Hybrid Testbeds for QoS Management in Opaque MANETS

Pratik K. Biswas, Alex Poylisher, Ritu Chadha, Abhrajit Ghosh

Applied Research, Telcordia Technologies Inc.
One Telcordia Drive, Piscataway, NJ 08854
{pbiswas, sher, chadha, aghosh} @research.telcordia.com

Abstract— The design of QoS mechanisms for wireless networks
in general, and mobile ad hoc networks (MANETS) in particular, is
a challenging task. The challenges are further compounded when
the characteristics of the intermediate network segments are not
observable from the originating segment, and as a consequence
these segments have to be treated as opaque networks. End-to-end
QoS assurance for such opaque networks, consisting of admission
control and quality adjustment, can be based on techniques for
dynamically measuring throughput representing the state of these
networks. Testing these QoS mechanisms poses a special technical
challenge due to the difficulty of conducting experiments in a
MANET environment at a scale larger than a dozen nodes or so. In
this paper, we describe a distributed and hybrid testbed that has
been deployed for running large-scale experiments to demonstrate
the efficacy of a measurement-based QoS solution. The
infrastructure for the testbed provides an integrated platform
consisting of real nodes running the actual software under test,
augmented with a simulated network environment. We define a set
of metrics and run experiments to evaluate the effectiveness of the
QoS solution as well the performance of the deployed testbed. We
propose an alternate architecture that employs a Xen-based
virtualization of the real nodes from the deployed testbed. We
compare the performances of the virtualized architecture with the
non-virtualized one vis-a-vis latency and resource utilization. Our
goal is to establish benchmarks for running large-scale experiments
on performance and QoS measurements in virtualized
environments.

Index Terms— Mobile ad hoc network (MANET), end-to-end (e2e),
multi-level security (MLS), quality of service (QoS), measurement-
based admission control (MBAC), dynamic throughput graph (DTG),
admission control functionality (ACF), quality adjustment functionality
(OAF), software-in-the-loop (SITL), virtualization

I. INTRODUCTION

Providing end-to-end (e2e) quality of service (QoS)
assurances for flows that span multiple heterogeneous networks
is a challenging problem. The challenges are further
compounded when the characteristics of the intermediate
heterogeneous network segments are not observable from the
originating or terminating network segments. In military mobile
ad hoc networks (MANETS), this limitation arises due to multi-
level security (MLS) requirements that restrict the visibility of

Conference WICON ‘08, November 17-19, 2008, Maui, Hawaii, USA.
Copyright 2008 ICST 978-963-9799-36-3.

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

the encrypted wireless (“black’) network from the unencrypted
(“red”) network which hosts the management applications. We
will henceforth refer to such segments as opaque. However,
knowledge of the opaque mnetwork characteristics (e.g.
intermediate link delays, losses) is critical to providing the e2e
QoS assurances, particularly for delay and loss sensitive
mission-critical applications.

End-to-end (e2e) QoS assurances for such bandwidth-
sensitive heterogeneous networks, where there is very little a
priori knowledge of the intervening opaque networks, can be
based on dynamically measuring throughputs. A measure of
throughput of the transmitted traffic between the end segments
and across the opaque wireless segment can be used to represent
the state of such a heterogeneous network. This paper presents a
hybrid testbed that has been deployed to test the effectiveness of
such a dynamic-throughput-measurement-based QoS
mechanism. The testbed integrates simulated IP stacks from the
simulator with real instances of the QoS measurement
algorithms, running on real nodes. Data on flow information is
fed from the simulator to the real world where it is analyzed
through the dynamic-throughput-measurement-based algorithm
to arrive at QoS decisions. These decisions are then fed back to
the simulator where they are implemented to verify the efficacy
of the QoS algorithm. This paper also proposes an alternate
architecture for this hybrid testbed, where the real nodes are all
run on virtual machines.

The remainder of the paper is organized as follows: Section II
discusses related work. Section III explains the problem
background and relevant technologies. Section IV describes the
network model and the implemented QoS solution. Section V
presents the architecture of the deployed testbed and defines a
set of metrics for evaluating the QoS mechanism as well as the
performance of the testbed. Section VI proposes an alternate
architecture that deploys the real nodes on virtual machines and
compares the performance of the virtualized testbed against the
non-virtualized one. Section VII concludes the paper with an
overview of our future plans.

II. RELATED WORK

Related work can be grouped into three main categories: (1)
QoS mechanisms for wunicast application traffic, (2)
virtualization, and (3) hybrid testbeds for wireless networks.

The literature on QoS in communications goes back a long
way. However, we restrict our attention to the work that is most
closely related to opaque networks and measurement-based

admission control (MBAC) in particular. In MBAC, admission
control schemes use measurements to characterize current
network load. In [1], time-delay measurements are used to
describe the characteristics of wireline opaque networks for a
single traffic class. [2, 3, 4] consider various MBAC approaches
that assume complete knowledge of and control over the
elements in the path of the data packets. Further, the authors of
[4] have shown that different MBAC algorithms all achieve
almost identical levels of performance. In this work, we have
used the dynamic throughput graph (DTG)-based technique [5]
for analyzing the current state of intermediate wireless opaque
networks (of mixed networks) and then using that knowledge to
provide e2e QoS for unicast application traffic. The solution
uses DiffServ [6] and the Bandwidth Broker concept [7] as a
basis; applications request admission into the network and a
Bandwidth Broker decides whether or not to grant the request.
Admitted flows are marked with appropriate DSCPs [8] and are
thereby accorded differentiated treatment in the network by
using appropriate queuing schemes.

