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ABSTRACT

Wireless sensor networks (WSNs) have emerged in strate-
gic applications such as target detection, localization, and
tracking in battlefields, where the large-scale nature renders
centralized control prohibitive. In addition, the finite bat-
teries in sensor nodes demand energy-aware network con-
trol. In this paper, we propose an energy-efficient topology
management model that allows clustered nodes to act upon
imminent targets in a purely distributed and autonomous
fashion, which is inspired by the biological inter-cell lateral
induction models. In particular, nodes in the target vicinity
collaborate to form clusters based on their relative observa-
tion quality values. The energy efficiency of the proposed
approach is examined against reference protocols.

Categories and Subject Descriptors

C.2.1 [Computer-communication Networks]: Network
Architecture and Design—network topology, distributed net-

works

General Terms

Algorithms, Design

Keywords

Bio-inspired, sensor networks, distributed

1. INTRODUCTION
Recent progresses in wireless communications and elec-

tronics have facilitated the development of tiny multi-functional
sensor nodes that are low-cost, low-power, and capable of
communication in short distances [1]. These tiny sensor
nodes consist of components responsible for sensing, data
processing, and wireless communications. Their main tasks
are to sense physical phenomena, process data, and forward
useful information to a fusion center.
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Sensor networks are composed of a large number of sensor
nodes that are densely deployed over the area where targets-
of-interest may appear. Their large-scale nature demands
a high level of self-organization [18], where the participat-
ing entities configure themselves into a networking structure
that requires minimum central management. In addition,
they interact directly with neighboring nodes and constantly
react to changing dynamics in their local surroundings. Such
self-organizing systems typically feature flexibility, adaptive-
ness, robustness, and scalability [18]. The requirement of
self-organization in WSNs favors distributed protocols that
allow sensor nodes, or clusters of sensor nodes, to perform
localized sensing and processing [1, 2]. The absence of a
central authority means that the sensor nodes enjoy the
sovereignty to decide upon their own destiny, but should
also bear the obligation to collaborate with other sensor
nodes. In particular, by the cooperative effort the system
can achieve better sensitivity and noise immunity via aver-
aging across both space and time [2]. This is the key for
success in large sensor networks since each individual node
is limited in sensing range, transmit power, and processing
capability [6, 22].

Many topology control approaches currently available are
centralized with inhibitive complexity. This renders them in-
appropriate for large-scale networks that may operate under
hostile conditions where connections to a central controller
are rarely guaranteed. Even for networking protocols that
are optimized for distributed implementations, there exist
considerable drawbacks. The most notable one is the scal-
ability issue: As the number of nodes increases, the perfor-
mance deteriorates at a faster pace. The result is that even
the most advanced available ad hoc protocols can only sup-
port dozens of nodes. This calls for the design of protocols
that could handle wireless sensor networks of perhaps mil-
lions of nodes in an efficient manner. The fundamental rea-
son for bad scalability is the lack of distributiveness. Many
current algorithms, while being designed to be distributed,
still possess some central elements in order to maintain a
certain level of functionality for the protocol as a whole.
The effect of not having a purely distributed protocol, illus-
trated by the issues of scalability, can be devastating on the
practical design of a large-scale sensor network.

Among topology control approaches in sensor networks,
clustering is an elegant way to address key issues such as
coverage, connectivity, and energy conservation. As dis-
cussed above, distributed topology control is the only op-
tion for large-scale sensor networks. Most existing cluster-
ing algorithms are designed to achieve certain distributive-
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ness and can be classified into two main categories: data-
transmission- oriented, which focus on inter- and intra-cluster
routing to improve energy efficiency [4, 8, 19, 24]; and application-
oriented, which aim at efficient target detection, tracking,
and information aggregation [9, 12, 21]. There are also some
algorithms that jointly consider both of these two aspects via
heuristic approaches [20, 26].

