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ABSTRACT

Due to the heterogeneity of many real biochemical systems,
stochastic simulation methods do not scale well as systems
become more complex and larger, whereas approximations
provided by continuous models fail to capture the stochas-
tic behavior of molecular species at very low numbers. A
hybrid simulation method is a natural idea to resolve this
dilemma. In this paper, we propose a novel notion of Petri
net called hybrid adaptive Petri net (HAPN), which is a
unified framework to conveniently incorporate ordinary dif-
ferential equations (ODEs), stochastic models, static hybrid
and adaptive hybrid models. By exploring the mutual de-
pendence of transitions, we make an improvement on the
hybrid simulation algorithm and achieve a substantial sav-
ing on computational cost. We implement an HAPN sim-
ulator on MATLAB and employ the improved algorithm in
the simulator. Two numerical examples are used to evaluate
the accuracy and efficiency of our improved algorithm.

Categories and Subject Descriptors

J.3 [LIFE AND MEDICAL SCIENCES]: Biology and
genetics; D.2.2 [Design Tools and Techniques]: Petri
nets; I.6.1 [SIMULATION AND MODELING]: Simu-
lation Theory

Keywords

hybrid adaptive Petri nets, hybrid simulation, bacteriophage
T7

1. INTRODUCTION
Over the past decades, the vast information gathered from

large-scale biotechnologies requires effective computational
models which are capable of integrating and analyzing the
data concerning the behavior and relationships of various bi-
ological elements. There is sufficient evidence showing that
randomness is the hallmark of biochemical processes which
involve molecular species at very low numbers [3, 24, 11].
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With these observations, stochastic chemical kinetics, which
captures the stochastic nature of reactions involving dilute
chemical species, has received a wide interest [11, 1, 21, 20,
9].

Many numerical algorithms and tools have been designed
for the stochastic solution of well-mixed chemical kinetic
systems. These methods can be traced back to the work
of Gillespie [7], who outlined two variants of the stochastic
simulation algorithm, the direct method and the first reac-
tion method. Using two special data structures and efficient
use of random numbers, Gibson and Bruck developed the
next reaction method [6], another variant of the stochastic
simulation algorithm.

However, many real biochemical systems are heteroge-
neous: a system (e.g. a genetic network) can have species
with low copy numbers (e.g. a gene) and species with high
copy numbers (e.g. proteins), and thus it includes reactions
whose rates differ by several orders of magnitude. Owing
to the heterogeneity of a biochemical system, the stochastic
simulation algorithm is computationally expensive for the
large populations, whereas approximations using determin-
istic models fail to capture the stochastic behavior that is
essential to small populations. An intuitive idea to resolve
this dilemma is using a hybrid model which differently treat
reactions whose rates are of different orders of magnitude,
in hopes that the hybrid model will speed up simulations
and preserve the accuracy. This is one motivation of our
work. In addition, we also note that a unified framework of
different models (stochastic, deterministic and hybrid) is of
great value to biological scientists, since in this framework,
issues of little biological importance are removed and they
can focus on modeling and analyzing biological systems.

In this paper, we propose a novel Petri nets formalism,
hybrid adaptive Petri nets, to address these issues. We call
our Petri nets formalism hybrid adaptive Petri nets, because
in an HAPN, transitions have two firing modes: continu-

ous and discrete, and they can adaptively change their be-
havior according to the marking. We furnish HAPNs with
the partition function which indicates the behavior (contin-

uous or discrete) of transitions. With the partition func-
tion, HAPNs can incorporate various types of models such
as ODEs, stochastic, static hybrid and adaptive hybrid mod-
els.

The main contributions of this paper are twofold. First,
we present the HAPN, a unified framework suitable for var-
ious types of models. Second, by exploring the mutual de-
pendence of transitions in discrete mode, we make an im-
provement on the hybrid simulation algorithm and achieve a
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substantial saving on computational cost. We implement a
universal HAPN simulation platform on MATLAB and em-
ploy the improved algorithm in the platform. The platform
is able to simulate not only biochemical networks but also
general HAPN models.

Using HAPN, we show that when the biological system
under study is heterogeneous, the adaptive hybrid modeling
is more accurate than the static hybrid modeling, and more
efficient than the exact stochastic modeling.

This paper is organized as follows. In the next section
we give an overview on related work. Section 3 briefly in-
troduces the necessary biochemical and mathematical back-
ground. In Section 4 we propose the concept and properties
of HAPNs. In Section 5 we use HAPNs to model biological
systems. Section 6 provides a simulation study of HAPNs,
including the improvement of the hybrid simulation algo-
rithm. Numerical examples are given in Section 7 to evalu-
ate the accuracy and efficiency of our improved algorithm.
The final section concludes the paper and prospects for fu-
ture work.