Virtualization has been applied to operating systems both
commercially and in research for nearly thirty years. IBM
VM/370 [9] made use of virtualization to allow binary support
for legacy code. VMware [10] family of products, such as,
VMware Workstation, VMware GSX Server, VMware ESX
Server, etc., virtualizes commodity hardware, allowing multiple
operating systems to run on a single host. All of these examples
implement a full virtualization of (or at least a subset of) the
underlying hardware, rather than paravirtualizing and presenting
a modified interface to the guest operating system. LPARs [11]
and Denali [12], on the other hand, use the paravirtualization
approach to build an infrastructure for distributed systems. Xen
[13] is a high performance resource-managed virtual machine
monitor (VMM) (or Hypervisor) which provides an idealized
virtual machine abstraction, thereby allowing multiple
commodity operating systems to share conventional hardware in
a safe and resource-managed fashion, but without sacrificing
either performance or functionality. Xen can use either
paravirtualization or hardware-assisted full virtualization.

Hybrid infrastructures [14 - 22] have proved to be useful in
validating networking techniques and conducting large scale
experiments for wired/wireless environments. Emulab/Netbed (a
descendant of Emulab) [14, 15, 16] is a network testbed that
integrates emulators, simulators and live networks into a
common framework wunder a common wuser interface.
Experiments on Emulab/Netbed testbed [15] can combine real
elements with simulated elements, each modeling different
portions of a network topology in the same experimental run.
The testbed can be used for straightforward comparisons of
simulated, emulated, and wide-area scenarios. The EXperimental
Testbed for Research Enabling Mobility Enhancements
(EXTREME) [17] provides an experimentation facility that
supports the testing of networking algorithms and technologies
for wireless environments in a close-to-real scenario. Its design
has been inspired by Emulab. EMWIN/EMPOWER [18, 19] is
an [P-based scalable framework for mobile wireless emulation.
With EMWIN, the mobility of the target mobile wireless

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

network with a number of mobile nodes can be faithfully
emulated in a wired network environment. EMPOWER is
capable of assisting the study of both wired and wireless
network protocols and applications. The open access research
testbed for next-generation wireless networks (ORBIT) [20] is a
radio grid testbed that has been developed for scalable and
reproducible evaluation of next-generation wireless network
protocols. The ORBIT testbed consists of an indoor radio grid
emulator for controlled experimentation and an outdoor field
trial network for end-user evaluations in real-world settings.
WHYNET [21] is a large-scale hybrid testbed for heterogeneous
wireless technologies (MANET, Wireless LAN, 3G Cellular,
Sensors, UWB, etc.) that combines the realism of physical
testing with scalability, flexibility and repeatability of
simulations. A hybrid testbed for distributed sensor networks,
consisting of real and simulated environments, has been used in
[22] to conduct a variety of integrated tracking and surveillance-
based experiments. Results from these experiments have shown
that a large number of distributed and interacting sensor nodes,
with different capabilities and operating in different
environments, can be incorporated in high fidelity experiments
to analyze the challenging aspects of the surveillance problem
through realistic application scenarios.

This paper presents and proposes hybrid testbeds, in
deployment as well as under construction, which can be used to
demonstrate the effectiveness of the aforesaid DTG (dynamic
throughput graph)-based QoS mechanism [5] for opaque
MANETS.

III. BACKGROUND

In this section, we explain four key technologies that provide
the backbone of this paper and which we have demonstrated and
utilized in our testbeds.

A. Measurement-based Quality of Service Mechanism

Broadly speaking, Quality of Service (QoS) is defined as the
capability of the network to transport information across the
network while satisfying some communication performance
requirements of applications, such as low delay, low loss, or
high throughput. Given the reality that the amount of traffic to
be sent over a network may exceed its capacity, any QoS
mechanism must also be capable of providing different levels of
QoS assurances to different types of traffic. In order to provide a
good QoS solution, two critical components are needed: (a) an
admission control solution that receives admission requests from
applications, and decides whether or not to admit flows based on
application requirements and available resources as well as the
current network state; and (b) a quality adjustment solution,
whose main function is to adapt to the dynamics of the
underlying network by modifying the guarantees (downgrading,
etc.) provided to accepted flows based on priorities. Central to
these two components are two important issues: (i) the
information that needs to be collected for decision making, and
(ii) the algorithm that uses this information to provide QoS
assurances. Consequently, measurement-based QoS involves

two distinct phases of operations: a collection phase and an
information usage phase. The two phases are concurrent and
information collection is performed continuously, even as the
collected information is used.

B. Network Simulation and Network Emulation

Two of the most commonly used experimental techniques for
the design and validation of new and existing networking ideas
and technologies are network simulation and network emulation.
Network simulation is a technique where a program [24, 25, 26]
models the behavior of a network either by reproducing the
interactions between the different network entities (hosts/routers,
data links, packets, etc) using mathematical formulas, or by
replicating observations from a production network. Network
simulation provides a repeatable and controlled environment for
rapid prototyping and experimental evaluation. Network
emulation [14, 15] is a hybrid approach that combines real
elements of a deployed networked application, namely, the end
hosts and protocol implementations, with synthetic, simulated,
or abstracted elements, namely, the network links, intermediate
nodes and background traffic. A fundamental difference between
simulation and emulation is that while the former runs in virtual
simulated time, the latter must run in real time. Another
important difference is that it is impossible to have an absolutely
repeatable order of events in any emulation, due to its real-time
nature and often a physically-distributed computation
infrastructure. Hybrid testbeds perform integrated network
experimentation by combining real and/or emulated elements
with simulated ones.

