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Abstract 
This paper presents CD-PAN

1
, a mechanism to automatically distribute 

content objects to weakly connected heterogeneous content devices in 

a personal area network without a global namespace. The content 

devices un der consideration range from cell phones to personal 

computers, each of which is capable of downloadin g content  objects on 

its own. The proposed mechanism alleviates the need to manually 

synchronize content that is downloaded to each of these content 

devices. A simulation study shows that CD-PAN outperforms other 

prefetching schemes in all our workload experiments. The performance 

improvement tended to increase with increase in popularity 

distribution skew, temporal locality and frequency of content 

creation/updates. The performance of CD-PAN increases when pair-

wise communication capabilities are higher, and also adapts well to 

increasing power and metadata constraints.  

1 Introduction 
Electronic devices are becoming increasingly popular as 
content sharing gadgets due to the recent advances in storage 
capacity and network connectivity. With the increasing number 
of convergent applications, there is a need to eff iciently share 
content across devices. Mobile devices are capable of 
autonomously downloading content via wireless broadband 
links into embedded storage cards ± in the past, such devices 
had to rely on personal computers with wired broadband links. 
Furthermore, with the advent of technologies like Wi-fi, 
Bluetooth and mobile ad-hoc networks (MANETs), mobile 
devices can communicate on-the-fly with peer mobile devices 
as well as larger static devices such as personal computers and 
digital video recorders. It is envisioned that in the future, more 
electronic devices such as cameras, camcorders and music 
players will  evolve into content devices. 
     The problem being addressed in this paper is the distribution 
of content across the vast spectrum of devices from personal 
computers to cell phones in order to ensure availabilit y of 
frequently used data on any device at any given time. In a 
personal area network (PAN) comprising of devices belonging 
to a single user or a small set of users, the global workload 
DFURVV�GHYLFHV�LV�GHWHUPLQHG�E\�WKH�XVHUV¶� inherent profiles and 
changing interests. With mobile devices increasingly 
supporting convergent applications, a global snapshot of 
content shows considerable similarity across personal devices 
and evolves with time in an organized fashion [31, 44]. At 
present, the only way to synchronize content is explicit, 
manual, and tedious in most cases. There are utiliti es that allow 
for automatic content synchronization [47,42,54] but they are 
typically personal computer based and specific to a content 
device. Personal computer-based synchronization is ill- suited 
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for decentralized content sharing networks provided by 
wireless devices.  For example, getting an audio file manually 
from a Digital Video Recorder (DVR) to a cell phone is 
challenging for the average home user. 
     Our work addresses the unique challenges of a personalized 
environment through a peer-to-peer content exchange protocol. 
A personal area network is different in size from well-known 
distributed systems that share data. In a personal area network 
the numbers of devices and users are very small and the 
number of active users on a device is typically one. Also, the 
resources present on mobile devices like storage space, CPU 
and battery power are limit ed.  Furthermore, the network 
connectivity between the devices in such an environment is 
intermittent. Finally, the connectivity, if available, between any 
two peer devices is weak compared to the content sizes 
available for distribution. 
     Our work fundamentally differs from the previous research 
in the following ways: (a) It differs from prior works on 
Content Distribution Networks [7] in that they were primarily 
designed for strongly connected networks. (b) It differs from 
prior works dealing with consistency [49, 51, 5] and 
disconnected operations [28, 41] in that it  uses a completely 
decentralized peer to peer model for information exchange. (c) 
It differs from peer to peer and ad hoc networks [53] based 
information dissemination approaches in that it  considers the 
unique properties of the personal area network domain. The 
prior works exploit the scalabilit y of several users coexisting 
and sharing information whereas we exploit the strong 
similarity of access profiles on personalized devices for content 
distribution.  
     The key contribution of this paper is the design of an 
automatic peer-to-peer content distribution mechanism based 
on an integrated content prefetch and eviction protocol called 
CD-PAN. Since storage capacities on devices are limit ed 
compared to rapidly growing user content, data needs to be 
moved between devices so that different user access patterns 
are satisfied. Consequently, we model the problem as one of 
exchanging content objects to match user access profiles in a 
decentralized fashion between content devices. We also present 
techniques to alleviate the meta-data processing required by our 
mechanism and suggest ways by which the power consumed 
due to device interactions can be reduced. 
     We designed and implemented a simulation model for CD-
PAN and used synthetic and derived workloads to compare CD-
PAN to alternative schemes. The simulation results show that 
CD-PAN outperforms a raw prefetching scheme in all workload 
experiments. The performance improvement tended to increase 
with increase in popularity distribution skew, temporal localit y 
and frequency of content creation/updates. The performance of 
CD-PAN increases when pair-wise communication capabiliti es 
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are higher, and also adapts well to increasing power and 
metadata constraints.  
     The rest of the paper is organized as follows: Section 2 
presents the operating environment for CD-PAN. Section 3 
presents the architecture for CD-PAN, with an emphasis on the 
content exchange protocol between two peer devices. It also 
describes the simulation model for evaluating CD-PAN, as well 
as the workloads and comparable systems used in the 
evaluation. Section 4 presents the results of our simulation 
study that show the effectiveness of the content distribution 
system. Finally, related work and conclusions are presented in 
Sections 5 and 6 respectively. 

2 Operating Environment 
The environment in which CD-PAN operates consists of a 
network of interconnected personal devices i.e. a personal area 
network (PAN). Although these devices are increasingly 
running convergent applications and sharing content, they have 
different characteristics in terms of CPU power, 
communication bandwidth, storage capacity, power 
consumption and cost. Some of the devices and their 
characteristics are seen in Figure 1. 
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Figure 1: Personal Area Network 

 
Emerging applications require that the devices in a PAN 
communicate with each other to synchronize user content, 
either automatically or explicitly. Because of the diversity of 
devices in a PAN, any content distribution mechanism must 
take into account the resource constraints of each device.  

3 CD-PAN Protocol 
The detailed presentation of CD-PAN first describes the 
organization of the content objects in a device, which facilit ates 
eff icient context exchange between two devices. We then 
describe how devices running CD-PAN exchange content 
objects to maximize the probabilit y of usage. 

3.1 Content Object Metadata 
Every device is assumed to have a content organization format 
that is optimized for the function of the device. For instance, 
most devices use a file system to organize content in the device 
± the sophistication of the file system can vary depending on 
the capabiliti es of the device. For content distribution, we 
define additional metadata on the content objects in each device 
in order to optimize the exchange of content between two 
devices. We define a content object as a single file or a 
collection of files that is necessary to use the content. For 

example, an audio object can be represented by a single audio 
format file while a movie object can be made up of a collection 
of files. 
     We also assume that it  is possible to generate a globally 
unique identifier for each content object in a device. The 
identifier is used for the purpose of identifying content objects 
to the content distribution mechanism and does not include 
other namespace identifiers in the devices. A global identifier 
can be generated based on the content, using standard hashing 
mechanisms such as MD5. A hash colli sion may degrade the 
effectiveness of CD-PAN but not cause any errors in 
correctness. A more sophisticated approach is to use an 
algorithm that can generate the same hash key for content that 
is different but perceived as identical by a human observer.  
     To estimate the popularity of content objects in the device, 
CD-PAN associates an access counter with each object. The 
access counter is the number of hits seen per unit size of an 
object o and is represented as AC(o). In this paper, we assume 
the unit size to be a kilobyte, albeit other unit sizes can be used 
without loss of generalit y. Consequently, a small object with a 
reasonable number of hits can get precedence over a large 
popular object in both fetching and eviction. This works well 
for small mobile devices where size constraints place 
restrictions on the number of large objects that can be 
accommodated.  
     Each device contains two data structures, TopObjects

n
(A) 

and BottomObjects
n
(A). The former contains the globally 

unique identifiers of the n most popular content objects 

currently present in device A while the latter contains the 
identifiers of the least popular n content objects in device A. 