2. RELATED WORK
In recent years, Petri nets have been widely used in the

field of systems biology. According to the classification of
[4], Petri nets [12, 16, 22] are categorized as computational
models which qualitatively model and analyze biological sys-
tems. Moreover, stochastic Petri nets [9], timed Petri nets
[17], colored Petri nets [5], hybrid functional Petri nets [13,
18] and our work, hybrid adaptive Petri nets serve as bridges
between computational models and mathematical models.
Compared to other Petri net formalisms, hybrid adaptive
Petri nets are endowed with the capability to integrate var-
ious types of models.

In this paper, we make an improvement on the hybrid
simulation algorithm. In the language of Petri nets, a hy-
brid simulation algorithm has three elements: the partition
process, simulation of transitions in continuous mode, and
simulation of transitions in discrete mode.

The partition scheme can be static [15] or adaptive [11, 1,
21, 20]. The criteria for partitioning is based on the marking,
the rates of transitions, or a combination of the two [11, 1,
21, 20, 15]. Our algorithm uses an adaptive partition scheme
with criteria based on both the marking and the rates of
transitions.

As an alternative to ODEs [11, 1, 15], the chemical Langevin
equation can be employed to simulate transitions in contin-

uous mode [21, 20]. Theoretically, the chemical Langevin
is more accurate, but numerical ODE solvers are well de-
veloped and easy to integrate into the simulation algorithm.
Furthermore, in this paper, numerical examples show that
ODEs receive acceptable levels of accuracy.

Transitions in discrete mode can be simulated with the di-
rect hybrid method [11, 1], the next reaction hybrid method
[1, 21] and the technique of thinning [20]. The technique
of thinning is restricted to the circumstance where firing
rates of transitions are bounded with tight bounds. The
next reaction hybrid method allows a general distribution
of transition delays [21], but the direct hybrid method is
more computationally efficient [11, 1]. Our work is an im-
provement on the direct hybrid method, which significantly
promotes computational efficiency and attains satisfactory
accuracy.

Table 1: Propensities of some reaction forms

Reaction Propensity

Ri : Xj
ki−−→ ∗ kixj

Ri : Xj + Xk
ki−−→ ∗ kixjxk

Ri : 2Xj
ki−−→ ∗ ki

xj(xj−1)

2

3. PRELIMINARIES

3.1 Theory of Mass-action Stochastic Kinetics
Sufficient evidence has shown that biological processes are

inherently stochastic, and in this paper we give the formu-
lation of a biochemical system in a stochastic perspective.

A biochemical system can be viewed as a dynamical sys-
tem which has m (R1, . . . , Rm) coupled biochemical reac-
tions involving n species (X1, . . . , Xn) in a well-stirred vol-
ume. Generally speaking, a reaction Ri, (i = 1, . . . , m), can
be written as

n
∑

j=1

αi,jXj
ki−−→

n
∑

j=1

βi,jXj i = 1, 2, . . . , m, (1)

where αi,j and βi,j are, respectively, the numbers of molecules
of species Xj consumed and produced by reaction Ri, and ki

is the kinetic coefficient. In particular, if Xj is not involved
in reaction Ri, then we will have αi,j = βi,j = 0. The m×n

stoichiometric matrix is (vi,j)m×n, where vi,j = βi,j − αi,j .
We define vi = (vi,1, . . . , vi,n), which is an n-vector.

The state of the system at time t is given by x(t) =
(x1(t), . . . , xn(t)), an n-vector of non-negative integers rep-
resenting the number of molecules of each species. For the
sake of convenience we use x in short of x(t), and denote by
xi the number of molecules of Xi.

The dynamics of the system are specified by the propen-
sity of each reaction within it. The propensity of Rj , λj(x )dt,
is the probability that the reaction will occur during the in-
terval [t, t + dt). λj(x )dt is a function of the state vector x

by definition.
Although propensities of reactions can be computed using

different rate laws, our work focuses on mass action kinet-
ics. Under mass action kinetics Gillespie has shown that the
propensity of a reaction is a function of the kinetic coeffi-
cient, the populations of the reactants and a combinatorial
term capturing the number of reacting configurations [7].
Table 1 illustrates some examples of propensity functions,
where ∗ indicates that products of a reaction are irrelevant
to its propensity function.

Let {Nj(t), t ≥ t0} be the stochastic process counting the
occurrence of Rj during the time interval [t0, t], where t0 is
the initial time of the system and Nj(t0) = 0. It can be
shown that the time evolution equation for x (t) is [1]

dx (t) =

m
∑

j=1

vjdNj(t), (2)

with some initial value x (t0). Note that Nj(t) is an inho-
mogeneous counting process such that

P[Nj(t + dt) − Nj(t) = 1|x(t)] = λj(x(t))dt

Equation (2) is seldom analytically tractable, but fortu-
nately, there are exact algorithms to numerically simulate
(2) [7, 6].