C. Software-in-the-loop Simulation

Software-in-the-loop (SITL) simulation is a methodology that
utilizes a simulation-based approach to evaluate the
effectiveness and scalability of real software as it is deployed in
the field [23]. This methodology combines the use of
unmodified compiled code from a real application with the
simulation model. This results in high fidelity experiments as
there is no implementation-related inconsistency between the
deployed and the in-the-loop software, which also happens to get
tested more extensively in a close-to-real simulated
environment. This methodology also eliminates the need for
deriving and developing a model for the real software in the
simulator, as the in-the-loop software integrates easily with the
simulation model. To be effective, the software-in-the-loop
solution needs to be platform-independent and neutral to the
choice of the simulation engine. In our experiments, we model
the opaque MANET in a simulator and use the source code for
dynamic-throughput-measurement-based QoS management
algorithm (DTG) [5], running on real nodes, as the software-in-
the-loop. The hybrid testbed provides a simulated IP stack for
each real node.

D. Virtualization

In computing, virtualization is a broad term that refers to the
abstraction of computer resources. Virtualization makes it
possible to run multiple operating systems (OSes) on the same
computer at the same time. Virtualization can be grouped into

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

two main types, i.e., platform virtualization and resource
virtualization. Platform virtualization involves the emulation of
whole computers, while resource virtualization involves the
emulation of combined, fragmented, or simplified resources.
Platform virtualization is performed on a given hardware
platform by host software (a control program), which creates an
emulated computer environment, a virtual machine, for its guest
software. The guest software, which is often itself a complete
operating system (OS), runs just as if it were installed on a
stand-alone hardware platform. Typically, many such virtual
machines are emulated on a single physical machine, their
number limited only by the host’s hardware resources.
Generally, there is no requirement for a guest OS to be the same
as the host one. Three main approaches to platform virtualization
are: full virtualization, hardware virtualization and
paravirtualization. In the first, the virtual machine emulates
enough hardware to allow an unmodified guest OS (one
designed for the same CPU) to be run in isolation (e.g., Virtual
PC, QEMU, etc.). In the second, the hardware provides
architectural support that facilitates building a virtual machine
allowing unmodified guest OSes to be run in isolation (e.g.,
Linux KVM, Xen, etc.). The second case is an optimization of
the first one. In the third, the virtual machine does not
necessarily emulate hardware, but instead (or in addition) the
virtual machine monitor (VMM) offers a special API that can
only be used by the modified guest OS (e.g., Denali, Xen, etc.).
In this paper, we propose to use the Xen paravitualization
approach to host several Linux-based guest OSes on the same
physical box, to run several instances of the DTG-based QoS
measurement software.

IV. NETWORK MODEL AND THE QOS SOLUTION

The network model under consideration consists of a mix of
wireline and wireless networks. The properties of the wireline
networks are significantly different from those of the wireless
networks. Application flows originate from and terminate at the
wireline networks, which constitute the end user network
segments. The intervening networks are wireless in nature and
opaque due to multiple levels of security (MLS) restrictions. The
only knowledge available of these networks is their wireless
nature and technology used, e.g., TDMA, CSMA. It can be
assumed that from the technology it will be possible to infer the
maximum link capacity.

In such a heterogeneous network, sources, receivers for
unicast flows reside on the end user network segments. An
ingress router is the router that connects the end network
segment that originates a flow with the opaque network, while
an egress router is one that connects the opaque network with the
terminating end network segment. Furthermore, unicast
transmission supports different traffic types and the network
provides differentiated service for different types of service
classes.

The network model uses a measure of throughput of the
transmitted traffic between the end networks and across the

opaque network as the state descriptor of the opaque network.
Throughput can be measured cheaply by counting, for every
ingress/egress node/router pair, the traffic sent and received over
a configurable time interval. The ratio of the two counts (bytes
over the time interval) gives an aggregate measure of the
throughput. Such a measurement provides, very directly,
information about packet loss. Furthermore, from such a
measurement, a latency value (i.e., as throughput falls, latency
increases) can be inferred as needed. This information can then
be used to construct throughput graphs, termed dynamic
throughput graphs (DTGs) [5], which are continuously updated
based on the dynamics of the underlying network and used in
decision making. End-to-end QoS assurance for unicast
communication, consisting of admission control and quality
adjustment, is based on these throughput graphs.

Each ingress/egress node in the network has an associated co-
resident QoS Manager. Each ingress node receives
measurements periodically from the egress nodes for the
corresponding application traffic. All QoS related decisions are
made by the QoS Manager. The QoS Manager enforces the
policies for admission control and quality adjustment. The QoS
Manager for each ingress node creates and maintains its DTG.

A. Dynamic Throughput Graph Computation and Re-
construction

The dynamic throughput graph (DTG) [5] between an ingress
and egress platform is computed based upon the outgoing and
incoming traffic measurements for each application traffic class
over a moving window of time. The window is defined by the
QoS Update Window Size management parameter and passed to
the QoS Manager at startup. For each class with recently active
flows, the QoS Manager at an ingress node stores a number of
recent values for the output byte count (traffic sent), one value
for each measurement interval. The QoS Manager at the
corresponding egress node performs essentially the same process
and stores input byte counts for all flows that it has received. At
the end of each measurement interval, the QoS Manager for the
egress node sends a report about the number of bytes received in
the reporting interval. The QoS Manager at the ingress node
matches that information with that recorded for the outgoing
traffic to egress node for the same class and interval, forming a
throughput data point. When an adequate number of data points
are accumulated, the QoS Manager at the ingress node performs
a fit on the data (e.g., polynomial) to produce a graph (DTG) that
describes the recent network state with respect to the relevant
ingress-egress pair, that is subsequently used in decision making.
Multivariate regression is one of the techniques that can be used
to perform the data fit.