As we discussed over the issues of current topology control
protocols, the existing clustering algorithms have scalability
issues, especially when energy efficiency is the main design
concern. It remains as a challenging problem how to au-
tonomously form energy-efficient clusters around targets in
a large-scale sensor network. Given the unsuccessful history
in achieving the above goal, we have to challenge the way
that traditional techniques tackle these issues. An attractive
approach stems from biological research, where researchers
found that living organisms consist of billions of networked
cells interacting with each other in a remarkably harmonic
way. Comparing the robust biological inter-cell networks
with the struggling electronic networks, the contrast is clear:
While current sensor network protocols suffer from scalabil-
ity and efficiency issues, inter-cell biological networks ex-
hibit purely distributed behavior, stability, high efficiency,
and self-healing capabilities. In particular, although in the
human body the main activities appear to be controlled by
our brain in a centralized manner, it is interesting to note
that the development process through which a body grows
from several stem cells into a complex structure is solely con-
trolled by distributed mechanisms. More surprisingly, even
in the matured body, many activities such as wound healing
are controlled by local cell clusters inside the corresponding
tissues [3, 14].

Therefore, while the design of sensor networks is trying to
overcome the issues that we mentioned, the biological inter-
cell networks already possess all the elements that we seek.
Specifically, these networks are purely distributed in nature,
highly efficient, and enjoy autonomous reconfiguration. The
following question then arises naturally: Could we design
autonomous and distributed large-scale sensor networks by
studying and learning from their biological inter-cell coun-
terparts that have been polished by natural selection for
millions of years? Thus inspired, we seek to design net-
working protocols via the methodology motivated by recent
biological results, which indicate that billions of cells in or-
ganisms autonomously control their growth and interactions
in both collaborative and competitive manners. Therefore,
in this work we attempt to map inter-cell interactions in a
living organism to inter-node dynamics in a sensor network,
in the pursuit of efficient and distributed topology control
protocols.

The rest of the paper is organized as follows. Section
2 provides some biology background that helps us under-
stand the basis of the proposed model. Section 3 formally
defines the networking problem that we address, and the
corresponding mathematical formulations. In Section 4 we
provide and discuss simulation results to verify our model,
and in Section 5 we conclude our work and identify open
challenges for future research.

2. INTER-CELL BIOLOGICAL MODELS
Before examining the biological context of the model that

we propose, we first point out that topology control in sen-
sor networks involves high-level strategic clustering and duty

assignment for individual nodes. Specifically, multiple sen-
sor nodes at a particular geographic location usually need to
collaborate on a common task, such as target detection or
tracking. Meanwhile, sensor nodes within the same cluster
may compete for different assignments such as active sens-
ing, information relaying, or just sleeping (in order to save
resources, or to act as backups). The clustering process
implies the collaborative relationship among sensor nodes,
while the functional differentiation process demonstrates the
competitive interaction among nodes. Such dynamics rever-
berates those of the biological development processes of some
epithelium cells: Biologists found that during the chick in-
ner ear development, Notch protein [7] first drives multiple
cells in the same area to adopt similar characters to form
a prosensory patch, and then mediates the hair cell ver-
sus supporting cell differentiation within the patch. Due to
space limitations, in this paper we focus on the collaborative
clustering aspect of network topology control, and we will
examine the competitive feature in the subsequent work.

Inter-cell signaling is essential in the development of bi-
ological multi-cell systems, and generally involves the pro-
duction of ligand – a small signaling molecule that binds to a
protein or receptor – by the transmitting cells and its detec-
tion by specific receptors expressed by receiving cells, where
the ligand is the mediator of the signal [13]. Juxtacrine sig-
naling is a special class of inter-cell signaling, where ligands
anchored in the membrane of a cell bind to and activate re-
ceptors on the surface of immediately neighboring cells [13].
As a result, signaling within a tissue can only occur between
cells that are in direct contact with each other. With suit-
able feedback between receptor activation and expression
levels of ligand, juxtacrine signaling is an efficient mecha-
nism for the long-range propagation of localized signals, and
thus the generation of spatiotemporal patterns [13].

A particularly well-documented juxtacrine signaling scheme
is the Delta-Notch signaling [5, 7, 13, 16], where the acti-
vation of the Notch pathway (the receptor) by Delta (the
ligand) affects the Delta activity of the receiving cell. Since
the transmitting cell is also one of the neighboring cells of
the receiving cell, the affected Delta activity in the receiv-
ing cell will be fed back to the receptors of the transmitting
cell, leading to interactive closed-loop dynamics. As such,
Delta-Notch signaling between cells is the main controlling
scheme for cell pattern generation. Depending on the nature
of the Delta-Notch feedback loops among neighboring cells,
the pattern-generating processes can be classified into two
different categories [7, 13, 17]: lateral induction and lateral