We have an independent reference model here by assuming that 

the popularity of a content object is directly related to its access 
counter value. The popularity of content object O1 is greater 

than that of content object O2 if the access counter value of O1 
is greater than that of O2. To address the temporal effects in 

object popularity, we periodically weigh the access counters by 
multiplying each of them by an aging fraction.  

     CD-PAN also keeps track of the misses for content objects 
not present in a device. To that end, the metadata has a 

MissList(A) for device A that is defined to be a list of objects 

that are absent in the device but for which requests were issued. 
Requests for missing objects in a device can either be issued 

because they were previously present and evicted afterwards or 
they were referenced through links from other objects such as a 

hyperlink from one web object to other. The miss list is used to 
determine the content objects that need to be exchanged during 

when two devices come into contact. Finally, the counter N(A) 

indicates the number of content objects in device A. The size of 
the miss list is bounded by N(A) as that is the maximum 

number of content objects that can be retrieved into device A. 
This bound assumes that object sizes in content devices are 

equivalent, though in reality object sizes may differ greatly 
between content devices.  

     Note that we do not take the number of misses to an object 

into account here, because the number of misses does not truly 
indicate the future access probability of the object. For 

example, an application can detect quite early that a very 
popular object is absent on the device and not try to access it 

further, resulting in very few number of misses recorded for the 
object. However in the calculation of access counters for an 

object, the total number of requests seen to objects also 
includes the number of misses to the object.    
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3.2 Content Exchange Protocol 
We now present the design of the CD-PAN content exchange 
protocol. Our design is motivated by the fact that devices in a 
personal area network are typically not connected to each other 
for long periods. We therefore do not assume on-demand 
fetches (i.e. servicing object misses immediately by contacting 
a central server or a peer device) and query forwarding between 
peer devices to service object misses. Also, the battery costs 
required for continuous network communication and setting up 
an ad-hoc networking infrastructure are unacceptable. Hence, 
objects are prefetched by a device A from a peer device B 
when the two devices A and B are in proximity. 
     In the following description of the protocol, we assume that 
device A is trying to retrieve objects from device B. The 
reverse case of device B obtaining content objects from device 
A flows in a symmetrical manner. The protocol proceeds in 
five distinct phases (Figure 2): 

 
1. In the Miss initiated prefetch determination phase, device 

A obtains the necessary object metadata information from 

device B and determines the content objects that need to 
be fetched from device B to satisfy the future accesses 

EDVHG�RQ�$¶V�PLVV-list. 
2. In the Aggressive prefetch determination phase, device A 

uses the metadata information obtained from device B to 
determine the content objects that need to be optimistically 

fetched from device B to satisfy the future accesses due to 

temporal variations in workload. 
3. In the Power constraint determination phase, device A 

imposes any power constraints on the number of objects 
that device A fetches from device B. 

4. In the Integrated prefetch and eviction phase, device A 
actually fetches and evicts the objects that meet the 

evaluation criterion from the earlier phases. 

5. Finally, in the Parameter tuning phase, device A 
recalculates tuning parameters that are used the next time 

device A comes into proximity with device B. 

3.2.1 Miss Initiated Prefetch  
In the first phase the device trying to prefetch objects looks to 

obtain the metadata information for the objects that have 
incurred misses in the device.  Device A first sends the miss -

list of device to device B which responds back with a data 

structure: 
 

LocatedList
n
($�%�� �  � � � 0LVV/LVW�$�� @� &XUUHQW2EMHFWV�%�           

10)),(),(min(
ABAB

lBNANln         (1) 

 

LocatedList
n
(A,B) contains the set of object identifiers in the 

miss-list of device A present in device B. The data structure is 

sorted by the access counter values of objects as calculated in 
device B and the first n object identifiers are sent to A. The 

value n of the queried LocatedList
n
(A,B)  represents a fraction 

of the minimum of content object capacities for devices A and 

B. The term min((N(A), N(B)) represents the bound for the 
number of items in the LocatedList

n
(A,B) as we never replace 

more than the minimum of the content object capacities for 

devices A and B. This bound is based on the assumption of 
object size equality stated in Section 3.1 and we validate this 

assumption in our experimental section (Section 4.1). The 
fraction lAB  is initially set to 1 and reset at every parameter 

tuning phase after evaluating content objects in device B. 

     Device A then makes an initial valuation of the content 

objects present in the LocatedList
n
(A,B). This is done by 

recalculating the access counters of the content objects in 

LocatedList
n
(A,B) based on the relative access profiles on the 

two devices. We assume a simple linear model to relate the 

access profiles of common objects between a pair of devices. If 
o is a content object in LocatedList

n
(A,B), then the access 

counter for the object is recalculated as: 

 
 AC(o)  =  k

miss
AB * AC(o)                                         (2) 

 
     The term k

miss
AB represents the linear factor that relates the 

access profile of device A to that in device B with respect to the 
content objects in LocatedList

n
(A,B). The term k

miss
AB  is 

initially set to 1 and adjusted after every evaluation in the 
parameter tuning phase. 

3.2.2 Aggressive Prefetch  
This phase is used to fetch the metadata information for objects 
that are optimistically predicted as ones that will  be accessed in 
the near future. Device A does not contain any information 
about these objects and purely bases the assumption on the 
object profiles of device B. This is an aggressive approach 

based on the premise that the global workload in a personal 

area network varies with time due to a combination of changing 
user profiles, object updates and other factors. For example, a 

change in schedule might have forced a user to stop using a 
particular device for a long time. But when he returns back to 

it, he would still expect to find his recently accessed items  from 
other devices. Therefore, even though the devices are 

heterogeneous and differ in the workloads, there is a need for 

them to optimistically fetch unknown objects from one another. 

Device A Device B

MissList(A)

LocatedList(A,B)

Get popular object ids

TopObjects(B)

Compute ForeignList(A,B)

Compute PowerCost(M)

Compute CombinedList(A,B)

Compute BottomA(X), PB(X'), Xfetch, Xpower

Compute Xfinal

Evict BottomA(X)

Fetch CLAB(Xfinal)

CLAB(Xfinal)

Tune lAB, kmissAB, kagressiveAB
Parameter Tuning 

Integrated Prefetch 
and Eviction

Power Constraint 
Determination

Aggressive Prefetch 
Determination

Miss-list Initiated 
Prefetch 
Determination Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

 

Figure 2: Content Exchange Protocol sequence diagram 

     Device A first queries device B for the data structure   

TopObjects
n
(B) where n is defined as in Section 3.2.1. 

Following this, device A first calculates the top objects 
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unknown to it from the TopObjects
n
(B), and stores it in the list 

ForeignList(A,B) that is defined as: 
 

ForeignList(A,B) = TopObjects
n
(B) ± CurrentObjects(A)     (3) 

 

     Similar to the previous phase, device A makes an initial 
valuation of the content objects present in the ForeignList(A,B). 

The access counters of the content objects in ForeignList(A,B) 

are re-calculated as: 
 

 AC(o)  =  k
aggressive

AB * AC(o)                                              (4) 
 

     The term k
aggressive

AB represents the linear factor that relates 
the access profile of device A to that in device B with respect to 

the content objects in ForeignList(A,B). The term k
aggressive

AB  is 
initially set to 1 and adjusted after every evaluation in the 

parameter tuning phase. 

