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ABSTRACT
We present a recursive formula for estimating the packet loss
rate in IP networks. Specifically, we consider a single link
whose capacity is shared dynamically by elastic data flows,
each characterized by some peak rate, and derive the for-
mula from the steady-state distribution of the number and
peak rates of ongoing flows. The result is particularly useful
for dimensioning ISP backhaul networks that aggregate the
traffic of various types of users.

Categories and Subject Descriptors
G.3 [Probability and statistics]: Queueing theory

Keywords
Multirate systems, Kaufman-Roberts formula.

1. INTRODUCTION
The teletraffic theory derived from the Erlang formula is

not applicable to IP networks whose resources are shared
dynamically by elastic data flows. New results are required
to predict key performance metrics (throughput, delay, loss)
with respect to network capacity and traffic characteristics
(intensity, peak rates). A practically interesting case is that
of an ISP that aggregates the traffic of a high number of
DSL and FTTH users, with peak rates ranging from 500
kbit/s to 100 Mbit/s, and needs to predict the maximum
load sustainable by its backhaul network for some target
packet loss rate.

In this paper, we focus on a single link whose capacity is
shared by various types of elastic data flows. Specifically,
we characterize each flow by some peak rate that is typi-
cally equal to the speed of the user’s access line. Assuming
that link capacity is shared according to balanced fairness
[1], a recursive formula has been derived in [2] for evaluating
the throughput of each flow. This formula is the analogue
of the Kaufman-Roberts formula that has proven very use-
ful for dimensioning circuit-switched networks [3, 4]. We
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here adapt the formula to derive some simple, conservative
estimation of the packet loss rate.

2. MODEL
Consider a link of capacity C shared by elastic data flows.

Each flow is characterized by some peak rate. Specifically,
we consider N types of flows, referred to as classes. Each
class-i flow has peak rate ci. Class-i flows arrive according
to a Poisson process and leave the system once some random
volume of data has been transferred. We denote by αi the
associate traffic intensity, defined as the product of the flow
arrival rate by the mean flow size, and by ρi = αi/C the
corresponding load. The overall link load is given by:

ρ =
N

X

i=1

ρi.

Let xi be the number of class-i flows. The evolution of
the system state x = (x1, . . . , xN ) depends on the way link
capacity is shared between ongoing flows. We assume that
this sharing realizes balanced fairness [1]. Under the stabil-
ity condition ρ < 1, the steady-state distribution of x is then
insensitive to the flow size distribution beyond the mean and
given by:

π(x) = π(0)Φ(x)αx, (1)

where Φ is the so-called balance function, defined by

Φ(x) =
1

x!cx
if x.c ≤ C,

and

Φ(x) =
1

C

N
X

i=1

Φ(x − ei) otherwise.

In the above expressions, the vectorial notation is that in-
troduced in [2].

The packet loss rate is hard to estimate in practice since it
depends on the complex packet-level dynamics induced by
TCP. At the considered aggregation link, however, packet
losses are most likely due to the flow-level dynamics, that is
to the presence of a too high number of simultaneous flows.
A simple yet reasonable appproximation then consists in
considering the worst case where each ongoing flow is active
at its peak rate. Thus in state x, the intensity of lost traffic
is equal to x.c−C if x.c > C and to 0 otherwise; we deduce
the following estimate for the packet loss rate:

L =

P

x:x.c>C
(x.c − C)π(x)

P

x
(x.c)π(x)

. (2)
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Although this expression can in principle be evaluated di-
rectly from (1), the computation is exponential in the num-
ber of classes N . The following recursive formula makes the
computation linear in N .

3. RECURSIVE FORMULA
We assume as for the Kaufman-Roberts formula that the

link capacity C and the rate limits c1, . . . , cN are integers.
In the rest of the paper, we denote by π the measure (1)
obtained with π(0) = 1. For any integer n, let:

p(n) =
X

x:x.c=n

π(x).

We define:

p =
X

n>C

p(n) and q =
X

n>C

np(n)

In view of (2), we have:

L =
q − Cp

P

C

n=1
np(n) + q

For n = 1, . . . , C, we have

p(n) =
N

X

i=1

αi

n
p(n − ci), (3)

with p(0) = 1 and p(n) = 0 for all n < 0. This is the
analogue of the Kaufman-Roberts formula. It remains to
calculate p and q, that can be derived from the values of
p(n) for n = 1, . . . , C:

Proposition 1. We have:

p =
N

X

i=1

ρipi

1 − ρ
, q =

N
X

i=1

ρi(qi + ci(p + pi))

1 − ρ
, (4)

where for all i = 1, . . . , N ,

pi =
X

C−ci<n≤C

p(n), qi =
X

C−ci<n≤C

np(n).

Proof. Using the fact that, for all x such that x.c > C,

π(x) =
N

X

i=1

ρiπ(x − ei),

we obtain:

p =
X

n>C

X

x:x.c=n

π(x),

=
X

n>C

X

x:x.c=n

N
X

i=1

ρiπ(x − ei),

=
N

X

i=1

ρi

X

n>C

p(n − ci),

=

N
X

i=1

ρi(p + pi),

and:

q =
X

n>C

n
X

x:x.c=n

π(x),

=
X

n>C

n
X

x:x.c=n

N
X

i=1

ρiπ(x − ei),

=
N

X

i=1

ρi

X

n>C

np(n − ci),

=

N
X

i=1

ρi

X

n>C

((n − ci)p(n − ci) + cip(n − ci)) ,

=
N

X

i=1

ρi(q + qi + ci(p + pi),

from which (4) follows. 2

4. APPLICATION
Consider N = 10 flow classes with peak rates 1, 2, . . . , 10

and equal traffic intensities. The following figure shows the
maximum sustainable load ρ with respect to the link capac-
ity C for various target loss rates:
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Figure 1: Maximum load with respect to capacity

for target loss rates 5%, 1% and 0.1%, from top to

bottom.
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