inhibition.
Lateral induction, which is the main focus of this paper, is

a process in which a cell heading for a particular fate induces
its neighbors to adopt the same fate: If the Notch activa-
tion up-regulates Delta activity in the receiving cell, then
this phenomenon propagates to neighboring cells, stopping
only when this externally-driving up-regulation is beaten by
internal degradation factors. Eventually a certain region
is formed where all the cells in it achieve saturated Delta
expressions, which corresponds to the formation of a func-
tional patch of cells in the early stage of biological body
development. Therefore, the main characteristic of the lat-
eral induction mechanism is a feedback loop that is capable of
amplifying initial similarities in the parameters of cells and
their neighbors, such that homogeneous spatial patterns are
generated. Figure 1 shows the feedback in lateral induction
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Figure 1: The feedback loop in lateral induction for
a two-cell system: Reception of induction (Notch
activation) increases the ability to deliver induction
(Delta activity).

for a system of just two cells: Active Notch within a cell
indicates reception of induction from the neighboring cell,
which in turn up-regulates Delta activity in the former cell,
increasing its ability to deliver induction to its neighbor, and
so on.

Theoretical biologists and mathematicians have success-
fully modeled the Delta-Notch signaling process by sets of
coupled ordinary differential equations (ODEs) [5, 13, 15,
23]. We consider the simple model in [5], where for the ith

cell, ni denotes the levels of Notch activity, and di denotes
the levels of Delta activity. The following set of ODEs gov-
erns the behavior of the ith cell:

ṅi = f(d̄i) − ni

ḋi = µ{g(ni) − di},

where µ is a positive constant, d̄i represents the average
Delta activity at the neighbors of the ith cell, and f(d̄i) is a
function representing the production rate of the Notch ac-
tivity in the cell, in response to the increasing amounts of
Delta activity in neighboring cells. In particular, the func-
tion f(d̄i) models the effect of either lateral induction or
lateral inhibition jointly with the function g(ni). For exam-
ple, in [5] the related functions are given by

f(x) =
xk

a + xk
, g(x) =

1

1 + bxh
, (1)

where a and b are positive constants, k ≥ 1, and h ≥ 1.

3. BIO-INSPIRED NETWORKING MODEL
In this section, we propose a networking model in an at-

tempt to mimic the behavior of biological inter-cell networks.
In particular, sensor nodes collaborate to construct a func-
tional cluster via lateral induction in a purely distributed
fashion, as shown in Figure 2. In the context of target de-
tection, the traditional cluster formation is usually based on
the absolute local node observation quality values. How-
ever, due to the random noise in the observation field, some
scattered nodes that are far away from the target may be
included in the cluster, as long as they have good a observa-
tion quality value. As such, a non-compact cluster may be
formed, which is not energy efficient in terms of data rout-
ing at later stages of networking operations. Bearing this in
mind, our goal is to achieve compact clusters via the biolog-
ical lateral induction model in a purely distributed manner.

Target

Cluster member

Nonmember

Figure 2: Laterally-induced cluster: Sensor nodes
with relatively good observation quality values col-
laborate to form a cluster. Isolated nodes with good
observation quality values are excluded.

3.1 PROBLEM DEFINITION
The specific application that we consider here is energy-

efficient target detection in a WSN, where a large number of
energy-healthy nodes are randomly deployed into the field of
interest. Immediately following their deployment, a prelim-
inary hand-shaking mechanism is enforced such that sensor
nodes could determine their neighborhood. Specifically, each
node broadcasts a “hello”message and waits for replies from
the nodes within its transmission range. Naturally, the num-
ber of replies that a node receives indicates the number of its
neighbors. Since our model relies heavily on neighbor inter-
actions, we assume that the initial topology constructed is
a connected graph, i.e., there exists a communication route
(which is usually multi-hop) connecting each node to any
other node in the field. In idle status, all nodes are in
“sleep” mode in order to conserve energy. During “sleep”
mode, functions such as signal processing, decision-making,
and neighbor communications are inactive. However, we as-
sume that the basic sensing at each node is constantly being
performed by the sensors. In the event that a target appears
imminent, the nodes whose sensing signals surpass a certain
threshold “wake up”. At this moment, the clustering mech-
anism via lateral induction is invoked. The awaken nodes
contact their neighbors and exchange the necessary informa-
tion to run the induction model, and further act according
to the evolution of the model parameters. Once the cluster
is formed, the active nodes construct a minimum spanning
tree (MST) to route their data to the clusterhead. For the
time being, we assume that the clusterhead is the node with
the highest observation quality of the target, which is se-
lected by a particular mechanism (e.g., the competitive lat-
eral inhibition algorithm that we skipped here). When the
clusterhead gathers all the sensing reports from the active
cluster members, it forwards, after some appropriate pro-
cessing, the data to a fusion center that is responsible for
final data fusion and analysis.