The QoS Manager for the ingress node periodically re-
computes the DTGs based on the reports received from the
corresponding egress nodes. If the difference between the
previous and the current DTGs, for any traffic class and any
ingress-egress pair, is greater than a predetermined threshold,
then it indicates a significant change in the underlying network
state. In such a case the old DTG is discarded and the new DTG
is used for making QoS decisions.

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

The minimum number of data points needed, the lifetime of
the data points, the periodicity of reporting and DTG re-
computation are all configurable parameters of the algorithm.

B. Admission Control Functionality

Admission control functionality (ACF) [5] involves the
determination of whether or not a new flow can be admitted into
the network. This decision has to consider both the QoS
requirements of the flow to be admitted as well as the state of the
network. The ACF admits a flow between any pair of ingress
and egress nodes in the network when there is no other flow
between them. This implies that the DTG is not computed by the
time the request for admission for the flow is received, and so
the ACF function at the ingress point does not have any history
to base its decision on. Once the DTG is computed, the ACF
function at the ingress can use that to make its decisions. A flow
can be rejected, admitted in a lower priority class or admitted as
Best Effort (BE) traffic. This decision making is explained below
through an example.

We consider only one class in this example but the concept is
easily extendible to many. Assume that a new flow of class /
requests admission. Further, let i; denote the current input bytes
of class / and let the bandwidth requirement of the new flow
corresponds to b bytes in the next interval. Then, the ACF
function determines the output bytes of class / given the input
bytes of (i; + b). This is computed with the DTG. Let o, denotes
the computed output for class /. The ACF admits the flow if the
ratio of 0, to (i; + b) does not violate the packet loss guarantees
given for this class. (e.g., if class / consists of only VoIP traffic
then a 5% loss might be tolerable). If this is not true, then the
flow is not admitted in the requested class and can be admitted
in a lower priority class or Best Effort (BE), based on policy.

C. Quality Adjustment Functionality

Quality adjustment function (QAF) [5] is responsible for
ensuring that admitted flows continue to receive the QoS
guarantees based on their priorities under changing network
conditions. This might in some cases involve reacting to
degrading network state by downgrading the quality for certain
low-priority flows or blocking such flows altogether in order to
sustain assurances to high-priority/mission critical applications.
When used in the above manner, the QAF is in essence a
reactive control mechanism. QAF can also be used pro-actively
(i.e., if the QAF is triggered based on expected network behavior
as derived from past history) and the proposed methodology
does not preclude such a proactive use. However, in the
remainder of this document, we will focus on reactive QAF.

We next explain the functionality of the QAF. The QAF
function, for an ingress point, is invoked periodically to check
the ratio of output bytes to the input bytes for a given class, since
last invocation. If the ratio is less than the preset threshold value,
the QAF downgrades some flows of the affected class based on
policy. The QAF function uses the DTG to determine the
number of flows of a given class to downgrade so that the
resulting remaining flows in the class satisfy the threshold limits.
This is done by subtracting the bandwidth requirements of a

flow considered for downgrading from the overall requirements
in that class and using the resulting projected output value in the
DTG. The process stops when the DTG-projected output value is
no longer above the threshold or there are no more flows in the
given class. Policy can further determine which flows are
downgraded first, based on priority within class, age, etc.

V. AHYBRID TESTBED FOR QOS MEASUREMENTS

We have developed a hybrid testbed that applies the software-
in-the-loop methodology to integrate a simulated opaque
MANET with the software-in-the-loop QoS management
system, running on Windows/Linux based real hosts. The
testbed is currently deployed to demonstrate the effectiveness of
the DTG (dynamic throughput graph)-based algorithm for
providing e2e QoS in opaque MANETs.

A. Architecture

Figure 1 below presents a high-level overview of the
deployed architecture.

Simulator

External
Interface

Dffered Load Database

Figure 1: Conceptual Architecture of the Hybrid Testbed

The following is a brief description of its functional components.
Simulator: We have used OPNET [24], QUALNET [25] and
NS-2 [26] to simulate the opaque MANET. Currently, the
deployed testbed uses OPNET Modeler 11.5 as the Simulator.
This is executed on a 4 to 8-processor machine or cluster with
2G of RAM per 2 GHz processor, running either Windows or
Linux. As a Java application, it requires JRE 1.4 or higher.

QoS Manager: Each QoS Manager instance is designed to
address the QoS requirements of a single node in the real
network. It encapsulates the Admission Control Functionality
(ACF) and Quality Adjustment Functionality (QAF) capabilities
for each node. The testbed deploys multiple instances of the QoS
Manager, one per simulated node, to handle admission requests
and quality adjustments for each node. The QoS Manager code
has been integrated into a simulated network environment to
interface with the Simulator in our hybrid testbed. The QoS
Manager instances are executed on several 1G dual-core, multi-
CPU machines running Linux. Each machine can host up to 25
instances of the QoS Manager. For a 300 node simulation, the

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

testbed deploys 12 machines to host all of the QoS Manager
instances to handle the admission requests and quality
adjustments for the 300 nodes in the Simulator. The QoS
Manager software requires JRE 1.4 or higher and Postgres 8.2.6.
QoS Mediator: The QoS Mediator is intended to route messages
from a node inside the Simulator to the appropriate QoS
Manager instance(s) and back. It is responsible for translating a
request generated by the Simulator to a request that is
comprehensible to the appropriate QoS Manager instance. The
Mediator allows the testbed to be independent of the simulator
type, as any Simulator that conforms to the incoming interface of
the Mediator can exchange messages with the QoS Manager
without necessitating any change to the QoS Manager’s
interface. The QoS Mediator software requires JRE 1.4 or
higher. The testbed deploys one instance of the QoS Mediator. It
is executed on a separate 1G dual-core, multi-CPU PC running
Linux. The Mediator is needed to address the constraints that
the QoS Manager software cannot be modified and a mismatch
exists between a synchronous message passing model on the
simulator side and an asynchronous model used by the QoS
Manager software.