     Note that we use two distinct parameters kmiss
AB and 

k aggressive
AB for the two phases described above, instead of just 

one. The rationale is that they represent two different content 
sets. The first parameter represents content objects seen by a 

device, while the second parameter represents content objects 
never seen by a device but potentially desirable. Our 

experimental evaluation shows different behaviors for the two 

sets, and validates our assumption. 

3.2.3 Power Constraint Determination 
In the power constraint determination phase, we project power 

considerations into the content exchange protocol. For devices 
with power constraints, the benefit of fetching too many objects 

will be offset by the power consumed during the exchange 

operation. For larger devices with an independent power 
source, such constraints may not apply. To take these issues 

into consideration, we define the power constraint terms pA, ctA 
and CA for a particular device A in Table 1. For a device 

connected to an external power supply, pA and  ctA are 
considered zero.  

 

Power consumption in device A per byte transferred pA 

Constant power dissipated per message in device A ctA 

Fraction Battery Charge available in A CA 

Table 1: Power characteristics of a content device 

     We estimate the power cost of the content distribution 

protocol in terms of power dissipated if a set of M objects were 

fetched from device B. The power dissipated is the total 
amount expended on both the devices in transferring the set M 

objects from device B to A. We use the linear power 
consumption model [35] for network usage. It is further 

normalized by the product of fractional battery charges 
available on the devices to ensure judicious usage of remaining 

battery charge. This is represented by the equation: 
 

B
C

A
C

B
ct

A
ctM

B
p

A
pMsize

MPowerCost
*

)]*(||)(*)([
)(  (5) 

 

 
where size(M) is the sum of the sizes of the objects in M and 

|M| is the cardinality of the set. Note that we ignore the power 
cost incurred during the transfer of object metadata ias the 

metadata size is a couple of orders of magnitude less than that 
of the exchanged objects. 

     We assume that there is a user-imposed constraint P that 

defines the maximum amount of network power that can be 
consumed during the protocol for transferring objects from 

device B to device A. This parameter is used to throttle the 
number of objects actually fetched from device B in the 

protocol. The next phase integrates the information obtained till 
this point and uses that to actually determine the objects that 

will be prefetched from device B to device A. 

3.2.4 Integrated Prefetch and Eviction  
This is the core phase of the proposed protocol. In this phase, 
the goal is to predict the benefits of prefetching the candidate 

objects from the first two phases , and using that to determine 
the optimal number of objects that need to prefetched from 

device B, and evicted from device A to obtain the maximum 
relative benefit. The number of objects that result in the 

maximum predicted benefit is prefetched, and the power 

threshold P defined in Section 3.2.3 is used to throttle this 
value. 

      In the first step of this phase, we sort-merge the two lists 
LocatedList(A,B) and ForeignList(A,B) based on their access 

counters and call this list CombinedList(A, B). We denote the 
set of the first ;¶� REMHFWV� LQ�WKH�VRUWHG�CombinedList(A,B) by 

CLAB�;¶�� DQG� REWDLQ� WKH� OHDVW popular X objects in device A 

from the data structure BottomObjects(A) and denote it by 
BottomA(X). We calculate the benefit as the increase in fraction 

of unit size DFFHVVHV�RFFXUULQJ�WR�WKH�IHWFKHG�;¶�FRQWHQW�REMHFWV�
as compared to that of the X content objects evicted. Assuming 

an independent reference model for the analysis, 
 

))(())'(()'( XBottomfXCLfXPB AAABB , 

))(()())'(( XBottomsizeAfreespaceXCLsize AAB        (6)                   

 
The term P%�;¶� defines the predicted benefit of evicting X 

FRQWHQW�REMHFWV�IURP�GHYLFH�$�DQG�IHWFKLQJ�;¶�FRQWHQW�REMHFWV�
from device B. 7KH�YDOXH�RI�WKH�DERYH�IXQFWLRQ�DW�DQ\�SRLQW�;¶ 

can be calculated using the metadata information that device A 
has or obtained from device B. The function fA(obj) denotes the 

ratio of unit size accesses occurring on an object obj in device 

A to the total number of unit size accesses  seen after its 
creation in device A. The function fA(O) for a set of objects O is 

extended as the sum of fA(obj)  for each obj in the set O. The 
free disk space available on the device A is denoted by 

freespace(A). We choose WKH�YDOXH�;¶�WR�EH�WKH�ORZHVW�;¶�WKDW�
maximizes the function P%�;¶�. We vary ;¶� from 0 to 

|CLAB�;¶�| DQG� REVHUYHU� 3%�;¶�� WR� FRPSXWH� WKH� RSWLPDO� LQ�
O(|CLAB�;¶�_��WLPH. 7KH�RSWLPDO�;¶�LV�GHQRWHG�E\ Xfetch. 

     Next, we determine the maximum value of X¶¶ such that the 

IHWFKLQJ�RI�ILUVW�;¶¶�REMHFWV�LQ�WKH�CombinedList(A,B) does not 
violate the power constraint equation below 

 

PXCLPowerCost AB ))''((                                              (7) 

 

     We call this value Xpower as the number of content objects 
that can be fetched from device B under the given power 

constraints. We now compute the minimum of the two 

parameters Xpower  and Xfetch  as the desired number of content 
objects to fetch from device B and denote this as Xfinal: 

 
Xfinal = min(Xpower, Xfetch)                                                        (8) 
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Note that the user of a device can pin objects that will not be 

evicted in this protocol. This is especially relevant in cases 
where the device generates new content or updates existing 

content that has not yet been propagated elsewhere.  

3.2.5 Parameter Tuning Phase 
In the last parameter tuning phase, we set the values of the 
parameters lAB, k

miss
AB and k aggressive

AB based on the evaluations 
done in the previous phases. These values are then used the 
next time content objects are fetched from device B to device 
A. 
     The parameter lAB represents the factor we apply to the  
number of content objects we fetch from device B to device A. 
As mentioned before, initially, this value is 1 and we fetch 
metadata about lAB min(N(A), N(B)) objects from device B to 
device A. Subsequently, we optimize this by fetching metadata 
of a lesser number of content objects by setting a new value of 
lAB: 

)(AN

Xf

AB
l

etch
          (9) 

     The rationale behind this tuning is that we are optimistically 
assuming that the number of content objects is going to be 
similar every time device A and B come into network 
proximity. We define a run of the protocol as a complete 
execution of the five phases of the context exchange protocol, 
when two devices A and B come into network proximity If the 
number of content objects fetched from device B drops for any 
reason between two protocol runs, we will  get information 
about a greater number of content objects than is required but 
that will  not affect the results. However, if the number of 
content objects fetched from device B increases for any reason 
between two protocol runs, we will  get lesser information than 
what is required and this may affect the qualit y of the decision. 
7KHUHIRUH�ZH�HPSOR\�DQ�HPSLULFDOO\�REVHUYHG�IDFWRU�¨�WR�PDNH�
sure that we are able to adjust to an increasing trend in the 
number of content objects fetched from device B. In either 
case, the parameter lAB will adjust to the trend in the next 

protocol run. 
     The parameters kmiss

AB and kaggressive
AB represent the closeness 

of the object profiles between A and B for the purpose of the 
Miss Initiated Prefetch and Aggressive Prefetch determination 

phases, and can be tuned by employing simple linear regression 

methods. This tuning for the parameters kmiss
AB and k aggressive

AB is 
performed at a later stage than that for the parameter lAB. If we 

use particular values for the two parameters kmiss
AB and 

k aggressive
AB to obtain content objects from device B, the 

parameters are tuned after we analyze the actual benefit of 
obtaining the content objects from device B. 