The design of inter- and intra-cluster communication pro-
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tocols, neighborhood discovery, and tree construction are be-
yond the scope of this paper, and we therefore assume that
their mechanisms are predefined. To conform to the jux-
tacrine signaling models, we also assume that sensor nodes
only exchange parameter values with their direct neighbors,
thus ensuring that decisions on their fate are performed lo-
cally and distributively. Other assumptions we make are
that the nodes are immobile and there is a single and sta-
tionary target in the network. In addition, the observation
signal strength decays smoothly as the nodes are located fur-
ther away from the target, but the observation quality values
may be random due to the random strength of observation
noises at different nodes.

3.2 MATHEMATICAL FORMULATION
We model the clustering process via lateral induction with

a set of two differential equations for each sensor node, with a
system analogous to the biological counterpart in [5]. For the
ith node, let us denote with qi(t) ∈ [0, 1] the time-evolving
relative observation quality value of a node in reference to its
neighbors, where qi(t)|t=0 is the absolute observation quality
value of the node, reflecting the signal-to-noise ratio (SNR)
observed over the target. We assume that the SNR read-
ing of each node has been normalized to be in the range [0,
1], according to a predefined maximum SNR reading. Let
si(t) ∈ [0, 1] denote the time-evolving cluster membership
indicator, where steady state values above a certain thresh-
old mean that the node is selected as a cluster member and
values below that threshold indicate that it is not selected.
Specifically, the system of ODEs for node i is given by

q̇i = −qi + fs(si)

ṡi = µ{−si + fq̄(q̄i)}, (2)

where µ is a positive constant, and the functions fs(si) and
fq̄(q̄i) are in the form of f(x) defined in (1), with a and
k particularly chosen for each function. The notation q̄i

indicates the average relative observation quality value over
all the neighbors of the ith node. In particular, with Ni

denoting the set of all the neighbors of node i, we have

q̄i =
1

|Ni|

∑

j

qj , ∀j ∈ Ni,

where |Ni| stands for the cardinality of the set Ni.
The system of ODEs shown in (2) is a continuous-time

model. Since in a sensor network protocols have to be exe-
cuted in a discrete-time manner, we need to transform the
above equations into difference equations. There are numer-
ous methods to transform differential equations to difference
equations. Here, we choose the Forward Euler method [10]
for the convenience of analysis. According to this method,
the derivative y′(t) = f(t, y(t)) can be approximated as

y′(t) =
y(t + T ) − y(t)

T
,

with T being the step size. By rearranging parameters, the
above equation gives:

y(t + T ) = y(t) + Tf(t, y(t)).

We therefore construct appropriate sequences and index the
time by 1, 2, . . . , n, n + 1, . . . , at integer multiples of T , and
we then solve for y according to the iterative evolution of
the equation

yn+1 = yn + Tf(tn, yn),

where tn+1 = tn + T . We denote by qi,n the relative obser-
vation quality value of the ith sensor node at iteration step
n, and by si,n the cluster membership indicator of the ith

node at iteration step n. Hence, the equations in (2) can be
transformed into a set difference equations for each node:

qi,n+1 = qi,n + T{fs(si,n) − qi,n}

si,n+1 = si,n + Tµ{fq̄(q̄i,n) − si,n}. (3)

