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ABSTRACT

The wireless network community has become incressingy aware
of the benefits of data-driven link estimation and routing as com-
pared with beaon-based approadies, but the isaue of biased link
sampling (BLS) has nat been well studied even thoughit affeds
routing convergence in the presence of network and environment
dynamics. Focusing ontraffic-induced dyramics, we examine the
open, unexplored question d how seriousthe BLSissueisand hov
to effedively addressit when the routing metric ETX is used. For
a wide range of traffic patterns and retwork topdogies and wsing
baoth node-oriented and retwork-wide analysis and experimenta-
tion, we discover that the optimal routing structure remains quite
stable even thoughthe properties of individual li nksand routes vary
significantly as traffic pattern changes. In cases where the optimal
routing structure does change, data-driven link estimation and rout-
ingiseither guaranteal to converge to the optimal structure or em-
piricdly shown to converge to a dose-to-optimal structure. These
findings provide the foundition for addressngthe BLSissue in the
presence of traffic-induced dynamics and suggest approaches other
than existing ores. These findings also demonstrate that it i s poss-
ble to maintain an optimal, stable routing structure despite the fadt
that the properties of individual li nks and peths vary in resporse to
network dynamics.
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C.2.2[Network Protocols]: Routing protocols

General Terms
algorithms, measurement, performance
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1. INTRODUCTION

Wirelesscommunication asaumes complex spatial and tempora
dynamics [1, 14, 34, 35], thus estimating link propertiesisa basic
element of routing in wirelessnetworks. One commonly used link
estimation method s letting neighba's exchange broadcast beaon
padkets, and then estimating link properties of unicast data trans-
misgonsviathose of broadcast bea®ns. Nonetheless there aesig-
nificant differences between uricast and lroadcast link properties
[2, 18], and it is difficult to predsely estimate unicast link prop-
erties via those of broadcast due to temporal correlations in link
properties and dyramic, unpredictable network traffic patterns [ 26,
30, 31]. To addressthe drawbadks of bea®n-based li nk estimation,
the method d data-driven link estimation has been propcsed [9,
10, 13, 15, 16, 30, 31] and shown to significantly improve routing
performance[31].

In data-driven link estimation, information about the properties
of alink is provided by the MAC feedbadk for unicast data trans-
misdgons dong the link. If alink is not currently used for data
transmisdon, its current properties will most likely be unknavn to
the associated nock (since the predse correlation among links as-
sociated with the same node tends to be complex and dfficult to
predict). Thisintroduces the isaue of biased link sampling (BLS)
where properties of adively used links are constantly sampled and
updated but properties of unused links are nat sampled and un
known. BLSis not a problem if link properties are mostly static
and do na change temporally. Nonetheless temporal li nk dyram-
icsisusually unavoidable dueto dyramicsin network traffic pattern
and traffic-induced interference [30, 31], dynamics in environment
[4, 17, 22], andlor noce mobhility. For instance, Figure 1 shows
the network condtions in the presence of different traffic cond-
tions, where network condtion is represented by the unicast ETX
(i.e., expeded number of transmissons required to succesSully de-
liver aunicast padet) for links associated with arandamly seleaed
noce in the Kansei testbed (see Sedion 2). We seethat unicast
ETX changes dgnificantly (e.g., up to 3244) astraffic pattern and
thus co-channel interference varies [31]. Therefore, one may ex-
ped that, in the presence of temporal link dyramics, data-driven
link estimation and routing may not converge to the optimal solu-
tionsince dueto BLS, anode may be unable to discover the route
that is nat currently used but has become optimal.

Even though dta-driven link estimation has been used in vari-
ous forms, the severity that BLS aff eds routing odimality has not
been well studied, and orly ad hcc, if any, solutions have been pro-
posed in existing data-driven link estimation and routing schemes.
For instance, CARP[15], four-bit-estimation [9], and NADV [ 16]
do nd examine the BLS isaue; LOF [30] and SFEED [10] explo-
ratively sample dternative routes at randamized but high frequency
(i.e., once every few and every single padket transmisson respec



+d=0

-d=0.01 8

<d=0.04

©d=0.07 ¢
X 4|[A&d=0.1
10 o0 =

4 6 8 10 12
distance (meter)

Figure 1: Link unicast ETX in the presence of different net-
work traffic pattern. d denotes the probability that a node
haspacketsto transmit whenever the wirelesschannel becomes
idle, and d = 0 denotesthe case of notrafficin the network and
thus zero co-channel interference The data isfor XSM motes
(an enhanced version of MICA2 motes) and the B-M AC proto-
col, but we have observed similar phenomena for other MAC
protocols (e.g.,, SMAC) and radios (e.g., 80215.4 and 80211b
radios) too.

tively), which can reduce routing performance & we will show in
Sedion 6 EAR [13] implicitly addresses the BLS isaue by letting
every noce constantly overhea unicast transmissons aroundit, but
overheaing is nat energy-efficient in battery-powered sensor net-
works (since overheaing increases nodes’ duty cycles), and it can
lead to estimation errors snce, due to MAC coordination med-
anisms sich as RTS-CTS handshake, the properties of overhead
unicast transmisgons may be diff erent from thaose of unicast trans-
missons to a noce itself (due to hidden terminals for instance).
Thus, the ladk of athorough unérstanding o the BLS isaueis an
important problem snceit affeds the performance of a basic ser-
vicein sensor networks — routing.

