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ABSTRACT
Uncovering the community structure exhibited by real net-
works is a crucial step towards an understanding of com-
plex systems that goes beyond the local organization of
their constituents. Many algorithms have been proposed
so far, but none of them has been subjected to strict tests
to evaluate their performance. Most of the sporadic tests
performed so far involved small networks with known com-
munity structure and/or artificial graphs with a simplified
structure, which is very uncommon in real systems. Here
we test several methods against a recently introduced class
of benchmark graphs, with heterogeneous distributions of
degree and community size. The methods are also tested
against the benchmark by Girvan and Newman and on ran-
dom graphs. As a result of our analysis, three recent algo-
rithms introduced by Rosvall and Bergstrom, Blondel et al.
and Ronhovde and Nussinov, respectively, have an excellent
performance, with the additional advantage of low compu-
tational complexity, which enables one to analyze large sys-
tems.

Categories and Subject Descriptors
I.5.3 [Pattern recognition]: Clustering; J.2 [Computer
applications]: Physical sciences and engineering—engineer-
ing, physics

Keywords
Networks, community structure

The modern science of networks is probably the most ac-
tive field within the new interdisciplinary science of complex
systems. Many complex systems can be represented as net-
works, where the elementary parts of a system and their
mutual interactions are nodes and links, respectively [?, ?].
Complex systems are usually organized in compartments,
which have their own role and/or function. In the network
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representation, such compartments appear as sets of nodes
with a high density of internal links, whereas links between
compartments have a comparatively lower density. These
subgraphs are called communities, or modules, and occur in
a wide variety of networked systems [?, ?].
Finding compartments may shed light on the organiza-

tion of complex systems and on their function. Therefore
detecting communities in networks has become a fundamen-
tal problem in network science. Many methods have been
developed, using tools and techniques from disciplines like
physics, biology, applied mathematics, computer and social
sciences. However, it is still not clear which algorithms are
reliable and shall be used in applications. The question of
the reliability itself is tricky, as it requires shared definitions
of community and partition which are, at present, still miss-
ing. This essentially means that, despite the huge literature
on the topic, there is still no agreement among scholars on
what a network with communities looks like. Nevertheless,
there has been a silent acceptance of a simple network model,
the planted -partition model [?], which is often used in the
literature in various versions. In this model one “plants” a
partition, consisting of a certain number of groups of nodes.
Each node has a probability pin of being connected to nodes
of its group and a probability pout of being connected to
nodes of different groups. As long as pin > pout the groups
are communities, whereas when pin ≤ pout the network is
essentially a random graph, without community structure.
The most popular version of the planted -partition model
was proposed by Girvan and Newman (GN benchmark) [?].
Here the graph consists of 128 nodes, each with expected de-
gree 16, which are divided into four groups of 32. The GN
benchmark is regularly used to test algorithms for commu-
nity detection. Indeed, algorithms can be compared based
on their performance on this benchmark. This has been
done by Danon et al. [?]. However, the GN benchmark has
two drawbacks: 1) all nodes have the same expected de-
gree; 2) all communities have equal size. These features
are unrealistic, as complex networks are known to be char-
acterized by heterogeneous distributions of degree [?, ?, ?]
and community sizes [?, ?, ?, ?, ?]. In recent papers [?,
?], we have introduced a new class of benchmark graphs
(LFR benchmark), that generalize the GN benchmark by
introducing power law distributions of degree and commu-
nity size. The new graphs are a real generalization, in that
the GN benchmark is recovered in the limit case in which
the exponents of the distributions of degree and community
sizes go to infinity. Most community detection algorithms
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The modern science of networks is probably the most ac-
tive field within the new interdisciplinary science of complex
systems. Many complex systems can be represented as net-
works, where the elementary parts of a system and their
mutual interactions are nodes and links, respectively [15, 4].
Complex systems are usually organized in compartments,
which have their own role and/or function. In the network
representation, such compartments appear as sets of nodes
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with a high density of internal links, whereas links between
compartments have a comparatively lower density. These
subgraphs are called communities, or modules, and occur in
a wide variety of networked systems [10, 9].
Finding compartments may shed light on the organiza-

