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ABSTRACT
In this talk we will summarize the main ideas and results on
randomized quasi-Monte Carlo (RQMC) methods, discuss
their practical aspects, and give several examples. RQMC
methods provide unbiased estimators of a mathematical ex-
pectation whose variance sometimes converge at a faster rate
than with standard Monte Carlo, as a function of the number
of simulation runs. We will also discuss an RQMC variant
specially designed for the simulation of Markov chains.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing

General Terms
Algorithms, Performance

Monte Carlo
We are interested in estimating the mathematical expecta-
tion µ of a complicated random variable X by simulation.
This is a central problem for performance evaluation and op-
timization in a large variety of areas. Simulation methods
typically obtain a realization of X by generating a sequence
of independent uniform random variables over the interval
(0, 1), say U1, . . . , Us ∼ U(0, 1), and transforming them into
X by some complicated algorithm, say X = f(U1, . . . , Us)
where f : (0, 1)s → R. That is, we can write

µ = E[X] = E[f(U1, . . . , Us)] =

∫

(0,1)s

f(u) du. (1)

For example, f may represent transformations of the uni-
forms into exponential or normal random variables by in-
version, followed by further transformations to eventually
compute a performance measure X. If the number of re-
quired uniforms is random and unbounded, we can take s as
infinite.

In the Monte Carlo (MC) method, this is repeated n times
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independently and the estimator of µ is

µ̂n =
1

n

n−1
∑

i=0

f(Ui), (2)

where U0, . . . ,Un−1 are independent random vectors uni-
formly distributed over (0, 1)s. We have µ = E[µ̂n] and the
variance is Var[µ̂n] = σ2/n, where σ2 =

∫

(0,1)s
f2(u) du−µ2.

If σ2 < ∞, then µ̂n obeys a central-limit theorem, which can
be exploited to compute a confidence interval on µ, whose
size converges as O(n−1/2).

Quasi-Monte Carlo
The idea of quasi-Monte Carlo (QMC), in its plain vanilla
flavor [6,25,30], is to replace the independent random points
Ui by a set Pn = {u0, . . . ,un−1} of n carefully-selected de-
terministic points that cover the unit hypercube much more
evenly than typical random points. The MC estimator is
then replaced by the (deterministic) approximation

µ̄n =
1

n

n−1
∑

i=0

f(ui). (3)

Often, an infinite sequence of points u0,u1,u2, . . . is con-
structed and one can take the first n points for a value
of n deemed convenient. Construction methods for these
point sets and sequences include lattice rules, digital nets
(or which the sequences of Sobol’, Faure, Niederreiter, and
Niederreiter-Xing are special cases), and variants of the Hal-
ton sequence, for example [20,25,30].

As a simple illustration, a widely-used type of QMC method
is a rank-1 lattice rule, defined as follows, for an arbitrary
integer n and dimension s [17, 25, 30]. Select a vector a1 =
(a1, . . . , as) whose coordinates aj all belong to {0, . . . , n−1}.
Usually we also take them relatively prime with n. Then let
v1 = a1/n and define Pn = {v = iv1 mod 1, i = 0, 1, . . . n−
1}, where the division and the modulus are coordinate-wise.
This point set is the intersection of a lattice with the unit
hypercube in s dimensions. Figure 1 provides a simple il-
lustration with n = 101 and a1 = (1, 12). The 101 points
ui = (ui,1, ui,2) cover the unit square quite evenly.

The aim is to construct the points so that the absolute inte-
gration error |µ̄−µ| converges faster than the (probabilistic)

MC rate of O(n−1/2), at least for certain classes of inte-
grands f . This error depends on both the point set Pn and
the function f . To study its behavior, the usual approach is
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Figure 1: The point set Pn for a simple lattice rule

in two dimensions with n = 101 points.

to consider a specific class H of functions f , often a repro-
ducing kernel Hilbert space, and derive a worst-case error
bound which is the product of two terms: one that depends
only on Pn and measures its departure (or discrepancy) from
the uniform distribution, and another that depends only on
f and measures its variability. This can be written as

|µ̄n − µ| ≤ D(Pn)V (f) (4)

for all f ∈ H, where V (f) = ‖f − µ‖H is the variation of f
in H, and D(Pn) is the discrepancy of Pn [5,7,8]. Note that
the definitions of D(Pn) and V (f) depend on each other.
Generally speaking, a choice of definition that makes V (f)
smaller will make D(Pn) larger, and vice-versa. Then, when-
ever V (f) < ∞, the error bound converges at the same rate
as the discrepancy D(Pn) as a function of n.