The objedive of thispaper isto study the open, unexplored ques-
tion o how seriousthe BLSissueisand haw to effedively address
it in the presence of (potentially unpredictable) network dynamics.
We focus on traffic-induced dyramics (i.e., varying network cond-
tionsdue to changesin network traffic pattern) in this paper, andwe
relegate detail ed study o other network dynamics (e.g., mobility,
externa interference from other wireless networks) to our future
work. Therefore, we focus on mostly static deployment scenarios
where ewironment condtions and nodes are mostly static, even
thoughenvironment condtions may change slowly and nodss may
fail or join the network. Not al sensor network deployments are
mostly static, for instance, deployments where environment con-
ditions may frequently change due to interference from other co-
existing networks (e.g., 80211 networks) or due to movement of
persons or objeds within the deployment space(e.g., a building),
or deployments where sensor nodes themselves may be mobile.
Nonetheless mostly static deployment does represent a subclass
of sensor network deployments, for instance, in appli cations where
nodes are staticdly deployed in remote aeasfor environment mon-
itoring. Moreover, traffic-induced dynamics are universally present
in sensor networks, thus addressng the issue in mostly static de-
ployment scenarios may shed light on hawv to addressthe isauie in
other deployment scenarios and hav to address other network dy-
namics.

In studyingtheimpaa of BLS onrouting oimality, we consider
the routing metric ETX which is commonly used in wireless net-
works (e.g., sensor networks and mesh networks). Throughmath-
ematicd analysis and testbed-based experimentation, we examine
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the stability of optimal routes and the severity of BLS. For awide
range of dynamic traffic scenarios (e.g., dynamic events, dynamic
data oolledion, and their mix) and network setups (e.g., grid and
randam networks) we study, wefind out that nodes’ best forwarders
and the optimal routing structure ae rather stable even thoughthe
properties of individual li nks and routes may vary significantly as
traffic pattern and retwork condtion change. In cases where the
optimal routing structure does change, we prove that data-driven
link estimationand routingis guaranteed to converge to the optimal
structure when network condti ons worsen, and the cmnwvergenceis
quick (e.g., with amedian sample sizereguirement of no more than
7); when network condtions improve, the optimal forwarder cho-
sen for heavy traffic load tends to remain a good subogimal for-
warder for lighter traffic load, even though dta-driven routing may
not converge to the optimal structure.

These findings provide the foundation for addressng the BLS
isale in the presence of traffic-induced dyramics. In contrast to
existing approadhes, for instance, these findings demonstrate the
ned to addressthe BLS isale, the drawbadks of frequent explo-
rative sampling in mostly static networks, and the feasibility of an
energy-efficient, light-weight approach to addressng the BLS is-
sue. These findings also demonstrate that it is possble to main-
tain an effedive, stable routing structure despite the fad that the
properties of individual li nks and peths vary in resporse to network
dynamics. Since routing stability enables consistent, predictable
routing performance, these findings also suggest that we may re-
gard stability as abasic evaluation criterion for routing metrics.

The rest of the paper is organized as follows.  We briefly dis-
cussin Sedion 2the routing metric, the routing protocol, and the
experimental fadlity weusein this gudy. Wethen analyzethe con-
vergence properties of data-driven link estimation and routing in
Sedion 3 We study the dynamics of best forwarders and the rout-
ing stability in Sedion 4 and 5 respedively, and we discuss how
to addressthe BLS isue in Sedion 6 We discussrelated work in
Sedion 7and make concluding remarksin Sedion 8

2. PRELIMINARIES

In this fdion, we discussthe routing metric, the routing pro-
tocol, and the experimental fadlity that we use in the analyticd
and/or experimental study o this paper.

Routing metric and protocol. We use the routing metric ETX
(i.e., expeded number of transmisgonsfor delivering adata padet)
[3,27] in our study, and we use the data-driven link estimation and
routing method L-ETX [31, 32] for estimating the ETX metric for
ead link and path. L-ETX behaves amost in the same way as the
data-driven routing protocol LOF [30] does except that LOF uses
the ELD (for expeded MAC latency per unit-distance to destina
tion) instead of the ETX metric. In L-ETX, MAC fealbad for
unicast data transmissons are used to cdculate the reliability PDR
of individual unicast-physica-transmisdons® alongalink, then the
ETX of thislink is derived as ﬁ; the ETX metric of a path is
the sum of the ETX values of the individual li nks along the path.
Similar to LOF, L-ETX uses an initial sampling phese to bodstrap
the link estimation process (before any adtual data is transmitted).
In the initial sampling prese, a nock takes a few (e.g., 7) samples
of the quality of thelink to ead of its neighbas when it bods up;

*In many MAC protocols sich as the B-MAC [20] and the IEEE
802154 MAC, aunicast padket is (re)transmitted urtil being suc-
cesdully delivered or urtil the number of transmissons exceals a
certain threshald value (e.g., 8). For convenience, we regard eadh
individual transmisgoninvaved in transmitting a unicast packet as
aunicast-physicd-transmisson.



to reduce the overhead of the initial sampling in dense networks,
we can ignae neighbas who are unlikely to be the best forwarder
of the node, and these neighbas can be identified through coarse-
grain, approximate li nk estimation mecanism such as overheaing
based estimation as used in EAR [13].

For the analysis of Sedions 3 and 4, we dso use alocdized,
geographic routing metric ETD (for ETX per unit-distanceto des-
tination) in evaluating the goodressof forwarder candidates. ETD
isageographic version o ETX, andit i s defined as follows. Given
asender S, aneighba R of S, and the destination D, the ETD via
R isdefined as

00 otherwise
where ET X s, r isthe ETX of thelink from S to R, Ls,p denates
the distance from Sto D, and Lz, p denates the distance from R
to D. Wewill show in Sedion 5that phenomena observed through
ETD based analysis and measurements in Sedions 3 and 4 cary
over to cases where the measurements are based on ETX; Zhang
et al. [31] have shown that this locd, geographic metric performs
inasimilar way as the global, distance-vedor metric ETX for uni-
formly distributed networks.