     More formally, the merged set CLAB(X) is partitioned into 

two sets CL
miss

AB(X)  and CL
aggressive

AB(X) based on whether the 
content objects were initially present in the LocatedList(A,B) or 

the ForeignList(A,B). We define an ordering on the protocol 
runs between the two devices A and B. The two parameters 

kmiss
AB and kaggressive

AB for the protocol run r+1 are obtained by 
tuning the values used in run r based on the fraction of unit size 

accesses to the prefetched objects corresponding to CL
miss

AB(X)  

and CL
aggressive

AB(X)  respectively.  The value of kmiss
AB is 

calculated as: 

))((

))((
)1()()1(

Xmiss
AB

CL
B

f

Xmiss
AB

CL
A

f
prmiss

AB
kprmiss

AB
k  

     The term p is the fixed learning rate for the linear 
regression. The value for kaggressive

AB is calculated similarly. By 
modeling the linear regression, we implicitly assume that the 
first order variation between access profiles of a shared object 
on any two devices remains constant and subsequent orders can 
be ignored. This is a reasonable assumption because of the 
strong similarity of object profiles between devices in a 
personalized environment.     

3.3 Metadata Management 
This section deals with the issue of metadata management on a 
content device in terms of space and time costs. If  metadata 
management takes up too much space, or too much of device 
CPU time, it  could potentially adversely affect device 
operation. The content exchange protocol assumes the presence 
of the TopObjectsN(A) and BottomObjectsN(A) lists that indicate 
the most and least popular n devices in terms of access count, 
as well as a miss list to keep track of missed content objects. 
The miss list is stored as a simple linear hash structure indexed 
by the object identifer. The maintentance of the TopObjectsN(A) 
and BottomObjectsN(A)  lists indicates the need to sort the 
object identifiers in these data structures. A first approach to 
maintain the sorted order would be to use a B-tree like data 
structure, but this ignores the fact that the typical size of the 
TopObjectsN(A)) and BottomObjectsN(A)  lists in our 
experiments is a small fraction of the total number of objects. 
Therefore, we use three data structures to sort the object 
identifiers in terms of access count. The first data structure is a 
small B-tree that stores the top most objects in terms of access 
count, the second is a hash list that stores the middle tier of 
objects in terms of access count, and the third is another small 
B-tree that stores the bottom most objects in terms of access 
count. The sizes of the B-trees are tuned to the typical size of 
content object metadata exchanged between two content 
devices (as represented by n in Section 3.2.1). Objects get 
moved from one data structure to another only when an 
increase in the access count of an object violates the ordering 
requirements of the three data structures. . Our architecture 
focused more on the content distribution protocol with the 
assumption that consistency is handled by a mixture of manual 
or above mentioned automated mechanisms. 

3.4 Simulation Model 
The evaluation of the proposed peer to peer content distribution 
consisted of running a global workload on simulated devices. 
The characteristics of the user behavior like relative 
popularities of objects and temporal variations in the global 
object dataset are reflected on the local device workloads. In a 
single user scenario, it  is assumed that only one device is 
actively processing the workloads. This is a reasonable 
assumption considering the fact that a user is normally engaged 
in interactive processing only with one device.  
     The simulation environment makes a set of assumptions 
about the interaction between the content devices. First, peer 
devices go through connection and disconnection periods. The 
connection periods are utili zed for fetching content objects 
from one content device to another. Note that some devices 
may connect to external networks for creating new content. 
Second, we assume that a device A fetches objects from B 
using CD-PAN only at instances where a user is transitioning 
from the device B to device A . This is a reasonable assumption 
as the chances of proximity of devices A and B are higher at 
transition points.  
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3.5 Workload Characteristics 
CD-PAN is evaluated with both synthetic workloads, as well as 
workloads derived from real-world activity on content devices. 
The former are useful as they provide us with a characterization 
of the algorithm behavior with respect to various environmental 
parameters. Derived workloads, on the other hand, provide us 
with an expected behavior of the algorithm in an actual 
deployment environment. 

3.5.1 Synthetic 
For synthetic workloads, we generate multiple sets of 
documents, each set representing a particular type. For mobile 
devices in a personalized environment, web pages and 
multimedia files dominate the document types [31, 44].  We 
vary the proportion of accesses occurring to the document types 
for a particular combination of content device and user because 
different devices are optimized for different specialized 
applications [18]. The portion of the global workload 
corresponding to a particular document type is characterized by 
the following parameters: number of objects, popularity 
skew,size distribution, content update frequency, temporal 
Localit y.  

3.5.2 Derived 

In addition to the synthetic workloads, we ran experiments on 
workloads whose characteristics were obtained from survey 
studies on real household data. The percent values in Table 3 
represent the relative proportion of instances that the times 
spent on a particular device happen in the lives of those people 
in North America who own the listed devices and use them 
quite frequently [31]. From the information provided in [1, 32, 
46, 26, 11] for web access patterns and [37, 38] for multimedia 
content, we obtain the parameter values for the two types of 
document benchmarks presented in Table 2. All the four 
devices are Wi-Fi enabled and are capable of communicating 
with each other. 

 
  Web Browsing Multimedia 

Zipf   0.75 0.4 

Mean size 10 KB 500 KB 

Size 
Distribution 

Lognormal Lognormal + 
Pareto for long tail  

Request Rate 
per usage hr 

100 30 

New/update 
frequency 
per day  

25% 10% 

 
Table 2: Characteristics of usage patterns for content 
activity 
 

3.6 Comparable Schemes 
We compare CD-PAN with a Raw Prefetch scheme (RP) where 
a device A does not take into account the popularity of the 
content objects in B while deciding which content objects to 
fetch from B to A. It is assumed that the device A uses only the 
miss-list to determine the objects to fetch from B. The objects 
to be evicted are chosen from the least popular set of objects as 
described in CD-PAN. RP allows us to evaluate the design 
decision to base our fetch policy on the popularity of content 
objects in a peer device.  

 
Home PC 
(Device A) 
 Capacity ± 
60GB 

PDA/Smartphone 
(Device  B) , 
Capacity 128 MB 
 
 

iPOD/MP3 player 
(Device C) 
Capacity 10 GB 

TV (DVR) 
(Device D) 
Capacity (20 GB) 
 
 

Daily usage time    
distribution 

Daily usage time    
distribution 

Daily usage time    
distribution 

Daily usage time    
distribution 

 < 30 
mins 

8% < 15 mins 33% < 10 mins 8%    < 30 mins 6% 

 30 ± 
1 hrs 

13% 15- 30 
mins 

24%  10 ± 30 
mins 

27% 30 ± 1hr 13% 

  1 ± 2 
hrs 

27% 31 ± 1 hr 18% 30 -  1 hr 33% 1 ± 2 hrs 31% 

  2 -  3 
hrs 

18% 1 ± 2   hrs 15% 1 ± 2 hr 24%  2 ± 3 hrs 24%        

  3 ± 4 
hrs 

14% 2 ± 3   hrs 5% 2 -3 hr 6% 3 ± 4  hrs 13% 

  Over 
4 

18% 3 ± 4   hrs 2.5% Over 3 
hrs 

2%  Over 4 
hrs 

12% 

    Over 4 2.5%     

 
Table 3: Characteristics of content devices in a PAN      
 
     Another scheme that we compare against is the On-demand 
Fetch scheme (ODF) that assumes the capabilit y of fetching a 
content object from an external source on a miss. While this 
may not be practical in terms of latency and monetary cost, 
ODF gives an idea of how traditional cache replacement 
techniques would have performed for the workloads. To make 
the comparison fair, the popularity of objects in a device is 
computed only at transition periods and the eviction costs are 
based on this information. LFU is used as the replacement 
algorithm.     
     Finally, we compare CD-PAN to an Optimal offline 
prefetching scheme (OPT). OPT assumes the same model as 
the CD-PAN and the RP schemes with respect to prefetching of 
objects at only transition points.  Since the actual benefit of 
prefetching content objects (as opposed to the predicted benefit 
in CD-PAN) can be obtained by looking at the future accesses, 
we use that to find the optimal number of objects to be 
prefetched and evicted. Note that OPT is an upper bound on the 
size normalized hit percentage performance of CD-PAN and 
RP. ODF assumes a different architecture and could perform 
better than OPT in some cases. 