The reasoning behind the above induction model is simple.
First, it is highly likely that a sensor node whose neighbors
have good observation quality values over the target, has
a comparable observation quality value itself. Meanwhile,
with energy conservation as one of the main design objec-
tives, it is desirable to have a compact cluster that is more
energy-efficient in data routing. As such, we want an induc-
tion model where a sensor node is more likely to be selected
as a cluster member if its neighbors are selected, and vice-
versa. In addition, large-scale networks usually operate in
noisy environments and thus the distribution of observation
quality values across a network is random in nature. As
a result, a far-away sensor node might have a much bet-
ter observation quality value than all its neighbors. With
our model, it is likely that this sensor node would be de-
nied cluster membership if its neighbors have a low aver-
age observation quality value. On the other hand, a sensor
node might be selected as a cluster member even though
it might have a mediocre observation quality value, if it is
located in a neighborhood of nodes with high observation
quality values. With the above discussion, we see that the
collaborative nature of the lateral induction process leads to
compact clusters. Such clusters do not burden intra-cluster
communications, by denying cluster membership to good –
but isolated – nodes, while favoring compact neighborhoods
of good nodes. Note that we will have a subsequent lat-
eral inhibition model that will force the cluster members to
compete with each other based on their energy levels un-
til a minimal subset of these nodes remains active (to sat-
isfy a certain application requirement). The inactive cluster
members will later have the chance to participate in the “ro-
tation” mechanism to periodically become active. Such a
next-stage topology optimization via lateral inhibition will
be addressed in our future work.

Mathematically, the collaborative interaction among sen-
sor nodes that is responsible for the cluster construction is
mediated by the average relative observation quality value
within the neighborhood of a particular node. This average
value of the neighbors affects the cluster membership indica-
tor value of that node. In turn, the node affects the cluster
membership indicator values of its neighbors, and the feed-
back loop continues. For the model in (3), by adjusting the
system constants a and k in the functions fs(si) and fq̄(q̄i)
accordingly, we can change the shape of these functions re-
sponsible for the evolution of the induction parameters. In
this way, we can control the final cluster size in the steady
state in order to fit the needs of a specific sensing appli-
cation. For a more complex system model, some constants
can be set to be dependent on other parameters and adapt
to different dynamics across the network. For example, we
could further alter the cluster size by having model param-
eters respond to the energy levels of the neighbors, which
will be investigated in our future work in order to optimize
the overall network energy efficiency.

Furthermore, the constant µ represents the ratio between
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Figure 3: Phase plane for the simple system con-
sisting of two nodes. There are three equilibrium
points {a, b, c}, of which point b is an unstable sad-
dle point, and points a and c are stable equilibrium
points. For large values of µ, it is the initial values
of q1 and q2 that determine which of the two stable
equilibrium points that the system settles in. Here
µ = 10.

the decay rates of q and s, and is therefore a measure of the
relative time-scales over which the levels of the relative ob-
servation quality and the cluster membership indicator val-
ues vary [5]. Increasing the values of µ and/or k increases
the convergence speed [5]; however, extremely large values
may lead to numerical issues in discrete implementations,
which result in instability. Actually, the continuous-time bi-
ological induction model is inherently stable. Therefore, the
increase in the values of the aforementioned parameters re-
duces the time taken for the final cluster pattern to emerge,
while the upper limit for those parameters is set by some
other biological mechanisms. In a wireless network though,
operations are performed in discrete-time steps by nodes
that have finite-bit accuracy. Therefore, selecting extremely
large values for µ and/or k might lead to instability caused
by numerical issues. Theoretically, the particular choice of
µ does not affect the possible steady states of the system,
which are determined by the choices of a and k in the func-
tions fs(si) and fq̄(q̄i). However, when the system admits
several equilibrium points, which of the steady states the
system settles in is influenced by µ and other initial condi-
tions.

For example, in a simple continuous-time system consist-
ing of just two nodes, the equations in (2) become

q̇1 = −q1 + fs(s1), ṡ1 = µ{−s1 + fq̄(q̄2)};

q̇2 = −q2 + fs(s2), ṡ2 = µ{−s2 + fq̄(q̄2)}, (4)

where the subscripts correspond to sensor nodes 1 and 2.
Equilibrium points of the system in (4) are given by

(q∗1 , s∗1, q
∗

2 , s∗2) = (fs(s
∗

1), s
∗

1, fs(s
∗

2), s
∗

2),

where s∗1 and s∗2 are fixed points of the composite function
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Figure 4: Total energy required for all the cluster
members to forward their sensing reports to the
clusterhead, over the spread of observation noise
variance. A compact cluster requires less total en-
ergy than one which includes distant nodes.

fq̄ ◦fs ◦fq̄ ◦fs with s∗1 = fq̄(fs(s
∗

2)) and s∗2 = fq̄(fs(s
∗

1)). For
functions fs and fq̄ having the form of f(x) in (1), there are
three equilibrium points with q∗1 = q∗2 and s∗1 = s∗2. A steady
state x is linearly stable if (fs◦fq̄◦fs◦fq̄)