Traffic Database: The Traffic (Offered Load) Database
contains tables with information on traffic flow and node
movement from real military MANET applications. Each flow
record contains relevant information for traffic simulation, i.e.,
source IP, source port, destination IP, destination port, start time,
duration, priority, bit rate, application type, etc. The node
movement record provides information on node identifier,
simulation time, coordinates, etc. These records are used to drive
the simulation inside the Simulator. Simulated nodes generate
admission requests directed at their corresponding QoS
Managers based on the information gathered from these flow
records.

B. Message Exchanges and Component Interactions

This section provides an overview of the messages that are
exchanged between the Simulator and the QoS Managers, via
the Mediator, for implementing the DTG-based QoS algorithm.
The testbed supports the following message types. Each message
exchange is described with its associated interactions.

o Admission Request: The simulated node checks with its
corresponding QoS Manager, via the Mediator, whether to
admit the incoming flow. The QoS Manager determines the
outcome based on its DTG-based admission control
functionality (ACF). It can either decide to admit the flow,
possibly along with a downgrade of zero or more flows, or it
can reject the request outright. The response is routed to the
Simulator via the Mediator. The simulated node accepts the
request, downgrades flows, starts the flow or rejects the
request, based on the response.

o Terminate-flow Request: The simulated node requests its
corresponding QoS Manager, via the Mediator, to terminate
an existing flow. The QoS Manager removes the flow from
its database and sends an appropriate acknowledgment via
the Mediator to the Simulator. On receiving the
acknowledgement, the simulated node terminates the flow.

e Downgrade-Timeout: The Simulator sends a periodic
timeout message to the Mediator to collect downgrades
from the QoS Managers. The Mediator concurrently sends a
Down message to all QoS Managers. Each Manager
determines which flows to downgrade (if any) by running
its DTG-based quality adjustment functionality (QAF) and
responds with its list of downgrade instructions. The
Mediator aggregates the responses from all QoS Managers
and sends the aggregated list of downgrades to the
Simulator. The Simulator preempts each active flow in the
list.

o Q0SS Measurement Delivery Message: The measurement
collection is a periodic process that is driven by the
Simulator clock. Within the Simulator, every simulated
egress node periodically sends a measurement message to
its corresponding ingress node. The ingress node combines
the local measurements with the feedback information from
the egress node about packets received by that node, and
sends it as a single message to the QoS Mediator.
Subsequently, the QoS Mediator forwards the information
to the relevant QoS Manager and returns an
acknowledgement to the Simulator. The QoS Manager uses
the measurement information to construct and update its
own DTG.

The Simulator communicates with the Mediator via a single
TCP socket interface. The Mediator sends flow Admission,
Terminate and Downgrade requests to each QoS Manager and
collects the corresponding responses over a single TCP socket
interface. Ingress and egress feedback measurements are,
however, sent to each QoS Manager over two separate UDP
socket interfaces.

The Simulator interacts with the QoS Manager in a
synchronous manner. Any QoS-related request from the
Simulator results in the simulation being suspended till a
corresponding response is returned by the appropriate QoS
Manager instance.

C. Evaluation Metrics

A hybrid testbed managing QoS lends itself to many different
types of metrics. This sub-section defines a set of metrics
collected in the hybrid testbed during each experiment
(simulation). The metrics are divided into the following two
categories:

1. QoS Effectiveness Metrics: Metrics that provide insights

into the QoS Manager performance.

2. Testbed Applicability Metrics: Metrics that illustrate the
network performance as a result of incorporating QoS in
the hybrid testbed.

We have used these two types of metrics to evaluate the
effectiveness of DTG-based QoS mechanism and the
applicability of the testbed in managing the execution of this
mechanism. In both cases, the QoS Mediator log is used to
collect the relevant statistics.
1) QoS Effectiveness Metrics

The following metrics
effectiveness:

insights into

QoS

provide

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

= Total Number of Flows: sum of all admission requests
generated by simulated nodes.

= Total Number of Admitted Flows: sum of all the flows
that are admitted by all QoS Managers

= Total Number of Rejected Flows: sum of all the flows
that are rejected by the all QoS Managers

= Total Number of Downgraded Flows: sum of all the
flows that are downgraded by all QoS Managers

2) Testbed Applicability Metrics
The following metrics define the general overall performance
of the testbed:

» Message Completion Rate (%): total number of
messages received / total number of messages sent.

= Processing Time (seconds): end time — start time (from
the Mediator log).

= Message Latency (milliseconds): time when a message
(response) was sent — time when a message (request)
was received. The Average Message Latency denotes
the average processing time for all messages via the
Mediator. This is further classified into Average
Process Times for Admission Requests, Terminate-flow
Requests, Downgrade-Timeouts and QoS Measurement
Delivery messages.

= Throughput (messages per second): number of
messages transmitted per second through the Mediator.

D. Experiments

We conducted large-scale experiments by running simulations
with 10, 30, 100 and 318 nodes. One QoS Manager was
associated with each simulated node and the QoS Managers
were distributed as evenly as possible across 10 to 12 physical
machines. The total number of message exchanges varied
anywhere from 10K to 3.6M. QoS Measurements were reported
at 10, 30 and 60 second intervals. Experiments have been driven
by the simulator’s clock, rather than the QoS Manager’s host
clock. Experiments were run for 30 to 100 minutes of simulation
time.