4 Experimental Results 
This section presents experimental results for both synthetic 
and derived workloads. In the former set of experiments, we 
vary the parameters, and in the latter we use the workload 
characteristics listed in section 3.5.2.  We have conducted 
extensive experiments, and the interesting results are presented 
for brevity. We use two metrics for comparison, size 
normalized hit percentage which is the the percentage of 
requests per kilo byte that hit in the host device and power 
normalized hit ratio, the ratio of the size normalized hit 
percentage to the average power cost of prefetching. 

4.1 Synthetic Workloads 
These experiments are conducted for a set of 4 devices: one 
large device (with 100GB storage), and three smaller 
homogenous devices (each 100MB storage). The average user 
session time in the large device is slightly longer than in the 
smaller devices.  A default  aging fraction value of 0.6 was 
chosen. The aging fraction is the fractional value that is used to 
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weigh the access counters of objects between two consecutive 
user sessions on a device.  
     The power threshold P (defined in Section 3.2.3) chosen for 
a device is the amount of power expended if 40% of the device 
capacity were to be transmitted. We set this bound after many 
trials of experiments that showed that this bound does not 
degrade performance while providing a reasonable bound on 
power dissipation. The linear regression parameter p (Section 
3.2.5) was set the value of 0.8 by default in our experiments. 
We observed that the results did not vary a lot by changing this 
value because the statistics were gathered after the devices 
reached steady states with respect to the observed hit ratios.   

4.1.1 Variation in document popularity  
Web workloads are known to exhibit sharp popularity 
distributions with majority of accesses going to a small 
minority of documents [32] whereas multimedia workloads 
follow much more uniform distribution [37, 38]. One of the 
standard techniques to vary the popularity skew is by using 
different values of the zipf parameter .�� 
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Figure 3: Results for different values of zipf parameter 

     Figure 3 shows the performance of the different content 
distribution schemes for varying vaOXHV�RI�=LSI�SDUDPHWHU�.��$V�
.� LQFUHDVHV� IURP� �� WR� ��� WKH� SRSXODULW\� GLVWULEXWLRQ� RI�
documents changes from uniform to skewed. In tandem, the 
observed size normalized hit percentages increase because of 
the reduction in working set sizes. We observe that the size 
normalized hit percentages for CD-PAN are consistently better 
than those for RP and ODF, and close to optimal in almost all 
FDVHV�� 7KH� LPSURYHPHQW� LV� VPDOO� IRU� VPDOOHU� YDOXHV� RI� .�

because CD-PAN cannot effectively distinguish between 
popular and unSRSXODU� REMHFWV� EXW� LW� LQFUHDVHV� ZLWK� .�� )RU�
example, CD-PAN shows an improvement of 11% and 25% 
over RP IRU� YDOXHV� RI� .�  � ���� DQG� ���� UHVSHFWLYHO\��$V� WKH�
popularity distribution becomes more skewed, the accuracy of 
predicting the frequently accessed documents to be prefetched 
and rarely accessed documents to be evicted improves. We 
found that this was true by observing the ratios of the predicted 
benefit in CD-PAN to the actual benefit of prefetching observed 
at the end of the user session. The ratio was much larger for 
skewed popularity distributions (zipf .� ����DW�DERXW�������WKDQ�
IRU�UHODWLYHO\�XQLIRUP�GLVWULEXWLRQV��]LSI��.� ������DW�DERXW������� 

4.1.2 Variation in temporal locality 
We study the effect of temporal localit y in the workloads on the 
performance of the schemes. We characterize the temporal 
localit y of a workload by the average distance between 
consecutive requests to an object [45] when all the requests are 

placed on a LRU stack. As the distance decreases, the requests 
exhibit greater temporal effects. 
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Figure 4: Size normalized hit percentages for different 
temporal locality behaviors 

Figure 4 shows the size normali zed hit percentages of the 
different schemes for an independent reference workload and 
when the Average Stack Distance (ASD) is varied from 50 to 
1000. We used the probabili stic sliding window algorithm in 
the Surge Benchmark [45] to synthesize the workloads with 
temporal localit y. From Figure 4 we observe that CD-PAN 
performs considerably better than RP. The improvement is 
more dramatic than observed in Section 4.1.1 for an 
independent reference. For workloads with good temporal 
localit y there is a greater need for a content distribution scheme 
to consider the recent popularities of documents in peer 
devices. CD-PAN addresses this requirement in the aggressive 
prefetch phase (Section 3.2.2) while RP does not. We also 
notice that the performance of ODF increases with localit y 
because of better cache utili zation. 

4.1.3 Variation in content updates 
In this section we study the effect of dynamically added content 
to the current set of documents in the global workload. Web 
workloads especially show significant amount of updates to 
existing documents and newly created documents with 
time[64]. In the current study, we treat an update to a document 
as the creation of a new one that needs to be fetched in its 
entirety by a device looking to replace a stale copy. The 
addition of new documents and their subsequent rate of 
accesses are controlled such that the overall workload 
characteristics like popularity distribution of documents and 
temporal localit y are preserved. 
     Figure 5 shows the performance of the content distribution 
schemes with variance in the frequency of new content added 
from 1% to 20%. The large device was chosen as the content 
creation device. The size normali zed hit percentages are a 
function of the working set which is kept constant by using an 
independent reference model and the same Zipf parameter .� �
0.7. CD-PAN outperforms RP by about   25% for 1% content 
creation. The performance gap increased with frequency of new 
content with a percentage improvement of nearly 90% when 
the content creation frequency is 20%. The performance of 
ODF is independent of the amount of new data created. 
     We however observe the declining trend for CD-PAN with 
increase in new content. This is to be expected because new 
content objects take time to evict existing old content objects in 
a device. However, we noticed that the performance of CD-
PAN for high percentages of content creation can be improved 
by using a lower aging fraction. An aging fraction of around 
0.8 performed the best for content creation frequency of 1% 
whereas a value around 0.5 proved to be the best aging fraction 
for 20% content creation.  With a lower aging fraction the 
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access counter values of newly created objects increase at a 
relatively faster rate with every access and quickly dominate 
the existing objects that are not being accessed at the same rate. 
This works well for workloads that have high content updates. 
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Figure 5: Size normalized hit percentages with frequency of 
content creation/updates 

4.1.4 Varying content profiles 
The popularity distribution of shared documents can vary a lot 
amongst heterogeneous devices [31, 44]. A content device can 
show specific application characteristics that ignore document 
types popular in other content devices.  
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Figure 7 shows the size normalized hit percentages for the 
different schemes in device A 

To illustrate this, we ran experiments with  varying popularity 
distributions of the three document types X, Y and Z on 
devices A,B and C. Device A accessed a document of type X 
with probabilit y 0.8 and Y with 0.2. Devices B and C accessed 
the document sets (Y,Z) and (Z,X) with similar probabiliti es 
respectively. We observe from Figure 7 that CD-PAN 
outperforms RP by about 17%. The mismatch in relative 
popularities of the document types between any two devices 
causes the aggressive phase to perform poorly. CD-PAN adapts 
to this behavior by reducing the number of candidate 
documents from the aggressive prefetch phase.  This is 
highlighted by steady-state values for k aggressive

AB at about 0.27 
compared to k

miss
AB at about 3.3.    

