimal structure for lighter
traffic load, even though data-driven routing may not converge to
the optimal. These findings shed new light on the BLS issue and
providethefoundation for asimple, light-weight mechanismof ad-
dressingtheBLSissuein thepresenceof traffic-induced dynamics.

The highly stable routing structure in L-ETX provides a stable,
consistent infrastructure for data transport andcan help ensure pre-
dictable QoS in the presenceof traffic dynamics; detailed study of
this will be an interesting topic for future research. We have fo-
cused on traffic-induced dynamics in this paper, detailed study of
how other network dynamics (such as node mobilit y and quickly
changing environmental conditions) affect the stabilit y of optimal
routing and data-driven link estimation is also a part of our future
work.
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