tion of complex systems and on their function. Therefore
detecting communities in networks has become a fundamen-
tal problem in network science. Many methods have been
developed, using tools and techniques from disciplines like
physics, biology, applied mathematics, computer and social
sciences. However, it is still not clear which algorithms are
reliable and shall be used in applications. The question of
the reliability itself is tricky, as it requires shared definitions
of community and partition which are, at present, still miss-
ing. This essentially means that, despite the huge literature
on the topic, there is still no agreement among scholars on
what a network with communities looks like. Nevertheless,
there has been a silent acceptance of a simple network model,
the planted -partition model [6], which is often used in the
literature in various versions. In this model one “plants” a
partition, consisting of a certain number of groups of nodes.
Each node has a probability pin of being connected to nodes
of its group and a probability pout of being connected to
nodes of different groups. As long as pin > pout the groups
are communities, whereas when pin ≤ pout the network is
essentially a random graph, without community structure.
The most popular version of the planted -partition model
was proposed by Girvan and Newman (GN benchmark) [10].
Here the graph consists of 128 nodes, each with expected de-
gree 16, which are divided into four groups of 32. The GN
benchmark is regularly used to test algorithms for commu-
nity detection. Indeed, algorithms can be compared based
on their performance on this benchmark. This has been
done by Danon et al. [7]. However, the GN benchmark has
two drawbacks: 1) all nodes have the same expected de-
gree; 2) all communities have equal size. These features are
unrealistic, as complex networks are known to be charac-
terized by heterogeneous distributions of degree [1, 15, 4]
and community sizes [16, 11, 8, 5, 13]. In recent papers [14,
12], we have introduced a new class of benchmark graphs
(LFR benchmark), that generalize the GN benchmark by
introducing power law distributions of degree and commu-
nity size. The new graphs are a real generalization, in that
the GN benchmark is recovered in the limit case in which
the exponents of the distributions of degree and community
sizes go to infinity. Most community detection algorithms
perform very well on the GN benchmark, due to the sim-
plicity of its structure. The LFR benchmark, instead, poses
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a much harder test to algorithms, and makes it easier to
disclose their limits. Moreover, the LFR benchmark graphs
can be built very quickly: the complexity of the construction
algorithms is linear in the number of links of the graph, so
one can perform tests on very large systems, provided the
method at study is fast enough to analyze them.
We have carried out a comparative analysis of the per-

formances of algorithms for community detection on various
graphs: the GN and LFR benchmarks and random graphs.
Link direction, weights and the possibility for communi-
ties to overlap have been taken into account in dedicated
tests. We conclude that the Infomap method by Rosvall and
Bergstrom [18] is the best performing on the set of bench-
marks we have examined here. In particular, its results on
the LFR benchmark graphs, which are much more difficult
to examine than the GN benchmark graphs, are encourag-
ing about the reliability of the method in applications to
real graphs. Among the other things, the method can be
applied to weighted and directed graphs as well, with excel-
lent performances, so it has a large spectrum of potential
applications. The algorithms by Blondel et al. [3] and by
Ronhovde and Nussinov (RN) [17] also look very good from
our analysis and could be used as well. Furthermore, these
methods have a low computational complexity, so one could
use them on graphs with millions of nodes and links. On
the other hand, the algorithms are not able to account for
overlapping communities, so they need to be properly re-
fined to deal with this possibility, which is common in many
real systems.
One may object that, despite the features planted in the

LFR benchmark, i. e. the fat-tailed distributions of degree
and community size, which are actually observed in real
networks, our artificial graphs are still different from real
systems. For instance, the clustering coefficient [19] of the
LFR benchmark is very low, due to the very small number of
triangles, whereas real networks are characterized by many
triangles and consequently a high clustering coefficient. On
the one hand the GN benchmark also has very few triangles
and low clustering coefficient (the LFR benchmark is just
a generalization of the GN benchmark), nevertheless peo-
ple have used it extensively for testing algorithms. On the
other hand, nothing forbids to modify the building mecha-
nism of the LFR benchmark so that it does include triangles.
This is actually a potentially interesting improvement of the
benchmark, that deserves some attention in the future.
Our whole analysis has made use of graphs with a “flat”

community structure, without hierarchy. Many real net-
works instead have a hierarchical community structure, with
communities inside other communities. Good methods must
be able to understand when a network has no communities,
a flat or a hierarchical community structure. For an analysis
of this kind we would need hierarchical benchmarks. There
is actually a hierarchical version of the GN benchmark [2],
not yet one of the LFR benchmark, which is sorely needed.
Methods to find communities in multipartite graphs have
yet to be tested as well.
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[11] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt,
and A. Arenas. Self-similar community structure in a
network of human interactions. Phys. Rev. E,
68(6):065103 (R), Dec. 2003.

[12] A. Lancichinetti and S. Fortunato. Benchmarks for
testing community detection algorithms on directed
and weighted graphs with overlapping communities.
Phys. Rev. E, 80(1):016118, 2009.

[13] A. Lancichinetti, S. Fortunato, and J. Kertesz.
Detecting the overlapping and hierarchical community
structure in complex networks. New J. Phys.,
11(3):033015, 2009.

[14] A. Lancichinetti, S. Fortunato, and F. Radicchi.
Benchmark graphs for testing community detection
algorithms. Phys. Rev. E, 78(4):046110, 2008.

[15] M. E. J. Newman. The structure and function of
complex networks. SIAM Rev., 45(2):167–256, 2003.
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