4.1.5 Communication variation 
In this section, we study the performance of the schemes with 
varying capabiliti es of the devices to communicate with each 
other and hence, to prefetch data for disconnected operations. 
Figure 8 shows an increasing degree of connectivity between 
device nodes as the cut increases from 1 to 4. An edge denotes 
that the two devices can communicate with each other. Note 
that a transition of user work can still  directly occur between 
two devices that are not connected in the graph in figure 8. 
Device A is the large device that introduces new content at 
10% frequency.   
 

                  
 
Cut = 1              Cut=2              Cut = 3           Cut 4  

Figure 8: Different communication capability scenarios 

 
Figure 9: Size normalized hit percentage for varying 
communication capabilities 
 
     We observe the size normalized hit percentages of the 
schemes on device C for the four communication capabilit y 
cases in Figure 9. We observe that CD-PAN performs better 
than RP in all the cases and the improvement is more when the 
devices have better communication capabiliti es. In the first 
three cases, C is not connected to the content generator and has 
to rely on other devices B, D and E to retrieve the data it  needs. 
We observe that when the connectivity with the source device 
is low (Cut =1), the size normali zed hit percentage of the CD-
PAN scheme on device C is low (19%) in spite of a single hop 
connectivity with B which can communicate directly with A. 
However, when a single edge is added to the graph between A 
and E, the size normalized hit percentage jumps to 27% and 
reaches 42% for a fully connected graph. This shows that two 
devices tend to correlate their object profiles faster when the 
number of common devices that they can communicate with is 
higher. Since the access counter of an object is reset to zero in 
device B when an object is transmitted from device A to B in 
our protocol, it  takes longer for an object to be transmitted 
between two devices that cannot communicate directly in the 
communication graph.      

4.1.6 Varying power thresholds 
Different devices have different tolerance values for power 
dissipation [39, 10] depending on the strength of the power 
source. In this section, we study the sensitivity of performance 
of our scheme when the power thresholds applied in the Power 
Constraint phase were varied. 
     If  the power constraint is P, then the fraction of the capacity 
of the device that can be transmitted with the given constraint is 
defined to be the fractional power threshold. Figure 10 shows 
the size normalized hit percentages when the fractional power 
threshold is varied from 1 to 0.02. We observe that CD-PAN 
performs steadily till  a threshold of around 0.1 and degrades 
thereafter. With stringent power thresholds, the restriction on 
the number of objects exchanged becomes larger and reduces 
the effectiveness of CD-PAN. The rapid degradation after a 
threshold of 0.1 indicates that the average number of objects 
prefetched in the experiment shown was around 10% of the 
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total number of objects residing in the small simulated device.  
We found a similar behavior for different varying workload 
parameters studied in Sections 4.1.1 to 4.1.5 as well. The 
metric power normalized hit in our scheme shows an increasing 
trend with stricter power thresholds as the most popular objects 
have a higher access benefit while the power costs are uniform 
over all content objects.  
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Figure 10: Size normalized hit percentage for the CD-PAN 
scheme with varying power thresholds 

4.2 Derived Workloads 
We now present the results of using the real-world derived 
usage patterns documented in Table 3 (section 3.5.2). We 
consider two devices: a SmartPhone and a iPOD/MP3 player 
that synchronize with a home PC content generator. 
     Figure 11 shows the size normalized hit percentages for the 
two devices. For the SmartPhone, the size normalized hit 
percentage for CD-PAN is around 30%, which is about 3 times 
better than that for RP. We found that the good performance of 
CD-PAN is because of the dominant contribution from the 
aggressive prefetch phase which speculatively fetches 
dynamically created off line web content and multimedia files 
from the home PC. 
     CD-PAN performed much better than ODF because the 
limit ed storage in a SmartPhone is not adequate to act as a 
cache for the working set of the web browsing and multimedia 
files. Therefore the LFU eviction algorithm used by ODF 
resulted in excessive fetching and eviction similar to the 
thrashing phenomenon seen in virtual memory. The CD-PAN 
scheme does not suffer from inadequate storage size because it 
makes the best use of available space by storing the frequently 
accessed objects and evicting them only when they are to be 
replaced with more popular ones. For the iPOD/MP3 Player, 
the size normalized hit percentages were higher for all the 
schemes. CD-PAN outperformed RP by about 25% for this 
metric.  The improvement was limit ed by the fact that the 
primary music files workload in the iPOD/MP3 player does not 
show much dynamic variation and the relatively large storage 
space of the music device is suff icient to store the working set 
of frequently accessed music files. 
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Figure 11: Size normalized hit percentage for the two 
mobile devices, iPOD/MP3 player and Smartphone  
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 Figure 12: Power normalized hit ratios for the mobile 
devices, iPOD/MP3 player and Smartphone 
 
We also ran experiments to study the effect of power 
constraints on these devices. We found that in general the 
performance of CD-PAN degraded with stricter thresholds on 
power consumption. But, as Figure12 shows, with stricter 
power thresholds indicated by decreasing fractional power 
threshold (FPT) values, there is a sharp increase in the power 
normalized hit ratios and the increase in ratios are much higher 
for CD-PAN than for RP. 

5 Related Work 
Prefetching of objects is a very common technique used in web 
domains and file systems to improve latency of requests. The 
reference patterns of clients at the proxies and the servers have 
been used as an effective source of information to drive 
prefetching [65, 3, 8, 34]. Most of the studies use a collection 
of web client workloads and study how effectively future web 
accesses can be predicted from past accesses. 
     A number of studies have investigated prefetching between 
web servers and proxies as well [58, 14]. Peer-to-peer caching 
of data has been used as a cooperative web caching technique 
where caches in peers share internet objects among themselves 
[4,51, 6,54]. Cooperative web caching is found to be useful in 
improving hit ratio in a group of small organizations. Outside 
the web contexts, prefetching as a latency-reducing technique 
has been explored in file and memory systems. Several studies 
have investigated application-controlled prefetching in the file 
system area [46, 23, 22]. 
     In the area of distributed file systems with frequent 
disconnected operations, several studies have proposed 
mechanisms to automate the process of file hoarding. Griff ioen 
et al [27] proposed a file prefetching scheme based on graph-
based relationships that track frequency of accesses within a 
look-ahead window size. An analytical approach based on the 
cost-benefits of read-ahead buffering and prefetching was 
proposed in [16]. The use of the last successor model for file 
prediction and more elaborate techniques based on pattern-
matching and context modeling were proposed in [22,59,61, 
20]. There is also a significant body of work on using 
transparent compiler-directed approaches [62] and application-
level hints for improved prefetching [50].  
     In the context of wireless data dissemination networks for 
mobile devices, previous works [29, 56, 34, 19, 36, 52] have 
investigated the problems of cache replacement and prefetching 
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individually but few efforts have considered the aspects 
together to enhance data availabilit y in mobile devices [24].  
Prefetching targeted for mobile users in a wide area wireless 
network assume some sort of infrastructure deployment [63,39] 
which is used by the prefetching algorithm based location, 
route and speed. Like CD-PAN, [15] takes power 
considerations into account when deciding to cache to fetch 
data. It differs in that it  is a distributed file system with a global 
namespace and thus requires a central repository. It is similar to 
CD-PAN in that it takes space and energy considerations into 
account while sharing content data but differs in that the 
ensembles operate only in disconnected mode and requires a 
coordinator to direct data sharing.    