Experimental facility. For the experimental studyin Sedions 3,
4, and 5 we use the puldicly avail able sensor network testbed Kan-
sei [8]. In an open warehouse with flat aluminum walls (seeFig-
ure 2(a)), Kansei deploys 98 XSM motes [7] in a 14x7 grid (as
shown in Figure 2(b)) where the separation between neighbaing
grid pantsis 0.91 meter (i.e., 3fed). The grid deployment pattern

(b) 14x7 grid

Figure 2: Sensor network testbed Kansei

enables experimentation with regular, grid topdogies, as well as
randam topdogies (e.g., by randamly seleding nodks of the grid to
participate in experiments). XSM is an enhanced version o Mica2
[23] mote, andead XSM isequipped with a Chipcon CC1000[24]
redio operatingat 433MHz. To form multi hop retworks, thetrans-
misson paver of the CC1000radios is st at -14dBm (i.e., power
level 3) for the experiments of this paper unless otherwise stated.
XSM uses TinyOS [25] as its operating system. For al the ex-
perimentsin this paper, the default TinyOS MAC protocol B-MAC
[20] is used; a unicast padket is retransmitted, upontransnmisson
failure, at the MAC layer (more spedficdly, the TinyOS compo-
nent QueuedSend) for upto 7 times until the transmisgon succeels
or until the 8 transmissons have dl failed; a broadcast padket is
transmitted orly once & the MAC layer (withou retransmisson
even if the transmisgon hes fail ed).

3. BIASED LINK SAMPLING AND ROUT-
ING CONVERGENCE

Taking the data-driven link estimation and routing method L-
ETX[31] asan example, we analyzein this sdionthe convergence
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properties of data-driven routingin the presenceof biased link sam-
pling (BLS) and traffic-induced dyramics (i.e., network dynamics
introduced by varying retwork traffic patterns).

When network traffic pattern changes, the quality of alink may
beame worse (e.g., when recéver-side interference increases) or
better (e..g., when recaver-side interferencedeaeases). It turnsout
that these two types of link quality changes have diff erent impad
on deta-driven protocols, as we show below.

PROPOSITION 1. In the presence of biased link sampling and
when an unwsed route beaomes better thanthe aurrently used ore,
the convergenceof data-driven routing depends ontherelative dhange
in the qudlity of the unused route; routing corverges to the optimal
if the qudity of the unused route has deteriorated, otherwise rout-
ing may not converge. O

Proof sketch: Consider anode S that is currently using aroute Py
throughforwarder/neighba Ro. Withou lossof generdlity, let us
consider anather route P; throughforwarder candidate R; .

If the quality of P1 beames better than bath itsown ealier qual-
ity and the aurrent quality of Py, node S may not know, due to the
isaue of biased link sampling, that P; has become better than P,
andwill continue usingthe subogimal route P insteal of the opti-
mal route P ; thisisthe case when the aurrent quality of P is dill
better than the ealier quality of P;. Therefore, data-driven routing
does not converge to the optimal solutionin this case.

On the other hand, if the quality of P, bemmes worse than its
own ealier quality but better than the aurrent quality of P,,? the
current quality of Py will be worse than Pi’s qudlity before the
network condtion change. Since S keepsinitsrouting table P1’s
quality before the condtion change, S will regard P, being a better
route than P, and will changeto P;. Once S startsto use P, it re-
samples P, and link estimation will conwverge to the latest quality
of Pi.

O

From Propasition 1, we can analyze the behavior of L-ETX in
cases of improving retwork condtions and deteriorating network
condtions sparately. Wefirst analyzethe convergence speed when
network condtion deteriorates (i.e., link and route quality wors-
ens). To this end, we first analyze the sample size requirement in
L-ETX for identifying the best forwarder. We assumethat the ETD
metric (i.e., the geographic-version o the distance-vedor protocol
L-ETX) isused sinceit enables us to have a ¢osed-form solution
as hown below.

PROPOSITION 2. Given asender S, thedestination D, andtwo
of S"sforwarder canddates K, and K, that are doser to D thanS
itself andwhose correspondng uricast-physical-transmisson reli-
ahbility is P, and P respedivdy, the sample size n that is ffi-
cient to distinguish the relative goodressof K7 and K5 at 100(1-

a)% oonfioianceleve}is(Zl*“‘/"'@l\/‘t’l(17131)JFLZ\/PZ(PPZ)))2
L1P—Ly P, !
where L, isthe distancefrom S to D mi Aus that from KitoD, Lo

isthe distancefrom S to D minusthat from K> to D, and Z;_, /»
is the (1-a/2)-quartil e of the standad Gausdan variable N(O, 1).
m]

Proof sketch:  For a link with uricast-physicd-transmisson reli-
ability P that is cdculated based onn number of physicd trans-
missons, the confidence interval (Cl) for the padet delivery rate

Note that this can happen orly if Py's quality has deteriorated
more than P;’s quality does.




at significancelevel « (i.e., at 100(1-«)% corfidencelevel) is[P —

Z1—ayor) P P42y o/ ZEP2 [12). Thus, for the two

links with padket delivery rate P, and P> respedively, the rre-
spondng Cls are asfollows:

Ccl, = [Pl 7y )2 /Pl(l Py) P+ Z_ /2 /Pl(1 Pl)]
Clo = [P2—Zi_ a/2\/ L Pz) P+ Zy a/Q\/ - P2

The Clsfor the correspondng routing metric ETDs are therefore &
follows:

’ _ 1 1
CII o [ P (=P’ P1(1—-P) ]
Li(Pi+Zy_ajo\ ——my ) Li(Pi=Zi_ajoy/ =57 )
1 1

]

Ccl, =

— ) —
L2(P2+Zlfa/2\/%2pz>) L2(P27zlfa/2\/%2pz))

Withou lossof generality, we assume that we take equal number
n of samples for bath links (i.e.,, n1 = n2), and suppcse that we
want to cdculate the required sample sizen so that K7 isnoworse
aforwarder candidate than K>. Then a sufficient condtion[12] is
asfollows:

1 < 1

P1(i:P1)) Lo(P2+ Zy_ )2 /P2(12P2))

Li\/Pi(1 = P)) + Lay/Po(1 — PZ)))Q

LiPy — Lo P
Thus the minimum sample sizerequired is

Zy_a2(Liy/Pi(1 — Pr) + Loy /P (1 — Pz)))z
LiP— L2 P

Li(Pr — Zy_ay2

which implies that

Z1i—q
n>( 1 /2(

(

]

To get numericd results onthe sample sizerequirement, we crn-
sider the case where the sender onthe left end o the middl e row of
Figure 2(b) neals to seled the best next-hop forwarder amongthe
set of recavers in the midde row, and the destination is far away
from the sender but in the diredion extending from the sender along
the midde row to the right. (Phenomena similar to what we will
present have been observed for other sender-recever pairstoo.) To
cdculate the sample sizerequired by the sender to identify the best
forwarder, we neead to measure the unicast-physicd-transmisson
reliability from the sender to ead recever. To this end, we let
the sender transmit 15,000 uricast padets to ead of the recevers
where eat padet has a data payload of 30 bytes. Based on padket
reception status (i.e., successor failure) at the recavers, we mea
sure the unicast-physicd-transnisgon reli ability for ead link. Us-
ing these data, we cdculate the sample sizerequired for comparing
every two links, and then the sample size required to identify the
best forwarder is the maximum of the sample size requirement for
pair-wise comparison.

To uncerstandthe potential i mpad of traffic-induced interference
on sample size requirement, we randamly seled 42 motes out of
the light-colored (of color cyan) 6 rows of Figure 2(b) as inter-
ferers, with 7 interferersfrom ead row on average. Each interferer
transmits unicast padkets (of payload length 30 bytes) to a destina
tion randamly seleded ou of the other 41 interferers. (Note that,
even thoughthe overall traffic pattern in low-powver wireless en-
sor networks tends to follow certain regular patterns, e.g., flowing
from sources to a common sink, the locd traffic pattern aroundthe
neighbahood d a node tends to be much more irregular. We will
also shaw in Sedion 5that the phenomena observed via the locd,
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randam traffic patterns carry over to experiments where sensor net-
work spedfic traffic patterns are studied.) The load of the interfer-
ing traffic is controlled by letting interferers transmit padkets with
a catain probability d whenever the channel becomes available. In
our experiments, we measure the unicast-physica-transmisgon re-
liahility from the sender to its recavers when d is 0, 0.01, 0.04,
0.07, 0.1, 0.4, 0.7, and 1respedively. Thus the interfering traffic
patternis controlled by d in this case. (Phenomena simil ar to what
wewill present have been observed for other interfering traffic pat-
terns, for instance, with different spatia distribution and dfferent
number of interferers.)

Based onPropasition 2 we analyzethe sample sizerequirements
in the ebowve interference scenarios, and Table 1 shows the me-

d ofool1[o04[007]01]04]07]1
Median
samplesize | 4 3 5 4 5 7 5 1|4

Table 1. Median sample size required to identify the best for-
warder at 95% confidencelevel

dian sample size required to identify the best forwarder at 95%
corfidence level. We see that the number of required physicd-
transmisgon-samples tends to be smell; for instance, it may only
take avery few number of unicasts to colled the required sam-
ples. Thisimpliesthat data-driven li nk estimationtends to converge
quickly. The quick convergencein link estimation implies that the
routing structure in L-ETX can converge to the optimal one in a
timely manner when network condtion worsens (e.g., when net-
work traffic load increases) to the degreethat the optimal structure
changes.

From Propgsition 1, we know that, due to BLS, L-ETX may nat
conwerge to the optimal solutionwhen network condti onimproves.
So, the questions are how thisisaue of patential divergence affeds
routing ogdimality and hav to addessit. We explore answers to
these questions in the next sedion.

4. DYNAMI CSOF BEST FORWARDERS

To provide guidelines on addressng the BLS isaue in the pres-
ence of traffic-induced dyramics, we study in this sdion hav the
best forwarder of anode may change with traffic pattern. We first
study the dynamics of best forwarder throughmathematicad analy-
sis 9 that we can examine the issue in generic, different network
setups, and then we verify the analyticd results through testbed
based experimentation.

4.1 Mathematical analysisof best forwarders

To get closed-form solutions, we use the ETD metric to eval-
uate the goodress of different forwarder candidates as we did in
Sedion 3 We first present the analyticd method and then the nu-
mericd results for diff erent network setups.