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7753 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7753 



3.2 Mathematics of the Hybrid Approxima-
tion Strategy

Under many practical circumstances, the exact simula-
tion of a biochemical system turns out to be a formidable
task since the number of reaction events is tremendously
huge. To reduce the computational burden of stochastic
simulations, many approximate simulation algorithms are
proposed.

In one type of these approximations, a system of reactions
is partitioned into subsets C and D (C and D are short for
continuous and discrete respectively). This partition pro-
cess can be either static or adaptive: the static partition
means that the partition process is done before the simula-
tion and subsets C and D are fixed during the simulation,
while the adaptive partition means that the partition process
will be invoked during the simulation when it is necessary
and subsets C and D will change accordingly.

Reactions in subset C are approximated by the following
system of ODEs

dx =
∑

j:Rj∈C

vjλj(x )dt. (3)

This ODE approximation approach can be justified by the
system entering a specific region of its state space or to a
limiting process, which is called thermodynamic limit [1].

The remaining reactions, which constitute D, still follow
(2). Due to the ODE approximation (Equation (3)) of the
original stochastic system (Equation (2)), we now attain a
hybrid system whose dynamics are specified by [1]

dx (t) =
∑

j:Rj∈C

vjλj(x )dt +
∑

j:Rj∈D

vjdNj(t). (4)

If the partition rules meet certain criteria (this will be
elaborated in later sections), we can gain significant im-
provement in computational efficiency as well as tolerable
loss of accuracy when we use (4) to approximate (2). In
fact, in the thermodynamic limit as the system size tends
to infinity, (4) produces the same process as the solution of
(2), and thus the approximation becomes exact.

Through this paper, we will tackle the problem of model-
ing and analyzing biochemical systems within this theoreti-
cal framework.

4. HYBRID ADAPTIVE PETRI NETS
In this section, we introduce the notation and study the

dynamics of hybrid adaptive Petri nets. The concept of
HAPNs is developed mainly grounded on Section 3. In later
sections, we will find that the HAPN is quite an intuitive ap-
proach to model biological systems and is nicely integrated
with the hybrid simulation algorithm of systems biology.

4.1 Notation of HAPNs
First of all, we give some notations. Let N = {0, 1, 2, . . . },

R′ = [0, +∞).
Following the customary notation [19, 14, 13, 18] for defin-

ing Petri nets and their extensions, we define HAPNs as
follows.

Definition 1. An HAPN is a 7-tuple (P, T, A, W, M0, F, Par)
where:

1. P = {p1, p2, . . . , pn} is a finite set of places

2. T = {t1, t2, . . . , tm} is a finite set of transitions

3. P ∩ T = ∅ and P ∪ T 	= ∅

4. A ⊆ (P × T ) ∪ (T × P ) is a set of arcs

5. W : A → N is a weight function

6. M0 : P → R′ is the initial marking

7. M is the set of all reachable markings. ∀M ∈ M,
M : P → R′.

8. F : T ×M → R′ is a firing rate function

9. Par : T ×M → {C, D} is a partition function which
specifies the firing mode for a given transition. Here C

and D are short for continuous and discrete.

We define the marking M of an HAPN as a mapping:
M : P → R′. However we usually denote by M(t) the
marking of an HAPN at time t for convenience. Graphical
representation of an HAPN follows the conventional way
[19]: places are drawn as circles, transitions as bars or boxes.
Arcs are labeled with their weights (nonnegative integers)
while labels for unity weight are usually omitted. We use
dotted arcs to represent test arcs[13, 18]. An example can
be found in Section 5.

According to the definition, in a specific HAPN, P, T, A, W

specify its basic topology, M0 designate the initial state, and
F, Par are related to its dynamics.

4.2 Dynamics of HAPNs
Here we describe the way in which HAPNs evolve over

time. We mainly focus on features of HAPNs that make
them distinct from ordinary Petri nets. The most distin-
guishing feature of HAPNs is their adaptability, which means
that transitions can adaptively choose its behavior (contin-

uous or discrete) according to the partition function during
the evolution of HAPNs. This adaptability is fulfilled by
the dual firing mode of HAPN transitions and the partition
function.

4.2.1 Dual Firing Mode of HAPN Transitions

In an HAPN, each transition has two firing modes: con-

tinuous mode and discrete mode. Assume that p is a place
of an HAPN. Arc ai (i = 1, 2, . . . ) connects transition tai

to
p, and arc bi (i = 1, 2, . . . ) connects p to transition tbi

. Fig-
ure 1 is an example. Let C(t) denote the set of transitions in
continuous mode at time t, and D(t) the set of transitions
in discrete mode.

1a

2a

3a

1b

2b

1a
t

2a
t

3a
t

1b
t

2b
t

p

Figure 1: A place and transitions connected to it.

