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ABSTRACT
We introduce a new parameterization of the many flows
asymptotic which allow a better understanding of how cur-
rent results fit together but also offer more flexibility in the
application of this asymptotic regime.

As we move into a world were the internet plays an ever
increasing role a better understanding of interactions of var-
ious rate control protocols are required. As part of this we
need to model the queueing dynamics at core routers which
leads naturally to the study of the many flows asymptotic.
This new scaling allows the easy exploration of different load
and buffer sizing scenarios and there effect on packet loss
probabilities.

1. MANY FLOWS ASYMPTOTIC
In engineering there are many queueing systems which

we need to understand and model. Unfortunately in most
situations we are unable to obtain exact results and so turn
to the study of asymptotic regimes. Core network routers see
many thousands of traffic flows from individual computers at
any point in time, which naturally leads to the consideration
an asymptotic regime where we scale the number of flows to
infinity. This regime was initially introduced Alan Weiss
[3] and is called the many flows asymptotic. Formally this
means that in the N th system there will be N independent
identical sources.

2. SCALING PARAMETERIZATION
For the many flows asymptotic we are interested in ex-

ploring a range of scenarios and their relation to each other.
These include considering various load scenarios where load
(ρ) is defined to be the ratio of total mean arrival rate to
mean service rate. We would like to be able to explore the
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Figure 1: N th system with parameters α and β.

spectrum of possible loads from heavily loaded where the
load is close to one all the way to lightly loaded in which
case the load is near zero. Another important class of sce-
narios to consider is defined by the buffer size relative to the
number sources, i.e. whether the buffer size grows faster or
slower than the total number of sources.

To investigate these scenarios we introduce a new param-
eterization of the scalings indexed by (α, β). The parameter
α is used to control the buffer size scaling, such that in the
N th system the buffer is size NαB. For α > 1 the buffer
grows faster than the number of sources where as for α < 1
the buffer grows slower than the number of sources. Sec-
ondly β is used to control the excess service rate above the
total arrival rate. We are interested in the stationary be-
havior of the queueing system so the service rate has to be
larger than the mean total arrival rate. Under this condi-
tion we let QN be the stationary queue length of the N th

system. Let µ be the mean arrival rate from a single source
then in the N th system the service rate is Nµ+NβC. For
β < 1 the load tends to one as N increases giving the heav-
ily loaded scenario. In comparison we have for β > 1 the
load decreases to zero as the number of sources increase, the
lightly loaded case. In figure 1 we can see a summary of the
scaling for the single server queue.

3. SIMPLE MARKOVIAN EXAMPLE
To get a better feel for the parameterization we consider

the example of a single server queue where each source pro-
duces Poisson traffic with intensity µ and service times are
independently exponentially distributed with mean (λ(N))−1.
It is useful to note that the sum of N independent Pois-
son processes of rate µ is again a Poisson process, of rate
Nµ. The N th system is an M/M/1 queue with arrival

rate Nµ and service rate λ(N). In this setting we have
λ(N) = Nµ+NβC and are interested in

P(QN > NαB).
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Theorem 1. Let QN be the stationary queue length where

traffic is produced by N independent Poisson processes of

rate µ and each customer has service time distributed expo-

nentially with rate Nµ+NβC. For α > 0 and α+β−1 > 0
we get

lim
N→∞

1

f(N, β)
log P(QN > NαB) = −J(β,C,B)

where

f(N, β) =

{

Nα+β−1 if β ≤ 1

Nα log(Nβ−1) if β > 1

and

J(β, C,B) =











BC/µ if β < 1,

B log(1 + C/µ) if β = 1,

B if β > 1.

4. TIMESCALES OF INTEREST
An important tool we make use of in exploring the differ-

ent scalings is the most likely timescale upon which events of
interest occur and how it varies with the number of sources.
This is best understood by considering the length of time
an overflow event takes to occur, i.e. the length of time it
takes for the queue to go from empty to overflow given it
overflows before emptying again. As we vary the scaling we
are interested how the timescale varies in the limit. Often
we can make use of the limit timescale in proving results.

To see the effect of the changing the timescales we again
consider the simple Markovian example.

Theorem 2. Consider a single server fed by traffic pro-

duced by N independent identical Poisson sources with ar-

rival rate µ and services times disturbed exponentially with

mean (Nµ+NβC)−1. Let τ be the length of time it takes to

overflow a buffer of size NαB from empty given an overflow

event occurs before the queue empties again.

Then

E(τ ) =
Nα−βB

C

(

1−
1

NαB

−
2µ

Nα+β−1BC
+

2

(1 +Nβ−1C/µ)NαB − 1

)

Furthermore if α ≥ 0 and α+ β > 1 we have

lim
N→∞

E(τ ) =











0 α < β,

B/C α = β,

∞ α > β.

From this we can see that the parameter α − β controls
the limiting timescale in this case and we find that more
generally this is true. So that in general for α − β < 0
we see the timescale for events of interest tending to zero.
This often means that we only need to consider covariance
structures over very short intervals and in the case of point
process we find that covariance structure does not have any
effect [1].

5. INDUCED SAMPLE PATH SCALINGS
In the study of queueing system limits an important ap-

proach is that of obtaining results for the scaled sample

paths for the arrival process and apply continuous mapping
principles to obtain results for the various queueing statis-
tics of interest [2, 4]. The power of this approach comes
from the ability to prove results for the arrival process and
quickly and easily study many different queueing systems,
for example feed forward queueing networks or various ser-
vice disciplines.

To investigate the sample path scaling induced by the
(α, β) many sources scaling we consider the stationary queue
length of a deterministic server, i.e. traffic is served at a con-
stant rate. In theN th system the rate of service isNµ+NβC
and we are interested in P(QN > NαB). We look to find a

scaled process of the arrivals, ÃN
α,β, such that

P(fC(Ã
N
α,β) > B) = P(QN > NαB),

where fC is the queueing map defined as

fC(x) = sup
t>0

(x(t)− Ct).

Using this we find that the sample path scaling to consider
is

{

ÃN
α,β(0, t)

}

t>0
=

{

∑N

i=1 Ai(0, N
α−βt)

Nα
−N1−βµt

}

t>0

.
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