It turns out that for any real number α > 0, there are Hilbert
spaces H and corresponding variations V (f) and discrepan-
cies D(Pn) for which it is possible to construct point sets Pn

whose discrepancy D(Pn) converges as O(n−α+δ) for any
δ > 0. That is, we can beat MC by as much as we want
if we are allowed to restrict ourselves to certain classes of
functions. The price to pay is that for a larger α, more re-
strictive conditions must be made on f . For example, let
α be a positive integer and assume that H is the (Sobolev)
class of functions f that are periodic with respect to each
coordinate (f takes the same value when this coordinate is
0 or 1 while the other coordinates are fixed), and whose
partial derivative of order α with respect to any subset of
coordinates is square integrable. The variation is defined as
a weighted sum of these integrals. Then it is known that
there exist lattice rules for which the corresponding discrep-
ancy D(Pn) converges as O(n−α+δ) for any δ > 0, and such
rules are not difficult to construct by a computerized search.
See [4, 25,30,31] for the details.

The best known special case of (4) is certainly the classical
Koksma-Hlawka inequality [25], in which V (f) = Vhk(f) is
the variation of f in the sense of Hardy and Krause and
D(Pn) is the star discrepancy D∗(Pn), defined as follows:
For each u ∈ (0, 1)s, take the absolute difference between
the volume of the box with corners at 0 and at u, and the
fraction of Pn that fall in that box, and define D∗(Pn) be
the supremum of this quantity over all u ∈ (0, 1)s. Several
explicit sequences u0,u1, . . . , in any dimension s, are known

for which D∗(Pn) = O(n−1(ln n)s) where Pn = {u0, . . . ,un−1}.

These error bounds are powerful in the asymptotic sense
(for n → ∞), but they are unfortunately unpractical in the
sense that as soon as the dimension exceeds a few units, it
takes an excessively large n0 to have n−1(ln n)s < n−1/2 for
all n ≥ n0 (i.e., to beat the MC error estimate). Moreover,
Vhk(f) and D∗(Pn) are typically much too hard to compute.
Despite this, for several classes of integrands, sometimes in
hundreds of dimensions, QMC approximations turn out to
give much more accurate estimates than MC (empirically)
[2, 13, 29]. Some explanation of this success will be given
below.

Randomized Quasi-Monte Carlo
One practical difficulty with (deterministic) QMC is that re-
liable error estimates are hard to obtain. Another limitation
is that the worst case error bound is often infinite, for exam-
ple when f is unbounded (which happens frequently along
the boundaries). Randomized QMC (RQMC) addresses these
problems by randomizing Pn in a way that for its random-
ized version (called an RQMC point set):

(a) the entire point set retains its high unifor-
mity;

(b) each individual point is a random vector hav-
ing the uniform distribution over (0, 1)s.

The RQMC estimator is µ̂n,rqmc as in (2), but U0, . . . ,Un−1

are now the n RQMC points. We have E[µ̂n,rqmc] = µ (un-
biasedness) and we hope that Var[µ̂n,rqmc] < Var[µ̂n]. This
can be proved in some settings. In fact, the worst-case vari-
ance over the functions f ∈ H with a given variability, say
V (f) ≤ 1, does not exceed the mean square worst-case error:

sup
V (f)≤1

Var[µ̂n,rqmc] = sup
V (f)≤1

E[(µ̂n,rqmc − µ)2]

≤ E

[

sup
V (f)≤1

(µ̂n,rqmc − µ)2
]

where the expectation is with respect to the randomiza-
tion. The latter often has the same convergence rate as the
squared worst-case error with the non-randomized points.
In some cases the variance is also strictly smaller than the
mean square worst-case error. For example, for the space
H of functions with square integrable mixed partial deriva-
tives up to order α, it is known that there exist RQMC
rules with O(n−2α−1+δ) variance (although we do not know
how to construct these rules explicitly except for α = 1
where scrambled nets are known to achieve this rate [26,27]),
whereas only O(n−2α+δ) can be achieved for the worst-case
error [9].

One very simple example of RQMC point set is as follows.
Take an arbitrary QMC set Pn and add a random shift mod-

ulo 1 to all the points simultaneously. That is, generate a
single point U uniformly over (0, 1)s and add it to each point
of Pn, modulo 1, coordinate-wise [3,17,30]. If Pn is a lattice,
then the lattice structure is preserved. Another example is
a random digital shift in base b [16, 22]: generate again U

uniformly over (0, 1)s, expand its coordinates in base b, and
add the digits to the corresponding digits of each point of
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Pn, modulo b. In the case where Pn is a digital net in base
b, this preserves the digital net structure.

To estimate the variance and compute a confidence inter-
val on µ, one may generate m independent realizations of
the RQMC estimator µ̂n,rqmc, say X1, . . . , Xm, based on m
independent randomizations of Pn, and compute their sam-
ple mean X̄m and their sample variance and S2

x,m. One
has E[X̄m] = µ and E[S2

x,m] = mVar[X̄m] [17]. If we assume
that X̄m is approximately normally distributed, then we can
compute a confidence interval on µ in a standard way. How-
ever, this normality assumption could be far from the truth
in general, especially if m is small, because the distribu-
tion of µ̂n,rqmc does not converge to the normal distribution
when n → ∞ [19]. As a simple illustration, if s = 1 (one
dimension) and we use a randomly-shifted lattice rule, the
distribution of µ̂n,rqmc (properly standardized) converges to
a uniform distribution [19].