If a transition is in continuous mode, it fires continuously
like its peers in hybrid functional Petri nets (HFPNs) [13,
18] and its firing speed is given by the firing rate function
F .
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If a transition is in discrete mode, it fires discretely after
a random delay. When it fires, it behaves like transitions of
ordinary Petri nets [19]. The distribution of firing delays is
determined by the rate function F . The firing process of a
transition in discrete mode can be regarded as a counting
process. Let {Nti

(t)} denote the stochastic process which
counts the number of discrete firings of ti until time t. Nti

(t)
is a marking-dependent counting process such that

P[Nti
(t + dt) − Nti

(t) = 1|M(t)] = F (ti, M(t))dt.

Thus, the variation of contents in place p can be described
by

dM(p)

dt

=
∑

tai
∈D(t)

W (ai) · dNtai
(t) +

∑

tai
∈C(t)

W (ai) · F (tai
, M(t))

−
∑

tbi
∈D(t)

W (bi) · dNtbi
(t) −

∑

tbi
∈C(t)

W (bi) · F (tbi
, M(t))

where W is the weight function.

4.2.2 Partition Function

The role of a partition function in an HAPN is somewhat
like an indicator: it shows whether a transition should fire
in continuous mode or discrete mode. The motivation of in-
troducing the partition function is to integrate the adaptive
hybrid simulation algorithm into HAPNs: when certain con-
ditions are satisfied, transitions will change their firing mode
in order to keep a balance between computational efficiency
and simulation accuracy. However it is also feasible to repre-
sent other types of models. The partition function takes the
marking and one transition as its input, and outputs C or
D, which indicates the mode (continuous or discrete) that
the transition should follow.

The type of the model that an HAPN represents relies on
the property of the partition function. If the partition of
transitions depends on the marking of the HAPN, which
evolves with time, we obtain an adaptive hybrid model.
However, if the partition function is independent of the mark-
ing, we attain a static hybrid model. In particular, if the
partition function takes value C on all the transitions, we
arrive at an ODE model. And if the partition function takes
value D on all the transitions, we obtain a stochastic model.

4.2.3 Firing Rate Function

1p

2p

3p

it

1a

2a

3a

1b

2b

1q

2q

Figure 2: A transition and places connected to it.

The firing rate of a transition in either continuous or dis-

crete mode is specified by the firing rate function. Since
both the partition function and the firing rate function are
marking-dependent, a transition can have different forms of
rate function in different firing modes.

We do not impose many restrictions on the form of the
firing rate function, but add one requirement to it. Consider
the scenario in Figure 2 and we require that



















F (ti, M(t)) = 0 if Par(ti, M(t)) = D and

∃j such that M(pj) < W (aj);

F (ti, M(t)) = 0 if Par(ti, M(t)) = C and

∃j such that M(pj) = 0 and W (aj) > 0.

(5)
where the notations are the same as in Definition 1. In fact,
(5) is concerned with the firability of ti. In other words, ti

is enabled if F (ti, M(t)) > 0.

4.2.4 Evolution Equation of HAPNs

Let H = (P, T, A, W, M0, F, Par). H has n places. As-
sume that at time t, the marking of H is M(t), and Par

separates transitions of H into two groups: C(t) and D(t),
i.e. transitions in continuous mode and transitions in dis-

crete mode.
{

C(t) ={ti ∈ T |Par(ti, M(t)) = C}

D(t) ={ti ∈ T |Par(ti, M(t)) = D}
(6)

Let Nti
(t) denote the counting process which enumerates the

number of firings of transition ti, if ti is in discrete mode.
Let vti

denote the row in the incidence matrix of H that
corresponds to ti. vti

is an n−vector (v1
ti

, . . . , vn
ti

) such that

v
j
ti

= w(ti, pj) − w(pj , ti), j = 1, . . . , n.

w(ti, pj) =

{

W (α), if α = (ti, pj) ∈ A,

0, otherwise.

where A is the set of arcs and W is the weight function.
w(pj , ti) has a similar meaning.

The evolution of H can be described as

dM(t) =
∑

ti∈C(t)

vti
·F (ti, M(t))dt+

∑

ti∈D(t)

vti
·dNti

(t) (7)

Note that (7) is essentially the same as (4), which is the
theoretical basis of HAPNs’ integration with the adaptive
hybrid simulation algorithm of systems biology.

We have introduced the notation and discussed dynamics
of HAPNs. It is obvious that HAPNs is a natural extension
of stochastic Petri nets (SPNs). Moreover, we can see that
HAPNs represent a certain kind of stochastic fluid models.
And through a further analysis, we can prove that a subset
of fluid stochastic petri nets (FSPNs) [14], which contain
only timed transitions, can be regarded as special cases of
HAPNs [26].