′(x) < 1, but unsta-
ble otherwise. Figure 3 shows the phase plane of the relative
observation quality values for this two-node example. The
dark-weighted lines indicate the nullclines q1 = (fs ◦ fq̄)(q2)
and q2 = (fs ◦ fq̄)(q1), on which q̇1 = 0 and q̇2 = 0 re-
spectively. The various trajectories in the phase plane of
Figure 3, plotted for different initial conditions of q1 and
q2, show that there is one unstable and two stable equilib-
rium points for this two-node system. The three equilibrium
points are a = (0, 0), b = (0.4705, 0.4705), and c = (1, 1). In
particular, the equilibrium points a and c are stable, while
point b is an unstable saddle point. As discussed before,
the location of the equilibrium points depends on the pa-
rameters a and k. In this two-node example, a = 0.01 and
k = 3.5 for the function fs, a = 0.01 and k = 7.5 for the
function fq̄, and µ = 10.

We next discuss how to achieve one of the two stable equi-
librium points in this example. When µ À 1, we can make
the quasi-steady-state assumption [5] that

fq̄(q2) − s1 = 0, fq̄(q1) − s2 = 0,

and thus the system in (4) reduces to

q̇1 = −q1 + (fs ◦ fq̄)(q2), q̇2 = −q2 + (fs ◦ fq̄)(q1).

The phase plane in Figure 3 shows that when µ À 1 it is
the initial values of q1 and q2 that determine which of the
two stable homogeneous equilibrium points will be attained
eventually. Analogous analysis for µ ¿ 1 can be performed,
leading to the conclusion that it is the initial values of s1

and s2 that determine the final steady state (results not
shown). Hence, we have chosen a value for µ = 10 À 1 for
the simulations, reflecting our desire to decide upon cluster
membership based on the relative observation quality values,
i.e., the qi’s.
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Figure 5: The proposed algorithm produces a more
compact cluster than the reference algorithm. There
are 13 cluster members in both cases. Lines connect-
ing nodes stand for the MST routes.

4. SIMULATION RESULTS
The performance metric by which we assess our algorithm

is the total energy consumed by the cluster as a whole to de-
liver sensing reports to the clusterhead, i.e., the total energy
required for each cluster member to forward its sensing re-
port to the clusterhead via a route constructed in the MST.
We assume that the sensor node with the best observation
quality value is chosen to serve as the clusterhead and is
therefore the root of the MST constructed by the Kruskal
algorithm [11]. The weight function for the Kruskal algo-
rithm is represented by the square of the distance between
the cluster members. The initial absolute observation qual-
ity value of the ith node depends on the distance from the
target r, di,r:

qi(0) =
e

−d2

i,r

2σ2

zi

,

where σ is a deviation measure of spread of the observation
quality distribution. The parameter zi denotes the variance
of the observation noise and is assumed to be uniformly dis-
tributed with mean 1 between [1−α, 1+α], where α stands
for the spread of the noise variance. Essentially, qi(0) repre-
sents the normalized SNR at each sensor node and qi(t)|t>0

represents the relative normalized SNR. We assume that
si(0) = 0, ∀i (even though the initial value of the cluster
membership indicator of each node does not affect the final
steady state when µ À 1, as discussed in Section 3.2). The
energy required to transmit b bits of data from one node di-
rectly (i.e., with just a single hop) to another that is located
at a distance d away, is defined as:

ETX(k, d) = εbd2, (5)

where ε is the transmission system constant, according to
the first-order radio model in [8].

We compare our algorithm to a reference scheme loosely
based on the initial stage of the Dynamic Convoy Tree-based
Collaboration (DCTC) algorithm [25], which mainly concen-
trates on a moving target and creates a tree of nodes sur-
rounding it as the target traverses across the network. The
root of the tree is responsible for reconfiguring the tree, by
adding or pruning nodes as the target moves. The initial
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Figure 6: Average observation quality of all the clus-
ter members as a function of the spread of observa-
tion noise variance. Energy efficiency within a com-
pact cluster comes at a certain expense of observa-
tion quality.

tree construction of the DCTC algorithm is achieved by the
nodes that are awake and close to the target.