E. Experimental Results

In this paper, we present selected subsets of the obtained
results. High-level results from a 103 node simulation with
161125 message exchanges (7Total Number of Flows) are
presented. There were 35K Admission Requests, 35K
Terminate-flow Requests, 91093 QoS Measurement Delivery
messages and 32 Downgrade-Timeouts. The Message
Completion Rate was 100%. The Processing Time for the
complete run of the simulation was 5584 seconds. This resulted
in a Throughput of 29 messages per second. Of the 35K
Admission Requests, 27341 were accepted (Total Number of
Admitted Flows) and 7659 were rejected (Total Number of
Rejected Flows). The Average Process Times for the Admission
Request, Terminate-flow Request, QoS Delivery Message, and
Downgrade-Timeout were 21.86, 11.81, 3.47 and 36422.22
milliseconds respectively.

Figure 2 below shows selective results from a 308 node
simulation, for a 100 minute time slice (from 13:20:00 to

15:00:00) of simulation time, corresponding to two different
reporting time intervals, i.e., 10 seconds and 60 seconds
respectively. This translated to 21600 seconds (6 hours) of
Processing Time on the deployed testbed. Figure 2a
demonstrates the effectiveness of the QoS solution by displaying
the relevant statistics for the rejected flows by their application
class types. Figure 2b presents the Average Process Times
(APT) for the four different message types.

Message | DSCP Admission Rejected Rejected
Req uests (1I] sec Repurts] (60-sec Reports)

1 20.2% 99525 20.4%
LDSS 1
DISCYRY 21 2 342 45 13. 2% 4D 11. ?%
TSA 20 2 63553 105 0.2% 2140 3.3%
BDA 9 4 25936] - 1] -
WOICE 1 5 142581 0 - 1]
c2 47 7 a0 0 - 1]

Figure 2a: Rejected Admission Requests Based on ACF Solution

0 et B et s e
YC_GAF_fonee YC_GAF_ines
GAF 20 Marager Process T AP 0% Manager Frocess s
15 e
on
'
(£
ok oo
Frar| L

o
R T e T T T e T ndm imdde lne lnXm fed0m 1S0m

APT, = §.48 msec APT, = 7.11 msec
APT, = 9.63 msec APT,, = 7.06 msec
Admlssmn Request Terminate Flow

Arpatsion drevnge wat drend.
- QAF G Marager Process Tre. GAF 0% s Frocess Tree

— — o
LE R T T A T T R T e T e T T

APT ;= 159.08 sec APT ;= 3.54 msec
APTg, = 159.26 sec APTy, = 3.99 msec
Downgrade-Timeout Measurement Delivery

Figure 2b: Average Process Times for Four Different Message Types

VI. A VIRTUALIZED TESTBED FOR QOS MEASUREMENTS

We propose a Xen-based virtualization [13] of the hybrid
testbed (discussed in the previous section) where the QoS
Managers are hosted on Linux-based virtual machines. With Xen
virtualization, a thin software layer known as the Xen
Hypervisor is inserted between the server's hardware and the
operating system. It provides an abstraction layer that allows

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

each physical server to run one or more virtual servers,
effectively decoupling the operating system and its applications
from the underlying physical server. The Xen Hypervisor is a
powerful open source industry tool for virtualization. It can use
paravirtualization as well as hardware-assisted full
virtualization. It offers a powerful, efficient, and secure feature
set for virtualization of several mainstream CPU architectures,
and supports a wide range of guest operating systems including
Linux, Solaris, various BSD variants and Windows
(unmodified). It is also exceptionally lean, with less than 50,000
lines of code. A Xen system is structured with the Xen
Hypervisor as the lowest and most privileged layer. Above this
layer are one or more guest operating systems, which the
Hypervisor schedules across the physical CPUs. The first guest
operating system, called domain 0 (Dom() in Xen terminology,
is automatically booted when the Hypervisor boots. Additional
guest operating systems, each called domain U (DomU) in Xen
terminology, are started from Dom0. DomUs are managed from
Dom0.

A. Architecture

QoS Manager n

Control Plane
Software

Ken Yirual API

!

Hardware (Intel Dual Core)

Figure 3: Conceptual Architecture of the Virtualized Network (Single
Host) of the Proposed Testbed

The following is a brief description of the functional
components of the system.
Simulator: This stays the same as it is in the non-virtualized
testbed. The simulator is hosted on a separate machine running
Windows OS.
Virtualized Network: We use a Xen-based virtualized network
to host the QoS Mediator and the QoS Managers. We consider
the extreme case, where the entire virtual network is operated on
a single Intel dual-core, 2 CPU, 4G PC. Xen Hypervisor is
installed at the lowest layer. We have installed NetBSD-current
as Dom0 and Linux (Fedora Core 8) as DomUs. There are 11
virtual machines (DomUs), named Linux1 through Linux11, that
are running on this physical machine, each with 256M of
memory. The QoS Mediator instance is run on Linux11. Linux1
through Linux10 can host multiple instances (upto a maximum
of 10) of QoS Managers. Each DomU is on its own subnet and
can talk to other DomUs, but not to the external world (except

through Dom0). Only DomO has external access through its
interface Dom0-wm0. For each DomU (DomUi, 1 <=1 <= 11),
Xen creates a new pair of connected virtual ethernet interfaces,
where one end of each pair (DomUi-eth0) is within the DomUi
and the other end exists within Dom0 (Dom0-xvifi.0). There are
12 bridges (Br0-Br11) in Dom0, one for each pair of connected
interfaces and another connecting Dom0O (Dom0O-wm0) to
Ethernet. The Simulator sends messages to Dom0, which are
forwarded to the Mediator on Linux11 through port forwarding;
responses are returned via the same path. The virtualized
network is secured with a single point of entry and exit. Figure 3
above presents a conceptual view of this architecture, while
Figure 4 below provides an overview of the detailed architecture
(bridges, interfaces, sub-networks, etc.) of the virtualized
network.