5. MODELING BIOLOGICAL SYSTEMS US-

ING HAPNS
In this section, we prove Theorem 1, which guarantees

that the HAPN formalism is sufficient to model general bio-
chemical systems. Let

H = {H|H = (P, T, A, W, M0, F, Par)}

be the set of all HAPNs. According to Section 3, a biochem-
ical system can be expressed as a quintuple

B = (X ,R, x (0), Λ, T ype)
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where X = {X1, . . . , Xn} is the set of molecular species
involved in system B, R = {R1, . . . , Rm} is the set of reac-
tions in B, x (0) = (x1(0), . . . , xn(0)) is the initial state of
B, Λ = {λ1(x ), . . . , λm(x )} is the set of propensities of re-
actions in B, and Type indicates the type of the biochemical
model (ODEs, static hybrid, adaptive hybrid or stochastic).
Let B = {B|B = (X ,R, x (0), Λ, T ype)} denote the set of
all biochemical systems. We use the notation X ⊆ Y to in-
dicate that the processes that arise from X are contained in
those arising from Y.

Theorem 1. B ⊆ H.

Proof. ∀B ∈ B, B = (X ,R, x (0), Λ, T ype). To prove
this theorem, it is sufficient to show that B ∈ H. To fulfill
this task, we construct an HAPN which is equivalent to B.

Let H = (P, T, A, W, M0, F, Par). For every Xi ∈ X ,
construct a place pi ∈ P corresponding to it. Similarly, for
every Ri ∈ R, construct a transition ti ∈ T corresponding
to it. Thus, P = {p1, . . . , pn} and T = {t1, . . . , tm}. So the
state of B at time t, x (t), can be regarded as the marking
of H, M(t). In particular, the initial marking M0 = x (0).

A ⊆ (P × T ) ∪ (T × P ) is constructed as follows:
{

(pi, tj) ∈ A ⇐⇒ Xi is a reactant of Rj ,

(tj , pi) ∈ A ⇐⇒ Xi is a product of Rj .

Correspondingly, W : A → N is constructed as follows:

W (a) =

{

αj,i, if a = (pi, tj) ∈ A,

βj,i, if a = (tj , pi) ∈ A

where αj,i and βj,i can be found in (1). The firing rate
function F is defined as follows:

F (tj , M) = λj(x ) tj ∈ T, λj(x ) ∈ Λ

where M is the marking of H and x is the state of B.
The specification of Par depends on a case by case analy-

sis of Type of B. If B is an ODE model, Par takes value C

on all the transitions. if B is a stochastic model, Par takes
value D on all the transitions. If B is a static hybrid model,
then X is previously divided into two groups: Continuous

and Discrete. At this time,

Par(tj , M) =

{

C, if Rj ∈ Continuous,

D, if Rj ∈ Discrete.

If B is an adaptive hybrid model, then the partition scheme
is dependent on the state of B. Given that Par takes the
marking of H as its input, it is quite straightforward to
express the partition scheme as Par. A typical adaptive

partition scheme can be found in 6.1.
Equation (4) and (7) ensure that B and H share the same

dynamics, which implies that B ∈ H.

With Theorem 1, we can convert a biochemical system to
an HAPN. The bacteriophage T7 model illustrates the usage
of Theorem 1.

Bacteriophage T7 Model. The bacteriophage T7 model
(Figure 3) describes the intracellular growth of bacterio-
phage T7 [1, 23]. The components of the model are the
viral nucleic acids, a viral structural protein (struct) and
progeny virus (virus). The viral nucleic acids are classified
as genomic (gen) and template (tem). The biological process
is modeled by six transitions (Table 2). The model specifi-
cation is not complete, since the partition function has not

1R

2R 3R 4R

5R 6R

tem

gen

struc

virus

Figure 3: The bacteriophage T7 model. The dotted
arcs represent test arcs.

been designated. In Section 7, we will analyze and compare
different types of models for bacteriophage T7.

6. A SIMULATION STUDY OF HAPNS
In this section, we propose a simulation study of HAPNs.

Although an analytic-numeric study of HAPNs is desirable,
the analytic solution becomes a formidable task from the
computational point of view in many practical situations.
Thus the simulation approach might be the unique or the
more convenient way to study dynamics of HAPNs.

Although the HAPN is capable of representing different
types of models, here we focus on the hybrid simulation al-
gorithm, since other models, such as ODEs and stochastic
models, can be regarded as special cases of hybrid models.
From (7) we see that simulation of an HAPN is essentially
applying the hybrid simulation algorithm to a given bio-
logical system within the framework of HAPNs. A general
scheme of simulation algorithms of HAPNs is given in Figure
4. The algorithm has three main components: the partition
process, simulation of transitions in C(t) and simulation of
transitions in D(t). From Figure 4 we can see that the last
two components are intertwined.

Figure 4: A general scheme of the HAPN simulation
algorithm. t is the simulation time and tend is the
end time of simulation. C(t) and D(t) are the results
of the partition process at time t: C(t) is the group of
transitions in Continuous mode and D(t) is the group
of transitions in Discrete mode. The specification of
∆t is discussed in 6.3. In later subsections, step A is
discussed in 6.1 and step B is discussed in 6.2.