We simulated in MATLAB for different levels of noise vari-
ance spread for a randomly-deployed network over a square
field of side length 10 m. There are 220 nodes in the field,
and each node has a transmission range of 1.5 m. In addi-
tion, the target is situated at the center of the field, σ = 2,
each node has a 320-bit sensing report to forward to the
clusterhead, and ε = 100pJ/bit/m2 [8]. We simulated 200
random network configurations for each of 10 different lev-
els of α. We set the threshold for cluster membership to
be an indicator value greater or equal to 0.9. In this paper,
we adopt parallel synchronous updates of the state vectors
across the networking nodes. We will investigate the asyn-
chronous case in the future research.

In both of the schemes, once the cluster members are se-
lected, we assume that all nodes increase their transmission
power until they are neighbors with all other cluster mem-
bers. Then, the MST is formed by the Kruskal algorithm.
Once the MST is constructed, the nodes readjust their trans-
mission powers in order to conform to the MST routes. In
other words, they reduce their transmission power by the
necessary proportion so as to communicate directly with the
node that is identified as the next hop in the corresponding
MST route. Energy is expended according to the model
in (5).

Under low-noise-spread conditions the two algorithms per-
form comparably, as shown in Figure 4. As the spread of the
observation noise variance increases, leading to nodes being
increasingly misled about their actual distance from the tar-
get, the difference in performance becomes clear. Figure 4
shows that the proposed algorithm expends less overall en-
ergy to forward messages from the sensor nodes to the clus-
terhead for the same number of cluster members. This im-
plies that, via inter-node collaboration, the induction clus-
tering technique constructs a more compact cluster, as seen
in Figure 5. But this comes at a certain expense of obser-
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Figure 7: Total energy required for all the cluster
members to forward their sensing reports to the
clusterhead, as a function of the number of nodes
in the network and the spread of observation noise
variance.

vation quality. As Figure 6 shows, for the same number of
cluster members, the average observation quality values of
the cluster members are lower than those of the reference
scheme. This is due to the fact that the lateral induction
process might force sensor nodes within a compact neighbor-
hood into joining the cluster as a result of “peer pressure”,
even though they may not have comparably high observa-
tion quality values. At the same time, the induction process
might exclude sensor nodes with very good observation qual-
ity values from joining the cluster, if they are isolated in a
vicinity of nodes with poor observation quality values. By
adjusting our model constants, we could control the tradeoff
between the gained energy efficiency and the lost average
observation quality. Furthermore, the results depicted in
Figure 7 show that as the network size and the spread of
observation noise variance increase, the proposed algorithm
improves the relative energy efficiency.

In order to examine the effect of the constant µ on con-
vergence speed, we simulated for a network consisting of 200
nodes, deployed in a square field of side length 10 m. Each
node has a 1.5 m transmission range. The step size in (3)
is T = 0.05. We averaged the number of steps necessary for
each node to settle within 5% and 1% of its final values, over
200 different random network configurations, for 11 values
of µ at each configuration. Simulations were performed for
values of µ ≥ 10 to conform to the discussion in Section 3.2.
Results in Figure 8 show that the average number of steps
needed to reach the steady state decreases as µ increases,
even though the incremental speed improvement decreases
over higher values of µ.

5. CONCLUSION
In this paper, we propose a distributed clustering algo-

rithm for WSNs based on the biological lateral induction
model. Simulations show that, by fostering collaborative
interaction through lateral induction, our clustering model
increases the energy efficiency through the construction of
compact clusters. In addition, this procedure is purely dis-
tributed; all decisions by the nodes are performed locally by
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Figure 8: Average number of iteration steps needed
to settle within 5% and 1% of the steady state, ver-
sus the value of the constant µ. The system settles
faster as µ increases.

observing their neighboring environment.
While the lateral-induction-based clustering algorithm op-

erates in an energy efficient fashion, some important issues
still need to be addressed in order to further improve its
performance. For example, we need to explicitly define a
clusterhead election procedure. Additionally, the cluster-
ing algorithm can be further optimized by carefully select-
ing model constants, or by employing more complex func-
tions. Furthermore, combining the lateral induction cluster-
ing process with a subsequent lateral inhibition phase that
will select a subset of nodes within the cluster is part of
our immediate research goals. The lateral-inhibition-based
competition will encourage a rotation mechanism within the
cluster for further improving the energy efficiency.
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