Analytical method. To evaluate the goodressof aforwarder can-
didate using the ETD metric, we neeal to analyze the padcet deliv-
ery rate (PDR) of the correspondng link in the presence of dynamic
traffic/interference patterns.  To this end, we ned to analyze the
interference a the forwarder candidate in diff erent traffic scenarios
so that we can cdculate the signal-to-interference-and-noise-ratio
(SINR) based onwhich we cdculate the PDR.

To cdculate the interference a a forwarder candidate (which is
the packet recaver from the perspedive of the sender), we adapt
theinterferencemodel proposed by Qiu et al. [21] to determine the
concurrent transmissons (and thus the interference) in a network.



In Qiu's nodel, the behaviors of IEEE 80211 MAC in multi-hop
networks are modeled using a Markov chain where the state i isthe
set S; of nodes that are transmitting concurrently at a cetain time
moment. To adapt Qiu’s nodel to the analysisof B-MAC, weneal
to adapt the probability Po1(m|S;) that anode m startsto transmit
when the system is at state . Thisisbecaise TinyOS B-MAC [25]
differsfrom 80211 in howv channel accessis coordinated. Due to
the limitation o space we relegate to [33] the detailed derivation
of the adapted model.

Using the adapted model, we can cdculate the stationary prob-
ability 7; for eat state i. Then, for ead pair of transmitter ¢ and
recaver s, the interference that concurrent transmisgons have &

noce s is
> 2

©wtE€S; jijES;,jFAL
where Pow(j, s) is the recaved signa strength at s for signas
coming from j. Pow(j, s) can be cdculated using the log-normal

path loss nodd asin [35). Then, the SINR at recaver s, denoted
by SINR(t, s), cdculates as foll ows:

_ Pow(t, s)
No + > iies, 2jijes: jze Tiow(j, s)

where Ny is the background nase. Acoordingly, we can cdculate
the padket delivery rate PDR(t, s) from ¢ to s as a function o
SINR(t, s), using the model proposed by Zurigaet al. [35], and
thuswe can cdculate the correspondng ETD metric value. Having
derived the ETD metrics for ead forwarder candidate of a node,
we can determine which is the best forwarder with the minimum
ETD metric value.

Numerical results. Usingthe ebove models, we analyzethe PDR
and ETD in different scenarios, including randamly distributed and
regularly distributed nodes, and for indoa and oudoa environ-
ments. In our network setups, radio transmisson pover is st as
-14dBm, path loss exporent is st as 3.3 and 47 for indoa and
outdoa environments respedively, and badkground nase is st as
-105dBm and -100dBm for indoa and oudoa environments re-
spedively. Given the high space omplexity of Qiu’'s model [21],
we can only run in Matlab the adapted model with no more than
44 transmitting nodks in our computer (which is a Dell Optiplex
GX620with 4GB memory). Thus we runthe modd in networks of
around 40transnitting nodes.

Due to the limitation of space here we only discussthe case
of indoa, randamly distributed interferers, and we refer interested
readers to [33] for other cases where similar phenomena ae ob-
served. We oconsider a network setup that is the same & what have
presented in Sedion 3except that 1) the grid spaceis 15 x 7 and 2
the distance between any two closest grid pantsis 1 meter. Then,
we let the noce & theleft end o the midde row serve asthe sender,
the rest nodes in the midd e row serve as forwarder candidates, and
the destination is far away from the sender in the diredion extend-
ing from the sender to the forwarder candidates. Figure 3 shows
the PDR and ETD in this stup. We seethat PDR and ETD change
significantly with interferencepatterns, espedally for links of lower
PDR. Yet the best forwarder remains rather stable: it is node ns
that is 5 meters away from the sender, except for the cases when
d = 0.7 and d = 1 where the best forwarder is node ny4 that is 4
meters away from the sender. With other protocols (e.g., conges-
tion cortrol) in place a network usually works under load much
lighter than d = 0.7; in fad, Ng et al. [19] showed that the op-
timal traffic injedion rate d is 0.245in aregular linea topdogy,
and the optimal d will be even lower in common, two-dimensional
networks. Therefore, the optimal forwarder will not change if the

miPow(j, s),

SINR(t,s)
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Figure 3: PDR and ETD in an indoor environment with 42ran-
domly distributed interferers

network congestion level iswell controlled (e.g., through conges-
tion control). Moreover, the ETD vaue of n4 is lessthan 551%
more than that of ns; thisimplies that, even thougha node may be
unable to find the optimal forwarder when network condtion im-
proves (i.e., interference level deaeases), it may till be okay for a
nock to use the subopimal forwarder sinceits performanceis very
close to the optimal.

4.2 Experimental analysisof best forwarders

To experimentally verify the analyticd observations, we use the
data mlleded in Sedion 3 for network condtions in the Kansel
testbed. Asin Sedion 3 we oconsider the cae where the sender
ontheleft end o the midde row of Figure 2(b) neads to seled the
best next-hop forwarder among the set of recevers in the midde
row, and the destination is far away from the sender but in the di-
redion extending from the sender alongthe midd e row to theright.
Figure 4 shows the PDR and ETD in different interference'traffic
scenarios. The results are more complex than in analysis in the
sense that the PDR and ETD are nat monaonic functions of the
sender-forwarder-distance due to red-world fadors such as hard-
ware heterogeneity. Nonetheless the dynamics of the best for-
warder assumes a similar pattern: despite the huge variations in
PDR aaoss different interference scenarios, the best forwarder is
the nock that is 9.15 meters (i.e., 30 fed) away from the sender in
all the scenarios except for the case whend = 1; when d = 1, the
best forwarder is 2.74 meters (i.e., 9 fee) awvay from the sender.
This result is rather consistent with the indoa, analyticd results
as shown in Figure 3, even thoughthere is dight differences due
to differences in network setup and environment condtions. As
we have discussed ealier, well-controll ed traffic load in multi-hop
wirelessnetworks is usualy much lighter than 0.7 and 1[19], thus
the best forwarder remains the same acoss different interference
scenarios. We discussexceptional scenarios of extreme traffic load
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Figure 4: PDR and ETD in the Kansei testbed with 42 ran-
domly distributed interferers. Note that the radio of the mote
at ~8 metersdoesnot work very well, thusthe PDR isquitelow
and ETD isquitelarge for the mote.

