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1. INTRODUCTION
File-sharing networks are distributed systems used to dis-

seminate information among a subset of the nodes of the
Internet. The general principle is the following: once a node
of the system has retrieved a file it becomes a server for this
file. The advantages of this scheme are numerous, and it has
been used for some time now in peer-to-peer systems such
as BitTorrent or Emule.

An improved version of this principle consists in splitting
the original file into several pieces (called “chunks”) so that
a given node can retrieve simultaneously several chunks of
the same file from different servers. The rate to get a given
file thus increases significantly, as well as the global capacity
of the file-sharing system since a node becomes a server of a
chunk as soon as it has retrieved it. This improvement has
interesting algorithmic implications since each node has to
establish a matching between chunks and servers.

The efficiency of these systems can be considered from a
transient and stationary perspective. In a transient scenario,
a new file is typically owned by one node at time 0, and N
other nodes are interested by it. One can look at the time
needed so that a given node, or a fraction α of the N nodes,
retrieves it. See for instance Yang and de Veciana [4] and
Simatos et al. [2]. In stationarity, a constant flow of requests
enters, and the first question is whether the capacity of the
file-sharing system is sufficient to cope with this flow.

2. MODEL DESCRIPTION
The stationary behavior of a file-sharing system is inves-

tigated in a stochastic context: arrival times are random
as well as chunk transmission times. For related models, see
Susitaival et al. [3] and references therein. A simple strategy
to disseminate chunks is considered: chunks are retrieved se-
quentially and a given node can be the server of only the last
chunk it got. See Parvez et al. [1] for a detailed motivation
of this situation.

When the file is cut into n ≥ 1 chunks, the system is mod-
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eled by an (n+1)-dimensional (continuous-time) Markov pro-

cess (X(n)(t) = X
(n)
0 (t), . . . , X

(n)
n (t)), where for 0 ≤ k ≤ n,

X
(n)
k

(t) represents the number of nodes with k chunks are

time t. Since chunks are retrieved sequentially, X
(n)
k

(t) rep-
resents the number of nodes with the k first chunks.

Model in the Single-Chunk Case. When n = 1, we
analyze the two-dimensional Markov process (X(1)(t)) with
Q-matrix Q1 given, for any x = (x0, x1) ∈ {0, 1, . . .}2, by

8

<

:

Q1(x, x + e0) = λ,
Q1(x, x − e0 + e1) = µr(x)(x1 ∨ 1)χ(x0 > 0),
Q1(x, x − e1) = νx1,

where e0 = (1, 0) and e1 = (0, 1) and χ is the indicator
function. This Q-matrix has the following meaning: new
nodes arrive according to a Poisson process with intensity
λ; once a node has the file, it leaves after an exponential
random variable with parameter ν; finally, the function r(·)
with values in [0, 1] represents an interaction term.
If r(x) ≡ 1, the X0(t) nodes which do not have the file are
served by the X1(t) which have it; the boundary condition
x1∨1 = max(1, x1) prevents the second coordinate to end up
in the absorbing state 0. One can consider r(x) = 1∧(x0/x1)
to account for the fact that two nodes cannot serve one node
simultaneously. The case r(x) = x0/(x0 + x1) models the
system from a contact process perspective, where each node
tries to get the file from a randomly chosen node at times of
a Poisson process.

Model in the Multi-Chunk Case. When n > 1, we an-
alyze the (n+1)-dimensional Markov process (X(n)(t)) with
Q-matrix Qn given, for any x = (x0, . . . , xn) ∈ {0, 1, . . .}n+1,
by

8

<

:

Qn(x, x + e0) = λ,
Qn(x, x − ek−1 + ek) = µk(xk ∨ 1)χ(xk−1 > 0),
Qn(x, x − en) = νxn

where k ranges from 1 to n.
The interpretation of this Q-matrix should be clear in view

of the above discussion in the case n = 1. When n = 1,
the system is characterized by the parameters (λ, µ, r, ν),
whereas for n > 1, it is characterized by (λ, µ1, . . . , µn, ν).
In both cases we are interested in determining the stability
region, i.e., the set of parameters for which the correspond-
ing Markov process is positive recurrent or transient.