6 Conclusion  
The key contribution of this paper is a protocol for the 
automatic organization and transfer of content objects across 
heterogeneous and weakly connected devices in order to 
maximize the availabilit y of frequently accessed content 
objects in every device. In order to avoid misses, a content 
device uses CD-PAN to fetch content objects in the background 
from peer devices without user intervention. Experiments show 
that CD-PAN outperforms RP in all synthetic and derived 
workload experiments. The performance improvement tended 
to increase with increase in popularity distribution skew 
temporal localit y and frequency of content creation/updates. 
We observed that CD-PAN performs really well when the pair-
wise device communication capabiliti es are higher. We also 
found that CD-PAN adapts well to the decreasing tolerance 
levels for power and metadata.  

References 
[1] Atul Adya, Paramvir Bahl and Lili  Qiu. Analyzing the browse 
patterns of mobile cli ents.  In Proceedings of the ACM SIGCOMM 
Workshop on Internet Measurement. 2001 
[2]  Anand Balachandran, Goeffrey M . Volker, Paramvir Bahl and 
P. Venkat Rangan. Characterizing user behavior and network 
performance in a public wireless LAN. In Proceedings of the ACM 
SIGMETERICS International Conference on Measurement and 
Modeling of computer systems, 2002. 
[3]  Azer Bestavros and Carlos Cunha.  Server-initiated document 
dissemination for the www.  IEEE Data Engineering Bulletin, 
September 1996 
[4] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, 
M ichael F. Schwartz, Kurt J. Worrell.  A hierarchical internet 
object cache. In Proceedings of the 1996 USENIX Annual 
Technical Conference, 1996 
[5]  Antony Rowstron and Peter Drushel.  Storage management 
and caching in PAST, a large-scale, persistent peer-to-peer storage 
utilit y. In Proceedings of the ACM Symposium on Operating 
Systems Principles, 2001 
[6] Alec Wolman, Geoffrey M . Voelker, Nitin Sharma, Neal  
Cardwell, Anna Karlin, and Henry M . Levy. On the scale and 
performance of cooperative web caching. In Proceedings of the 
17th ACM Symposium on Operating Systems Principles, 1999 
[7]  Balachander Krishnamurthy, Craig Will s and Yin Zhang. On 
the use and performance of content distribution networks. In 
Proceedings of the ACM Workshop on Internet Workshop, 2001 
[8]  Carlos Cunha and Carlos F. B Jaccoud.  Determining www 
XVHU¶V� QH[W� access and its application to prefetching. In 
3URFHHGLQJV� RI� ,6&&¶� ���� The Second IEEE Symposium on 
Computers and Communications, July 1997 
[9]  Carlos Cunha, Azer Bestavros and M ark Crovella. 
Charecteristics of WWW cli ent-based traces. Technical Report 
TR-95-010, Boston University, 1995 

[10] Carla Schlatter Elli s. The case for higher-level power 
management, In Proceedings of the Seventh Workshop on Hot 
Topics in Operating Systems, 1999. 
[11] Dennis Fetterly, M ark M anasse, M ark Najork and Janet L. 
Wiener.  A large-scale study of the evolution of web pages, , 
Software : Practice and Experience 2004 
[12] Dahlia M alkhi and Doug Terry. Concise version vectors in 
WinFS. In Symposium on Distributed Computing, 2005 
[13]  Daniel  Peek and Jason Flinn, EnsemBlue : Integrating 
distributed storage and consumer electronics. To appear in the 
USENIX Symposium on Operating Systems Design and 
Implementation, 2006 
[14] Evangelos P. Markatos and Catherine E. Chronaki.  A top-10 
approach to prefetching on the web. Technical report No. 173, 
ICS-FORTH, August 1996 
[15] Edmund B. Nightingale and Jason Flinn, Energy-effi ciency 
and storage fl exibilit y in the blue file system. In Proceedings of the 
USENIX Symposium on Operating Systems Design and 
Implementation, 2004 
[16] Elizabeth Shriver, Christopher Small and Keith A. Smith. 
Why does fi le system prefetching work?. In Proceedings of the 
1999 USENIX Annual Technical Conference, 2001 
[17] Frank Dabek, M . Frans Kaashoek, David Karger, Robert 
M orris and Ion Stoica. Wide-area cooperative storage with CFS. In 
Proceedings of the ACM Symposium of Operating Systems 
Principles, 2001  
[18] Guanling Chen and David Kotz. A Survey of context-aware 
mobile computing research. Dartmouth Computer sScience 
Technical Report TR2000-381 
[19] Guohong Cao.   Proactive power-aware cache management 
for mobile computing systems.  IEEE Transactions on Computers. 
2002 
[20] Geoffrey H. Kuenning and Gerald J. Popek.  Automated 
hoarding for mobile computers. In Proceedings of the 16th ACM 
Symposium on Operating systems Principles, 1997 
[21] Gene T. J Wuu and Arthur J. Bernstein.  Eff icient solutions to 
the replicated log and dictionary problem. In Proceedings of the 
ACM Symposium on Principles of distributed computing, 1984 
[22] Hui Lei and Dan Duchamp.  An analytical approach to fi le 
prefetching.  In Proceedings of the 1997 USENIX Annual 
Technical Conference, 1997 
[23] Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel  
Stodolsky, and Jim Zelenka.  Informed prefetching and caching. In 
Proceedings of 15th ACM Symposium on Operating System 
Principles, December 1995. 
[24] Huaping Shen, Mohan Kumar, Sajal K. Das and Zhijun Wang.  
Energy-effi cient caching and prefetching with data consistency in 
mobile distributed systems. In Proceedings of the International 
Parallel and Distributed Processing Symposium. 2004 
[25] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu 
and Jorjeta Jetchava. A performance comparison of multi-hop 
wireless ad hoc network routing protocols. In Proceedings  of the 
International Conference on Mobile Computing and Networking, 
1998 
[26] Junghoo Cho and  Hector Garcia-M olina. The Evolution of 
the Web and Implications for an incremental crawler, In 
Proceedings of the International Conference on Very Large Data 
Base,  2000 
[27] James Griffi oen and Randy Appleton.  Reducing fi le system 
latency using a predictive approach. In USENIX Summer Technical 
Conference, 1994 
[28] James J. Kistler and M . Satyanarayanan. Disconnected 
operation in the coda fi le system. In Proceedings of the ACM 
Transactions on Computer Systems, 1992 
[29] Jianliang Xu, Qinglong Hu, Wang-Chien Lee and Dik Lun 
Lee.  An Optimal Cache Replacement Policy for Wireless Data 
Dissemination under Cache Consistency. In Proceedings of the 
30th International Conference on Parallel Processing. 2001 

Digital Object Identifier: 10.4108/ICST.WICON2008.4825 
http://dx.doi.org/10.4108/ICST.WICON2008.4825 