in Sedion 6

43 Summary

From the ebove mathematicd and experimental analysisfor ran-
dom and gid topdogies andfor indoa and oudoa environments,
we observe that the best forwarder remains quite stable even though
PDR (and even ETD) changes with dyramic traffic patterns. Even
thoughthe best forwarder may change when traffic load dyramics
passes througha threshold traffic load value, the best forwarder re-
mains the same for a wide range of traffic scenarios. An intuitive
explanation for this high stability in best forwarder, in contrast to
the much more dynamic link reliability and routing metric value,
are that there is usually a guard margin between the routing met-
ric values of the best forwarder and ather forwarders, and that, due
to the paositively correlated impad that ead interferer’s sgnal has
onthebest and ather forwarders, it may take asignificant changein
traffic (andthusinterference) pattern to overcome the guard margin
aswe have seenin ou analysis. That is, the guard margin between
the best forwarder and the other forwarders tends to mask the im-
pad of traffic-induced dyramics.

In the varieties of scenarios we studied, moreover, the threshold
valueiseither very low (e.g., lessthan 0.07) [33] or very high(e.g.,
greder than 0.7). When the threshdld load is low, it does not mat-
ter much even if routing daes not converge to the optimal forwarder
when network traffic load deaeasesto passthelow threshold value;
thisis because the chasen subogimal forwarder may well be dose
to optimal in performance and ogdimality is lessof a concern for
light traffic load (when it is easy to ensure padet delivery relia
bility) [33]. When the threshdd load valueis high, it israrely the
case that we would exped to seenetwork traffic load excealing the
threshdd in pradice when other protocols are in placeto control
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the network congestion level, and thus the best forwarder tends to
remain the same acossdiff erent admisgble traffic scenarios.

In the next sedion, we aorrobarate these observations by exam-
ining the behaviors of L-ETX in different dynamic traffic patterns
and retwork setups. We discussin Sedion 6 hav to addressthe
exceptional cases where best forwarders may change in a manner
that significantly affed network performance

5. ROUTING WITH DYNAMIC TRAFFIC
PATTERNS

Having analyzed the convergence behaviors of data-driven rout-
ing and the dynamics of best forwarders, we experimentally evalu-
atethe behaviors of L-ETX inthe presenceof threetypes of sensornet-
spedfic dynamic traffic patterns: dynamic events, dynamic peri-
odic data, and mixed dyramic events and periodic data. We dso
use both grid and randam network topdogies in this experimental
study. Due to the limitation o space here we only discussthe
case of dynamic events and gid network topdogy, and we refer
the readersto [33] for other cases (e.g., randam network topdogy)
where similar phenomena ae observed.

We use apubicly available event traffic tracefor a field sensor
network deployment [28] to generate dynamic eventsin our study.
Sincethe traffic traceis coll eded from 49 nodes that are deployed
ina7 x 7 grid, we randamnly seled and wse a7x7 subgid of the
Kansel testbed (as hown in Figure 2(b)) for experimentation. The
mote & one corner of the subgid serves as the base station, the
other 48 motes generate data padkets acwrding to different traf-
fic patterns, and the destination o all the data padets is the base
station.

We use the event traffic tracementioned abowve, but we control
the set of nodes that adually generate source padkets to cortrol
the event size throughwhich we generate dynamic events. More
spedficdly, we study the foll owing dyramic events which contain
7 event configurations:

1Xx1—-3%x3—=5x5—->7Tx7T—5x5—-3x3—-1x1

where eab configuration spedfies the subgrid of traffic sources.
For instance, “3 x 3" spedfies that the nodes in the farthest 3 x 3
subgid from the base station generate event traffic.  For ead
event configuration, we generate the asciated event 40 times and
measure the performance of L-ETX for this event configuration.
Examining the routes taken by padets from ead node, we ob-
servethat there ae very few route changes during the whole exper-
iment. For instance Table 2 shows the statistics of comparing the

Conseautive | Same | Diff. route, same | Increased | Decreased
routes hoplength hoplength | hoplength
Radio (%) 99.98 0 0 0.02

Table 2: Routing stability in the presence of dynamic events:
grid network

routes taken by every two conseadtive padets from a same nocke:
99.98% of the time, conseautive padkets use the same route, and
only 0.02% of the time the route changes to be alonger one. The
high stability of routes in the presence of dynamic traffic patterns
are due to the following reasons: 1) estimation in L-ETX is very
acarate and stable [31]; and 2 the best forwarder does not change
much aaoss different network traffic condtions as discussed in
Sedion 4

Because of the stability in routing, padet delivery performance
is rather consistent aaoss $milar network setups. Figure 5 shows
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the boxdot of event reliability for ead event configuration, and
Table 3 shows the median event reli ability and its 95% confidence

#1

#2 #3  #4

#5  #6  #HT

Config. | Median (%) Cl (%)
#1 100 (100, 100
#2 100 (98.44, 100
#3 97.92 (96.92, 98.62)
#4 9185 (91.3,92.39)
#5 98 (96, 99
#6 100 (98.94, 100
#7 100 (100, 100

Table 3: The malian event reliability and its 95% confidence
level confidenceinterval for dynamic events: grid network

level confidenceinterval (Cl) in different configurations. We see
that, despite randam variations, the event reliability for configura-
tions#3 and #5are similar to ead ather, and their Cls overlap with
ead other. A WilcoxonRank Sum [11] test shows that configura-
tions#3 and #5 rave equal median event reli ability at the 95% con+
fidencelevel. The same observation appliesto other simil ar traffic
patterns, that is, configurations #2 and #6 and configurations #1
and #7.