The distinguishing feature of our adaptive hybrid simu-
lation algorithm is that we separate transitions in Discrete

mode into two different groups and simulate the two groups
with different methods. Compared to previous work [11, 1],
this discriminatory approach achieves a considerable saving
of computational time. This will be elaborated in 6.3.

6.1 Partition Process
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Table 2: Specifications of transitions in Figure 3

No. Description Firing rate (day−1) Rate constant (ci)

R1 Switch from genome to template c1 · M(gen) c1 = 0.025
R2 Degradation of template c2 · M(tem) c2 = 0.25
R3 Synthesis of genome c3 · M(tem) c3 = 1.0
R4 Production of progeny virus c4 · M(gen) · M(struc) c4 = 7.5 × 10−6

R5 Synthesis of structural protein c5 · M(tem) c5 = 1000
R6 Degradation or structural protein c6 · M(struc) c6 = 1.99

Assume that an HAPN H = (P, T, A, W, M0, F, Par). The
partition process (step A in Figure 4) is performed by Par

and C(t) and D(t) are obtained from (6).
The role of the partition process in the algorithm is to

make a trade-off between computational efficiency and sim-
ulation accuracy. It determines whether it is appropriate for
a transition to approximate Discrete mode with Continuous

mode, or return to Discrete mode from Continuous mode.
If the partition function is independent of the marking, then
we attain a static partition scheme for H, which indicates
that the partition of H is given before simulation, and is
fixed for the entire evolution. However, the static partition
scheme can not accommodate to the dynamic variation of
biological systems [11, 15], so an adaptive partition scheme
is more desirable.

As is stated in [1, 21], an adaptive partition function can
be specified by two constants, τ and µ. If ∀ti ∈ T , the
following two conditions are satisfied:

F (ti, M(t)) ≥ τ (8)

and ∀pj which is the input place of ti,

M(pj) ≥ µ · (W (α) − w(ti, pj)), (9)

where α = (pj , ti) is an arc of H and

w(ti, pj) =

{

W (β), if β = (ti, pj) is an arc of H,

0, otherwise.

then

Par(ti, M(t)) = C.

If (8) or (9) is not met,

Par(ti, M(t)) = D.

In the algorithm, (8) and (9) are used to partition the set
of transitions during the simulation when it is necessary.

It can be shown that if τ and µ are sufficiently large,
the approximation given by the partition process can attain
accurate results. However, larger τ and µ will incur heavier
computational burden. The theory behind the partitioning
of transitions is related to the approximation of the chemical
Master equation [21].

6.2 Simulation of Transitions in C(t)

Simulating transitions in C(t) is essentially numerically
solving the following system of ODE:

dM(t) =
∑

ti∈C(t)

vti
· F (ti, M(t))dt (10)

where vti
is ti’s corresponding row in the incidence matrix

of H (Equation (7)).

Numerical methods of ODEs, such as the Euler method
and the Runge-Kutta methods, are well developed and fairly
simple computationally. A myriad of numerical methods are
already implemented and can be easily incorporated into the
simulation algorithm.

6.3 Simulation of Transitions in D(t)

Simulating transitions in D(t) is to find which transition
will fire next and the time when that transition will fire. If
a transition t′ ∈ D(t) will fire next at t + ∆t, our task is to
determine t′ and ∆t.

In [11, 1], all the reactions (equivalent to transitions in
Petri nets) in D(t) are simulated using the time-scale trans-
formation. However, the mutual dependence of transitions
can be explored to improve computational efficiency. Ac-
cording to the mutual dependence of transitions, we classify
D(t) into two subsets: D1(t) and D2(t). Unlike [11, 1],
transitions in different subsets are simulated with different
methods.

D1(t) and D2(t) are constructed as follows. If the firing
rate of a transition in D(t) is dependent of the firing of
some transition in C(t), we say that this transition in D(t)
is influenced by some transition in C(t). Otherwise, this
transition in D(t) is not influenced by any transitions in
C(t). D1(t) is the set of transitions in D(t) which are not
influenced by any transitions in C(t). On the contrary, D2(t)
is the set of transitions in D(t) which are influenced by some
transition in C(t).

Figure 5: Firing transitions in D(t). This figure fur-
ther explains step C and step D in Figure 4. Details
of ∆t1 and ∆t2 can be found in Algorithm 2.

The process of simulating transitions in D(t) (Figure 5)
has 3 main components: classifying D(t), simulating D1(t)
and simulating D2(t). We detail them as follows.