Ethernet

Subnet-11 Linux11

Bril

DomU11-eth0
Dom0-wmd | Linux1

Dom0-xvif1.0 DomU1-eth0

Dom0

Figure 4: Detailed Architecture of the Virtualized Network (Single
Host)

B. Comparison Metrics

We have defined the following metrics, in order to compare
the performance of the virtualized testbed against the non-
virtualized one.

» Message Latency (milliseconds): time when a message
(response) was sent — time when a message (request)
was received. We compare the Average Process Times
for the various request types between the two testbeds.

= Resource Utilization (%): CPU and Memory utilization
as seen by running fop on Linux11, the virtual machine
running the Mediator, during the Downgrade-Timeout.
It should be noted here that in response to a
Downgrade-Timeout message from the Simulator, the
Mediator spawns parallel threads, one for each QoS
Manager, to send the Downgrade message to and
collect the downgrade list from each QoS Manager.

C. Experiments and Comparative Estimates

This work is currently in progress. We have so far conducted
only a few small-scale experiments for a comparative evaluation.
We ran simulations with 10 to 100 nodes. For a 100 node
simulation with 1K messages, the Average Process Times for the
Admission Requests, Terminate-flow Requests, QoS Delivery
Messages, and Downgrade-Timeouts are 22.5, 15.8, 1.7 and 244

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

milliseconds in the virtualized testbed against 87.5, 63.5, 26.9
and 15272.1 milliseconds in the non-virtualized one. The
significant difference between the Average Process Times for
the Downgrade-timeout is easily noticeable. We found that this
difference was due to unpredictable behavior of some of the
Mediator threads (QoS Managers) in the non-virtualized testbed.
These threads waited for their responses from their
corresponding QoS Managers much longer than the others,
thereby impacting the Message Latency of the Downgrade-
Timeout in the non-virtualized testbed.

For Resource Utilization, we compared the averages of the
peak CPU and Memory Utilizations by the Mediator during the
Downgrade-Timeout in the two testbeds. We ran experiments
with 0 to 100 concurrent threads, i.e. QoS Managers. Figure 5
below compares the Resource Utilization (%) by the QoS
Mediator during the Downgrade-Timeout across the two
testbeds. The graphs indicate that the average peak CPU
utilization is much better in the virtualized testbed, while the
average peak Memory utilization is roughly on par in terms of
the physical memory used (13M to 10M).

Comparison of CPU Utilization (Non-virtualized vs.
Virtualized Test-he ds)

Comparison of Memory Utilization (Non-virtualized
Vs Virtualized Test-beds)
80 ——CPUV

10
, ”A_-.b—l—’/
6 ——Nemory-lv
40 —+—CAY a 4’,_”_*_‘_’_’_'_”_/_4 —s—Memory-V
20)
() 0
0013 5 8 91020 30 9100

utlization

% Wtilization

01358 9123 9010

Threads (0oS Managers)

Threads (008 Managers)

Figure S: A Comparison of Mediator Resource Utilizations during
Downgrade-Timeout

We conjecture that Xen’s weighted fair scheduling of the
available physical CPUs coupled with its special mechanism for
low-latency wakeup (dispatch), based on the Borrowed Virtual
Time (BVT) scheduling algorithm [13], as well as homogenous
low-latency communication between the DomUs account for the
CPU Utilization differences by shortening busy wait times for
multiple Mediator threads. Moreover, since all DomUs operate
reasonably uniformly and none occupies the CPU indefinitely,
the Mediator receives responses from all QoS Managers for the
Downgrade-Timeout concurrently without additional delay
(some threads no longer behave unpredictably by waiting for
their corresponding Managers’ responses) and the Message
Latency for the Downgrade-Timeout is thus closer to a QoS
Manager’s own processing time (average) for this message type.

Further studies are needed to confirm the most significant
factor(s) behind our observations. However, the homogeneity
effect is clearly helpful in predicting the performance of the
testbed and planning its use.

VII. CONCLUSIONS

We have described a hybrid testbed that employs the
software-in-the-loop simulation methodology for testing a
dynamic-throughput-measurement-based QoS mechanism for
opaque MANETs. The testbed facilitates message exchanges
between the simulated and the real worlds. We have conducted
large-scale experiments in the testbed; results demonstrate the
efficacy of the DTG-based QoS algorithm as well as the
applicability of the testbed for testing such mechanisms. We
have also implemented an alternate Xen-based virtualized
architecture for the hybrid testbed, where the QoS Manager
algorithm can be run on multiple virtual machines. We have
begun to compare the performance of the virtualized and the
non-virtualized testbeds. Preliminary results indicate that in the
context of opaque MANETS, the virtualized architecture can be
advantageous as it not only reduces hardware considerably but
also meets or exceeds our performance expectations.

Our future plan is to test the scalability of the virtualized
testbed by replicating the experiments conducted on the non-
virtualized testbed. The virtualized testbed is to handle up to 3.6
million message exchanges with 300 or more QoS Managers.
We will also attempt to find a near-optimal distribution of
DomU s to physical machines, for running such an experiment by
exploring the self-organization of the DomUs through DomU
mobility. Our eventual goal is to establish benchmarks for
running large-scale experiments on performance and QoS
measurements in virtualized environments.