ANOVA Decomposition
Devising an method that effectively integrates all reasonable
200-dimensional functions, say, is clearly hopeless, because
for example such a function could take arbitrary values in
each of the 2200 corners (or multivariate quadrants) of the
unit hypercube (0, 1)200. We would need at least 2200 points
to have at least one in each corner, and this is not practically
feasible. So how can we explain that certain classes of high-
dimensional functions are integrated quite accurately (much
better than with MC) by RQMC methods?

The best explanation seems to be that these functions for
which RQMC performs well turn out to be well approxi-
mated by a sum of low-dimensional functions, which in turn
can be integrated accurately by RQMC methods. A function
that is almost linear, for example, can be well approximated
by a sum of one-dimensional functions, and RQMC meth-
ods can perform extremely well on these one-dimensional
functions. Of course, this is an extreme case.

This idea can be formalized via the functional ANOVA de-
composition, defined as follows [21,28,32]. Suppose the vari-
ance σ2 is finite. Then f has a unique decomposition of the
form

f(u) = µ +
∑

u⊆S, u 6=φ

fu(u) (5)

where each fu : (0, 1)s → R depends only on {ui, i ∈ u}, the
fu ’s integrate to zero and are orthogonal, and the variance
decomposes as σ2 =

∑

u⊆S σ2
u

where σ2
u

= Var[fu(U)] where

U is uniformly distributed over (0, 1)s.

Let Pn(u) denotes the projection of Pn over the subspace de-
termined by the subset of coordinates u. For a given function
f , if there is a class J of small subsets of S for which

∑

u∈J

σ2
u
≥ ρσ2 (6)

for some ρ close to 1, then we can focus on constructing the
point set Pn so that its projections Pn(u) are as uniform
as possible for all u ∈ J (after the randomization), and
neglect the other projections. If we can achieve that, then
the variance terms on the left side of (6) can be reduced
significantly, which would yield an RQMC method having

much less variance than MC. When (6) holds for a class
of low-cardinality subsets J and ρ close to 1, we say that
f has low effective dimension. There are special cases of
this definition, for specific ways of choosing J [2, 17, 28].
For example, J may contain only the subsets of the first d
coordinates, for a small d, or only the subsets of cardinality
d or less (e.g., with d = 2 or 3).

Low effective dimension can sometimes be achieved by trans-
forming the function f via a change of variables that pre-
serves the mean µ, for example in a way that the first few
uniforms account for most of the variance [1,2,10,13,23,33].
That is, we change the way the uniforms are used by the
simulation. For example, this can be achieved by using a
bridge sampling technique or principal component decom-
position to generate the sample path of a Brownian motion
or a Lévy process, and sometimes by replacing some random
variables by their conditional expectations [1,6,10,13,17,24].

Specific Methods, Examples, and More
In the talk, we will examine specific RQMC techniques, and
provide examples and numerical illustrations of their per-
formance. Some of these examples will be taken from [17]
and [13].

For more on RQMC methods and their practical aspects, we
refer the reader to [11,13,18,20]. Software implementations
and programming examples can be found in the Java library
SSJ [12].

Array-RQMC for Markov Chains
Simulating a Markov chain usually requires a very long se-
quence of uniform random numbers. That is, we face a
high-dimensional integration problem for which RQMC is
typically ill-suited, and it is generally difficult to reduce the
effective dimension to a small value. However, a special
RQMC technique called array-RQMC, designed for that sit-
uation, has been developed recently [14, 15]. The algorithm
simulates n copies of the chain in parallel, advances all copies
by one step using an RQMC point set at each iteration, and
induces negative dependence between these copies in a way
that the empirical distribution of the n states at any given
step provides a more accurate estimate of the exact distribu-
tion than if the n copies were simulated independently. As a
result, it provides lower variance for the average of a state-
dependent cost function at any step. In some examples, the
variance can be reduced by factors of more than 1000, even
for Markov chains that evolve over a few hundred steps.

Estimating Something else than a Mean
RQMC can be used as well for other purposes than esti-
mating an expectation. For example, it can be effective for
estimating a quantile, or a function of several expectations,
or the gradient of an expectation with respect to a vector of
parameters, or to obtain an approximation of a function f
over a given domain, or to estimate the solution of an op-
timization problem in which the objective function or the
constraints (or both) involve mathematical expectations. It
can also replace MC in algorithms that combine MC with
approximate dynamic programming, such as least-squares
Monte Carlo [6].
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