6.3.1 Classification of D(t)

In the context of mass action kinetics (Table 1), it is fairly
simple to determine whether a transition is influenced by
other transitions. If one of ti’s (ti ∈ D(t)) input place is
varied by some transition tj ∈ C(t), ti is influenced by tj

and then ti ∈ D2(t). If ti is not influenced by any transition
in C(t), then ti ∈ D1(t). A place is varied by a transition
if and only if it is an output place of the transition or an
input place of the transition with a positive weighted arc
connecting them. An example is given in Figure 6. The
process of classifying D(t) is summarized in Algorithm 1.
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Figure 6: All arcs have positive weights.
F (t1, M(t)) = c1 · M(p1), F (t2, M(t)) = c2 · M(p3) · M(p4) ·
M(p5), F (t3, M(t)) = c3 · M(p2), and F (t4, M(t)) = c4 ·
M(p1). p1 and p4 are varied by t4. C(t) = {t4}, D(t) =
{t1, t2, t3}. Thus, t1 and t2 are influenced by t4.
D1(t) = {t3}, D2(t) = {t1, t2}.

Algorithm 1 Classifying D(t)

1: input C(t), D(t)
2: D1(t) ← ∅, D2(t) ← ∅, P ← ∅
3: for all tc ∈ C(t) do
4: for all p which is an output place of tc do
5: P ← P ∪ {p}
6: end for
7: for all p which is an input place of tc do
8: if W (α) > 0 then
9: P ← P ∪ {p} // α = (p, tc) and W (α) is the

weight of α

10: end if
11: end for
12: end for
13: for all p ∈ P do
14: for all t′ of which p is an input place do
15: if t′ ∈ D(t) then
16: D2(t) ← D2(t) ∪ {t′}
17: end if
18: end for
19: end for
20: D1(t) ← D(t)\D2(t)
21: return D1(t) and D2(t)

It is not hard to see that D1(t) is corresponding to the
set of transitions with fluid independent firing rates in [2,
10], and that D2(t) is corresponding to the set of transitions
with fluid dependent firing rates in [2, 10]. This means that
methods described in [2, 10] are also applicable to simulating
D1(t) and D2(t).

In [2, 10], the classification of fluid independent and fluid
dependent firing rates is static, and cannot be changed dur-
ing simulation. However, our classification scheme is adap-
tive, and D1(t) and D2(t) can be adjusted if necessary.

6.3.2 Simulating D1(t)

For transitions of D1(t), firing time instant can be de-
termined in advance. The direct method, the first reaction
method [7] and the next reaction method [6] can be em-
ployed to simulate transitions in D(t). However, compared
to the first reaction method, the direct method is preferable
since it is more efficient than the first reaction method [25].
In addition, evidence [11, 1] shows that the next reaction
method is more time-consuming than the direct method in
the hybrid environment. So we choose the direct method to
simulate D1(t) for our algorithm.

6.3.3 Simulating D2(t)

Transitions in D2(t) can be simulated using two meth-
ods: thinning and time-scale transformation [2, 10]. Time-
scale transformation can tackle general cases while thinning
requires that firing rates of transitions should be bounded
with tight bounds [10]. However, under mass action laws, it
is not easy to find proper bounds for transitions in D2(t).
So, we use time-scale transformation in our algorithm.

Since F (ti, M(t)) for ti ∈ D2(t) is influenced by firing
of transitions in C(t), firing of transitions in D2(t) can be
considered as a nonhomogeneous Markov process. It can be
shown [11, 8] that the probability density function f(∆t2) is

f(∆t2) = F
∗

2 (t + ∆t2) exp(−

∫ t+∆t2

t

F
∗

2 (τ)dτ) (11)

where

F
∗

2 (t) =
∑

ti∈D2(t)

F (ti, M(t))

is the sum of firing rates of transitions in D2(t). And the
conditional probability that transition ti ∈ D2(t) fires at
time t + ∆t2 is

P(ti fires at t + ∆t2|∆t2) =
F (ti, M(t + ∆t2))

F ∗

2 (t + ∆t2)
. (12)

With the help of (11) and (12), we simulate transitions
in D2(t) with time-scale transformation, which can also be
regarded as the direct hybrid method [11, 1].

The algorithm of simulating D(t) is summarized as Al-
gorithm 2. Note that Algorithm 2 generates less random
numbers than the corresponding algorithm presented in [10].
In [10], for every enabled fluid dependent transition ti, one
should generate an random number ∆i, solve the equation
∫ t+τi

t
F (ξ, M(ξ))dξ = ∆i for τ , and then ∆t = min(∆i, ti ∈

D(t)). However, in Algorithm 2, to determine ∆t, one only
needs to generate in total two random numbers and solve
one similar equation.

In practice, it is possible that ∆t = ∞, which indicates
that transitions in D(t) will not fire in the current marking.
In this instance, we set ∆t to a predefined constant.
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Compared to [11, 1], we separate transitions (D1(t)) whose
rates are not influenced by firing of transitions in C(t) from
those (D2(t)) whose rates are influenced by firing of tran-
sitions in C(t), and simulate the two groups of transitions
in different ways. In Section 7 we show that this manner of
differential treatment brings about a considerable reduction
of computing time.