We dso examine the detail ed route information, for instance, the
hop length and the end-to-end transmisson court of routes. Us-
ing Wil coxon Rank Sum tests, we find out that, at 95% confidence
level, routes chosen by nodks equal distance avay from the base
station have equal median hoplength and end-to-end transmissgon
court in similar network setups (e.g., corfigurations #3 and #5.
For instance, Figure 6 shows the (statisticdly) similar end-to-end
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Figure6: Time series of route transmisgon countsfor anode 9
grid-hopsaway from the base station: dynamic eventsand grid
network

route transmisgon courts for the routes taken by padets from a
noce 9 grid-hops away from the base station in configurations #3
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and #5 The same observations apply to parameters such as the
per-hop geographic distance and the per-hoptransmisson court of
links used in similar network setups.

Verification. To corrobarate the fad that the best forwarders are
acdually stable in the presence of the diff erent dynamic traffic sce-
narios discussed abowve, we implement a variant of L-ETX, which
we cdl L-ETX-rcv. L-ETX-rcv is the same & L-ETX except that
the forwarder candidates of a node dways try to overhea the uni-
cast padket transmisgons from the node. Note that the overheaing
in L-ETX-rev is dmilar to that in EAR [13], but unlike in EAR
which studied 80211b retworks with the RTS-CTS mechanism,
the B-MAC used in ou study daes nat use RTS-CTS handshake,
and thus overhead transmissons by anoce f in L-ETX-rcv have
the same properties as those of unicest transmisgons destined for
f itself. Therefore, aforwarder candidate f in L-ETX-rcv can de-
termine, based onthe overhead data transmissons, the latest link
properties for unicast data transmissons from the sender s to it-
self, and then f can share this information with s so that s can
make the right dedsion in chocasing the optimal forwarder. Conse-
quently, biased-link-sampling is not an issue in L-ETX-rcv due to
the recever-asdsted, data-driven link estimation. We run L-ETX-
rev in the different dynamic traffic scenarios and retwork setups
discussd ealier, and we find ou that, smilar to L-ETX, thereis
very littl e route dhanges and the best forwarders remain stable de-
spite the traffic dynamics.

6. IMPLICATIONS FOR PROTOCOL DE-
SIGN

We see from the findings of Sedions 3, 4, and 5 that, despite
BLS, L-ETX conwerges quickly when network condtion deterio-
rates (e.g., due to increased traffic load). For the wide range of dy-
namic traffic scenarios and retwork setups we studied, we dso see
that even though 1 data-driven protocols may, theoreticdly spek-
ing, nat converge to the optimal solution when network condition
improves, e.g., due to deaeased traffic load, and 2) link proper-
ties do change significantly as traffic pattern changes, the best for-
warders remain quite stable (in which case BLS is not a problem
any more), or the optimal forwarder chasen for heavy traffic load
may ill be avery good subogimal forwarder for lighter traffic
load [33].

In our study, we have examined awide spedrum of dynamic traf-
fic scenarios (e.g., dynamic events, dynamic data olledion, and
their mix) and retwork setups (e.g., grid and randam networks),
but we understand that we have not covered all the scenarios that
may exist in pradice For the mostly static deployment scenarios
we studied, however, our findings on the high stability of the op-
timal routing structure in spite of dynamics of link properties are
themselves nat obvious and shed new light on howv to addressthe
BLS issue in mostly static networks such as those for remote en-
vironmental monitoring. On ore hand, we ae asred of the good
performance of L-ETX in avariety of traffic condtions even if we
do na design speda mechanismsto addressthe BLSisale. Onthe
other hand, to addressthe rare cases where improved network con-
dition leads to significantly worse-than-optimal performance (e.g.,
dueto slow but significant changesin environment condtions[17]),
a sender can proadively sample unused links/routes, or the for-
warder candidates can proadively overhea the sender’s data trans-
missons to estimate the latest link quality; considering the quick
convergence of L-ETX and the low probability or frequency that
improved network condtion may lead to significantly worse-than-
optimal performance, however, the proadive sampling a forwarder-
asdsted recaver-side link estimation can be exeauted at very low



frequency to reduce the overhead of proadive sampling o over-
heaing. This is in contrast to the existing approaches in LOF
[30] and SFEED [10] where anode periodicdly samples unused
linkg/routes by using them to deliver data padets, which leads to
reduced routing performance (e.g., data delivery reliability, number
of transmisgons per padet delivered, and throughpu) due to fre-
quent sampling d the links/routes that are not or not even close to
be optimal. We have observed throughexperimentation that the pe-
riodic, probabili stic sampling in LOF and SFEED can leal to bad
performance, espedally when traffic load is high (e.g., the 7 x 7
event traffic trace[28]). For the 7 x 7 event traffic trace for in-
stance, the data delivery reliability in L-ETX is ~15% higher than
that in LOF and SFEED, and L-ETX also reduces the number of
transmisgons per padket delivered by aroundafador of 2.