 11 

[30] Karin Petersen, M ike J. Spreitzer, Douglas B. Terry M arvin 
M . Theimer and Alan J. Demers.  Flexible update propagation for 
weakly consistent replication. In Proceedings of the 16 th ACM 
Symposium on Operating Systems Principles, 1997 
[31]http://www.us.31g.com/RutUS_prod/Documents/12/Consumer
%20Convergence%20study.pdf 
[32]  Lee Breslau, Pei Cao, L i Fan, Graham Philli ps and Scott 
Shenkar. Web Caching and Zipf-li ke Distributions: Evidence and 
Implications. In Proceedings of IEEE INFOCOM, 1999 
[33]  Lei Guo, Songging Chen, Zhen Xiao, Xiaodong Zhang. 
Analysis of multimedia workloads with implications for internet 
streaming. In Proceedings of the International Conference on 
World Wide Web, 2005. 
[34] Li Fan, Pei  Cao, Wei  Lin and Quinn Jacobson.  Web 
Prefetching between low-bandwidth cli ents and proxies: potential 
and performance.  In Proceedings of the ACM SIGMETRICS 
Conference on Measurement and Modeling of Computer Systems, 
1997 
[35] Laura Marie Feeney, Martin Nilsson.  Investigating the energy 
consumption of a wireless network interface in an Ad hoc 
networking environment. In IEEE Proceedings of INFOCOM, 
2001   
[36] Liangzhong Yin, Guohong Cao, Chita Das, and Ajeesh 
Ashraf.  Power-aware prefetch in mobile environments. IEEE 
International Conference on Distributed Computing Systems 
(ICDCS), 2002 
[37] M aureen Chesire, Alec Wolman, Goeffr ey M . Voelker and 
Henry M. Levy. Measurement and Analysis of a Streaming-media 
Workload.  In Proceedings of the USENIX Conference on Internet 
Technologies and Systems. 20 01 
[38] M inaxi Gupta and Mostafa Ammar. A Novel Multicast 
Scheduling for multimedia servers with variable access patterns. In 
Proceedings of the IEEE International conference on 
Communications.  2003 
[39] M aria Papadopouli and Henning Schulzrinne.  Design and 
Implementation of a Peer-to-Peer Data Dissemination and 
Prefetching Tool for M obile Users. First NY Metro Area 
Networking Workshop, 2001 
[40] M arvin M cNett and Geoffrey M . Voelker. Access and 
M obility of wireless PDA users. In ACM SIGMOBILE Mobile 
Computing and Communications Review, 2005 
[41]  M ichael N. Nelson, Brent B. Welch, John K. Ousterhout. 
Caching in the Sprite network fi le system. ACM Transactions on 
Computer Systems, 1988 
[42] M agicSync: 
http://www.pdatopsoft.com/SmartPhones/M agicSync-Lite-
(SmartPhone) 
[43] Nalini Belaramani, M ike Dahlin, Lei Gao, Amol Nayate, 
Arun Venkataramani, Praveen Yalagandula, and Jiandan Zheng. 
PRACTI Replication. In Proceedings of the Symposium on 
Networked Systems Design and Implementation, 2006 
[44]  http://www.44ab.tkk.fi/~hverkasa/verkasalo_hmr_2006.pdf 
[45] Paul Barford and M ark Crovella. Generating representative 
web workloads for network and server performance evaluation. In 
Proceedings of SIGMETRICS 1998 
[46] Paul Barford, Azer Bestavros, Adam Bradley, Mark Crovella. 
Changes in Web Client Access Patterns. World Wide Web Journal  
1999 
[46] Pei Cao, Edward W. Felton, Anna R. Karlin, and Kai Li.  
Implementation and performance of integrated application-
controlled fi le caching, prefetching and disk scheduling. In TOCS, 
November 1996 
[47]  PocketM irror : http://www.chapura.com/ 
[48] Richard G. Guy, John S. Heidemann, Wai M ak, Thomas W. 
Page Jr., Gerald J. Popek, Dieter Rothmeier, Implementation of the 
Ficus replicated file system. In USENIX Summer Conference, 1990 

[49] Rivka Ladin, Barbara L iskov, Liuba Shrira and Sanjay 
Ghemawat. Providing high availabilit y using lazy replication. 
ACM Transactions on Computer Systems. 1992 
[50] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel  
Stodolsky and Jim Zelenka. Informed prefetching and caching. In 
Proceedings of the 15th  ACM Symposium on Operating Systems 
Principles (SOSP), 1995. 
[51] Renu Tewari, M ichael  Dahlin, Harrick M . Vin and Jonathan 
S. Kay. Design considerations for distributed caching on the 
internet. Technical Report CS98-04, University of Texas at Austin, 
1998 
[52] Swarup Acharya.  Broadcast disks: Dissemination-based data 
management for asymmetric communication environments. In 
PHD Dissertation, Brown University, 1998 
[53] Stephanos Androutselli s-Theotokis and Diomidis Spinelli s. A 
survey of peer-to-peer content distribution technologies. ACM 
Computing Surveys, 2004 
[54] Syncexpress : www.syncdata.it/syncexpress.html 
[54]  Sitaram Iyer, Antony Rowstron and Peter Druschel.  Squirrel  
: A decentralized peer-to-peer web cache. In Proceedings of the 
Principles of Distributed Computing, 2002 
[55]  Shudong Jin and Azer Bestavros. Temporal localit y in web 
request streams: sources, characteristics and caching implications. 
In Proceedings of the ACM SIGMETRICS, 2000 
[56] Savvas Gitzenis and Nicholas Bambos.  Power Controlled 
Data Prefetching/Caching in Wireless Packet Networks. In IEEE 
Proceedings of INFOCOM 2002 
[57] Sumeet Sobti, Nitin Garg, Chi Zhang, Xiang Yu, Arvind 
Krishnamurthy and Randolph Y. Wang.  PersonalRAID : M obile 
Storage for Distributed and Disconnected Computers. In 
Proceedings of the Conference on File and Storage Technologies,  
2002 
[58] Thomas M . Kroeger, Darrell D. E. Long, and Jeffr ey C. 
M ogul.  Exploring the bounds of web latency reduction from 
caching and prefetching. In Proceedings of USENIX Symposium on 
Internet Technology and Systems, December 1997 
[59]  Thomas M . Kroeger and Darrell DE Long.  The case for 
effi cient fi le access pattern modeling. In Proceedings of the 
Seventh Workshop on Hot Topics in Operating Systems,1999 
[60] Thomas Kunz, Thomas Berry, James P. Black and Hugh M . 
M ahoney. WAP Traffi c: Description and Comparision to WWW 
Traffi c. In Proceedings of International Workshop on Modeling 
Analysis and Simulation of Wireless and Mobile Systems, 2000 
[61] Thomas M. Kroeger and Darrell DE Long.  Design and 
implementation of a predictive fi le prefetching algorithm. In 
Proceedings of the 2001 USENIX Annual Technical Conference, 
2001. 
[62] Todd C. Mowry, Angela K. Demke, Orran Krieger.  
Automatic compiler-inserted I/O prefetching for out-of-core 
applications. In Proceedings of the 1996 Symposium on Operating 
Systems Design and Implementation, 1996 
[63]  Tao Ye, H.-Arno Jacobsen and Randy Katz. M obile 
Awareness in a wide area wireless network of info-stations. In 
Proceedings of Mobicom, 1998 
[64] Venkata N. Padmanabhan and L. Qiu. The content and access 
dynamics of a busy web site: Findings and Implications. In 
Proceedings of the ACM SIGCOMM, 2000 
[65] Venkata N. Padmanabhan and Jeffr ey C. M ogul.   Using 
Predictive prefetching to improve world wide web latency. ACM 
SIGCOMM Computer Communication Review, July 1996 

Digital Object Identifier: 10.4108/ICST.WICON2008.4825 
http://dx.doi.org/10.4108/ICST.WICON2008.4825 