The main technical difficulty to prove stability/instability
results for this class of stochastic networks is that, except for
the input, the Markov process has unbounded jump rates.
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3. STABILITY ANALYSIS
Fluid Limits. Classically, to analyze the stability prop-

erties of stochastic networks, one can use the limits of a
scaling of the Markov process, the so-called fluid limits. The
scaling consists in speeding up time by the norm ‖x‖ of the
initial state x, by scaling the state vector by 1/‖x‖ and by
letting ‖x‖ go to infinity. This scaling is, however, bet-
ter suited to “locally additive” processes, that is, Markov
processes that behave locally as random walks. When the
transition rates are unbounded, it may occur that the corre-
sponding fluid limits have discontinuities; this complicates a
lot the analysis of a possible limiting dynamical system.

A “fluid scaling” is nevertheless available for file-sharing
networks. A description for a possible candidate (xi(t)) for
this limiting picture would satisfy the following differential
equations,

8

<

:

ẋ0(t) = λ − µ1x1(t),
ẋk(t) = µkxk(t) − µk+1xk+1(t), 1 ≤ k ≤ n − 1,
ẋn(t) = µnxn(t) − νxn(t).

This has been, up to now, one of the main tools to investi-
gate mathematical models of file-sharing networks. In the
(closely related) context of loss networks, an analogous lim-
iting picture can be rigorously justified when the input rates
and buffer sizes are scaled by some N and the state variable
by 1/N . This scaling is not useful here, since the problem is
precisely of determining the values of λ for which the asso-
ciated Markov is ergodic whereas in the above scaling λ is
scaled. From this point of view the above dynamical system
is quite informal.

Interacting Branching Processes. Since scaling tech-
niques do not apply here, one needs to resort to different
techniques to study stability: coupling the linear file-sharing
network with interacting branching processes is a key idea.
For k ≥ 1, without the departures the process (Xk(t)) would
be a branching process where individuals give birth to one
child at rate µk. This description of such a file-sharing sys-
tem as a branching process is quite natural. It has been used
to analyze the transient behavior of these systems, see for
instance Yang and de Veciana [4] and Simatos et al. [2]. A
departure for (Xk(t)) can be seen as a death of an individual
of class k and at the same time as a birth of an individual of
class k+1. The file-sharing network can thus be described as
a system of interacting branching processes with a constant
input rate λ.

4. SUMMARY OF RESULTS
Heuristically, when µ < ν, then the second coordinate

X
(1)
1 of (X(1)(t)) is “stable”, since it essentially behaves as

a stable birth-and-death process. In this case the first co-

ordinates X
(1)
0 is close to a queue with input rate λ and x∗

servers which work at rate µ, where x∗ is the expectation

of X
(1)
1 under its stationary distribution. Although quite

informal, this argument gives the following result.

Proposition 1 (Case n = 1). Note ρ = µ/ν and

λ∗ =
µ

(1 − ρ)(1 − log(1 − ρ))

when ρ < 1.
If ρ < 1 and λ > λ∗, then X(1) is transient.

For the converse, assume that for each x1 ≥ 0,

lim
x0→∞

r(x0, x1) = 1.

Under this assumption, X(1) is positive recurrent if ρ ≥ 1,
or if ρ < 1 and λ < λ∗.

Although a complete classification is obtained in the single-
chunk case n = 1, the situation is more complex for n > 1.
The next result proves the analog of the “good” case ρ ≤ 1
when n = 1.

Proposition 2 (Infinite stability region). Fix n ≥
1, and assume that

µ1 > µ2 > . . . > µn−1 > µn − ν > 0.

Then X(n) is positive recurrent for any λ > 0.

Intuitively, what happens when the above condition fails
is that a bottleneck appears at the first k such that µk <
µk+1: similarly as in the case n = 1, there is a certain
subsystem which is “stable”, and therefore only offers a finite
throughput to the previous nodes. We prove this result in
the first non-trivial case n = 2. For the next proposition
we need the Markov process (XS(t) = XS

1 (t), XS
2 (t)) whose

Q-matrix QS is defined by
8

<

:

QS
`

(x1, x2), (x1 + 1, x2)
´

= µ1(x1 ∨ 1),
QS

`

(x1, x2), (x1 − 1, x2 + 1)
´

= µ2(x2 ∨ 1)χ(x1 > 0),
QS

`

(x1, x2), (x1, x2 − 1)
´

= νx2.

Proposition 3 (First bottleneck). Fix n = 2, and

assume that µ2−ν > µ1: then (XS(t)) is ergodic. If π is its

stationary distribution and λ∗ = νEπ(XS
2 ), then (X(2)(t)) is

ergodic for λ < λ∗ and transient for λ > λ∗.
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