L-ETX cen ded with dyramics such as node/link fail ure or node
join in a straightforward manner. Node or link failure can be re-
garded as the case where the quality of the asociated link(s) dete-
riorates (in fad, to be unusable), in which case L-ETX converges
quickly; nodejoin can be hand ed eff edively throughtheinitial li nk
sampling procedure when anew noce and the asociated links first
come up. Besides traffic-induced dyramics, our study in this paper
has nat focused on dher network dynamics uch as node mobility
[5] and quickly changing environment conditi ons. Even thoughwe
exped that the quick convergence and high stability of L-ETX rout-
ingmay aso help us design light-weight approaches to addressng
these types of network dynamics, detail ed study o thisis beyond
the scope of this paper, and we relegate it as a part of our future
work.

The BLS is3Je is unique to data-driven link estimation and na
aproblem in bea®n-based link estimation. Hybrid link estimation
methods that use both uricast MAC feadbad and broadcast bea
cons have dso been propeosed in [27] and [9]. Even though hylid
link estimation daes not need to addressthe BLS issue and periodic
broadcast bea®ns may be necessary for purposes auch as discover-
ing and recovering from routing loops, the goproach of incorporat-
ing periodic bea®nsin link estimation is debatable (espedally for
sensor networks that are mostly static) since broadcast beamns can
mislea link estimation and cause larger estimation error [30, 32].
Acoordingly, even though hybid link estimation may conwerge, it
may well converge to thewrongconclusion onlink propertiesin the
same way that bea@n-based li nk estimation convergesto impredse
estimation results and poa routing performance Thisisespedally
the cae in event detedion sensor networks where there is no data
traffic most of the time but a short burst of data padets may need
to be delivered orce a event is deteded [29, 30]. Therefore, us-
ing broadcast bea®ns in link estimationisinherently questionable,
and data-driven link estimation as well as the asciated BLSisaue
isafundamental problem in wirelessnetwork routing.

7. RELATED WORK

Data-driven link estimation where MAC feedbadk for unicast
datatransmissonsis used for estimating uricast link properties has
been used in severa sensor network routing protocols [9, 10, 13,
15, 16, 30, 31], and it has been shown that data-driven link estima-
tion significantly improves estimation acairacy and routing perfor-
mance & compared with beaon-based approach [31]. Nonethe-
less the impad of biased link sampling (BLS) on routing ogdimal-
ity and the severity of the BLS isaue in the presence of network
dynamics are mostly unexplored. Ladk of deep understanding o
these isaues has led to ad hoc gpproacdhes to explicitly or implicitly
addressng the BLS isaue. As afirst step toward systematic tred-
ment of the BLS isaue in data-driven link estimation and routing,
we have studied in this paper the routing convergence and ogtimal -

Digital Object Identifier: 10.4108/ICST.WICON2008.4882
http://dx.doi.org/10.4108/ICST.WICON2008.4882

ity in the presence of traffic-induced dyramics, and the findings
provide new insight into the BLS isaue and suggest aternatives to
existing approadies in data-driven link estimation and routing.

Ramadandran et. al [22] studied routing stability (based on
metric ETT [6]) in static wireless mesh networks. The study in
[22], however, used broadcast-beamn based li nk estimationmethod,
and it did na consider the arorsin bea®n-based link estimation.
The study onrouting stability in [22] was also based onlink guelity
data oolleded in the absence of datatraffic, and it did na consider
theimpad of network traffic pattern onlink and peth propertiesand
thusnat theimpad of traffic-induced dyramics. Daset. al [4] stud
ied the stability of different routing metrics, but they did na focus
on routing stability which we have shown to be different from the
stability of individual routing metrics. It was nat the focus of [4] to
examine the BLS issJe in data-driven link estimation and routing
either.

Linet. al [17] propased an adaptive transmisson paver cortrol
mechanism that controls radio transmsson paver level to ensure
consistent link propertiesin the presence of environment dynamics.
We have mainly focused onintra-network, traffic-induced dyram-
ics in this paper, and we did na focus on environment dynamics.
Noretheless the alaptive transmisson paver control medhanism
of [17], if deployed, will make the findings of this paper appliceble
to abroader sensor network scenarios including those with quickly
changing environment conditi ons.

8. CONCLUDING REMARKS

We have studied the open, unexplored issue of biased link sam-
pling (BLS) in data-driven link estimation and routing. For awide
range of traffic patterns and retwork setups we studied, we dis-
cover that the optimal routing structure remains quite stable despite
the significant variationsin link properties and route metric values.
For the rare cases where the optimal routing structure does change,
we prove that, despite the BLS isaue, data-driven link estimation
and routing is guaranteead to quickly converge to the optimal struc-
turewhen network conditi ons deteriorate; when network condtions
improve, we empiricdly show that the optimal structure for heary
traffic load tends to remain a goodsubogtimal structure for lighter
traffic load, even though @ta-driven routing may not converge to
the optimal. These findings shed new light on the BLS isaue and
provide the foundation for asimple, light-weight mecdhanismof ad-
dressngthe BLSisauein the presenceof traffic-induced dyramics.

The highly stable routing structure in L-ETX provides a stable,
consistent infrastructure for data transport and can help ensure pre-
dictable QoS in the presence of traffic dynamics; detail ed study o
this will be an interesting topic for future reseach. We have fo-
cused ontraffic-induced dyramics in this paper, detailed study o
how other network dynamics (such as node mobility and guickly
changing environmental condtions) affed the stability of optimal
routing and data-driven link estimationis also a part of our future
work.
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