REFERENCES

[1] Valaee, S., Li, B.: Distributed Call Admission Control for Ad Hoc
Networks. Proceedings of the IEEE Vehicular Tech. Conf. (VTC),
Vancouver, Canada (2002)

[2] Grossglauser, M., Tse, D.: Framework for Robust Measurement-
based Admission Control. In IEEE/ACM Transactions on
Networking, vol. 7, no. 3 (1999)

[3] Zhu, Corson. S.: QoS routing for mobile ad hoc networks. In
Proceedings of Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, New York (2002)

[4] Jamin, S., Danzig, P., Shenker, S., Zhang, L.: A measurement
based admission control algorithm for integrated services packet
networks. [EEE/ACM Transactions on Networking, vol. 5, no. 2
(1997)

[5] Poylisher, A., Anjum, F., Kant, L., Chadha, R.: QoS Mechanisms
for Opaque MANETS. Proceedings of IEEE MILCOM, pp. 1-7,
Washington DC (2006)

[6] Blake S. et al.: An Architecture for Differentiated Services. IETF
RFC 2475 (1998)

[7] Nichols K., Jacobson V., Zhang L.: A Two-bit Differentiated
Services Architecture for the Internet. IETF RFC 2638 (1999)

[8] Nichols K. et al.: Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers. IETF RFC 2474 (1998)

[9] Seawright, L., MacKinnon, R.: VM/370 - a study of multiplicity
and usefulness. IBM Systems Journal, pp. 4-17 (1979)

[10] Devine, S., Bugnion, E., Rosenblum, M.: Virtualization system
including a virtual machine monitor for a computer with a
segmented architecture. US Patent, 6397242, (1998)

Digital Object Identifier: 10.4108/ICST.WICON2008.4852
http://dx.doi.org/10.4108/ICST.WICON2008.4852

[11] Borden, T.L. et al.; Multiple Operating Systems on One Processor
Complex. IBM Systems Journal, vol.28, no.1, pp. 104-123 (1989)

[12] Whitaker, A., Shaw, M., and Gribble, S. D.: Denali: Lightweight
Virtual Machines for Distributed and Networked Applications. TR
02-02-01, University of Washington (2002)

[13] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I, Warfield, A.: Xen and the Art of
Virtualization. Proceedings of SOSP’03, New York (2003)

[14] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad S.,
Newbold, M., Hibler, M., Barb, C., Joglekar, A.: An Integrated
Experimental Environment for Distributed Systems and Networks,
Proceedings of the 5th Symposium on Operating Systems Design
& Implementation (OSDI), pp. 255-270, Boston, MA (2002)

[15] Guruprasad, S., Ricci, R., Lepreau, J.: Integrated Network
Experimentation using Simulation and Emulation. Proceedings of
the First International IEEE/Create-Net Conference on Testbeds
and Research Infrastructures for the Development of Networks and
Communities (TRIDENTCOM °05), pp. 204-212, Trento, Italy
(2005)

[16] Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack,
T., Webb, K., Lepreau, J.: Large-scale Virtualization in the Emulab
Network Testbed, Proceedings of the 2008 USENIX Annual
Technical Conference, Boston, MA, (2008)

[17] Portoles-Comeras, M., Requena-Esteso, M., Mangues-Bafalluy, J.,
Cardenete-Suriol, M.: EXTREME: Combining the FEase of
Management of Multi-user Experimental Facilities and the
Flexibility of Proof of Concept Testbeds. Proceedings of the First
International IEEE/Create-Net Conference on Testbeds and
Research Infrastructures for the Development of Networks and
Communities (TRIDENTCOM ’06), Barcelona, Spain (2006)

[18] Zheng, P., Ni, L. M.: EMWIN: Emulating a Mobile Wireless
Network using a Wired Network. In Proceedings of the 5™ ACM
International Workshop on Wireless Mobile Multimedia
(WOWMOM °02), pp. 64-71, Atlanta, GA (2002)

[19] Zheng, P., Ni, L. M.: EMPOWER: A Network Emulator for
Wireline and Wireless Networks. Proceedings of the Twenty-
Second Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2003), Vol. 3, pp. (2003)

[20] Raychaudhuri, D., Seskar, L., Ott, M., Ganu, S., Ramachandran,
K., Kremo, H., Siracusa, R., Liu, H., Singh, M.: Overview of
the ORBIT Radio Grid Testbed for Evaluation of Next-generation
Wireless Network Protocols. Proceedings of IEEE Wireless
Communications and Networking Conference, pp. 1664-1669,
(2005)

[21] Zhou, J., Ji, Z., Varshney, M., Xu, Z., Yang, Y., Marina, M.,
Bagrodia, R.: WHYNET:a hybrid testbed for large-scale,
heterogeneous and adaptive wireless networks. Proceedings of the
Ist international workshop on Wireless network testbeds,
experimental evaluation & characterization, pp. 111-112, Los
Angeles, CA (2006)

[22] Biswas, P. K., Phoha, S.: A Hybrid Infrastructure for Surveillance-
based Sensor Network Experiments. Proceedings of the Second
International IEEE/Create-Net Conference on Testbeds and
Research Infrastructures for the Development of Networks and
Communities (TRIDENTCOM °06), pp. 68-73, Barcelona, Spain
(2006)

[23] Chiang, C. J. et al.: Performance Analysis of DRAMA: A
Distributed Policy-Based System for MANET Management.
Proceedings of IEEE MILCOM, Washington DC (2006)

[24] The OPNET Simulator, http://www.opnet.com/

[25] The QualNet Simulator, http://www.scalable-networks.com/

[26] The Network Simulator — ns-2, http://www.isi.edu/nsnam/ns/