Algorithm 2 Simulating D(t)

1: input D1(t) and D2(t)
2: ∆t1 ← ∞, F ∗

1 ← 0
3: for all ti ∈ D1(t) do
4: F ∗

1 ← F ∗

1 + F (ti, M(t))
5: end for
6: if F ∗

1 	= 0 then
7: generate ∆ ∼ Expo(F ∗

1 ) // ∆ follows the exponential
distribution with parameter F ∗

1

8: ∆t1 ← ∆
9: end if

10: generate ∆ ∼ Expo(1) // ∆ follows the exponential dis-
tribution with parameter 1

11: find τ > 0 such that
∫ t+τ

t
F ∗

2 (ξ) dξ = ∆ // this calcula-
tion is accompanied by simulating transitions in C(t)

12: ∆t2 ← τ

13: if ∆t1 < ∆t2 then
14: generate Λ ∼ Unif(0, F ∗

1 ) // Λ follows the uniform
distribution which takes parameters 0 and F ∗

1

15: find tj ∈ D1(t) such that
∑j−1

u=1 F (tu, M(t)) ≤ Λ <
∑j

u=1 F (tu, M(t))
16: return ∆t1 and tj

17: else
18: generate Λ ∼ Unif(0, F ∗

2 (t + ∆t2)) // Λ follows the
uniform distribution which takes parameters 0 and
F ∗

2 (t + ∆t2)

19: find tj ∈ D2(t) such that
∑j−1

u=1 F (tu, M(t + ∆t2)) ≤

Λ <
∑j

u=1 F (tu, M(t + ∆t2))
20: return ∆t2 and tj

21: end if

6.4 Implementation
We implement a universal HAPN simulation platform on

MATLAB, and incorporate our hybrid simulation algorithm
in the platform. This platform can deal with not only bio-
chemical networks but also general HAPN models. In the
simulation algorithm, we use an adaptive partition scheme
and set τ = µ = 10. For transitions in C(t), we use the
Runge-Kutta 4th Order Method to numerically solve (10)
with time step 0.01. Although true dynamism [20], which in-
volves repartitioning immediately when it is needed, is more
adaptive to set the behavior of transitions according to the
marking of the HAPN, it requires a real-time checking mech-
anism which incurs costly computational effort. In our al-
gorithm, we check whether a repartition is necessary after
every ∆t is obtained. Numerical examples (Section 7) are
proposed to show that the setting of our hybrid algorithm
receives satisfactory results.

7. NUMERICAL EXAMPLES
In this section, we present two numerical examples to con-

firm our theory. The first example shows that adaptive

Table 3: Partition functions of SH1, SH2, and SH3

Par R1 R2 R3 R4 R5 R6

SH1 D D D C C C

SH2 D C D D C C

SH3 C D D D C C

hybrid models are more accurate than static hybrid mod-
els for heterogeneous biological systems. The second exam-
ple demonstrates that Algorithm 1 can speed up simulation
without loss of accuracy.

7.1 Bacteriophage T7 Model
The bacteriophage T7 model has been extensively studied

by [1, 23]. Here, we use this model to assess the accuracy
of the adaptive hybrid simulation algorithm. We consider
5 models: S, AH, SH1, SH2, and SH3. S is the stochastic
model, AH is the adaptive hybrid model which uses the al-
gorithm stated in Section 6, and SHi (i = 1, 2, 3) are static

hybrid models whose partition functions are given in Table
3. The selection of static hybrid models is representative,
since numerical results show that other choices of the parti-
tion function receive no better results than those obtained
by the partition functions in Table 3. We set the initial
marking M0 = (tem, gen, stru, virus) = (3, 20, 100, 4) and
simulate 5 models for 30 days of virtual time. We obtain
the empirical distribution function of the number of each
species after 30 days (Figure 7).
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Figure 7: The empirical distribution function of the
number of each species after 30 days. Results are
based on 1000 trials.

The stochastic model S serves as the standard, and the
other four models are approximations of S. From Figure 7,
we see that the results of adaptive hybrid algorithm, AH,
conform well with those of S. However, for static hybrid
models, things are different. SH1 produces fairly good ap-
proximations of S, but SH2 and SH3 incur tangible devia-
tions from S. Thus, it can be implied that R1 and R2 might
play a key role in the stochastic behavior of T7, since making
R1 or R2 fire continuously significantly modifies the overall
dynamical behavior of T7.
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From the above discussion, we find that static hybrid mod-
els might provide accurate approximations if before simula-
tion, one could identify those reactions that occur most fre-
quently. Nevertheless, this is not necessarily the case, and
it is entirely possible that the set of fast transitions would
vary according to time during simulation. On the other
hand, adaptive hybrid models, although they are compara-
tively intricate, can accommodate to the dynamical behavior
of the biochemical system and attain reliable results.

7.2 A Benchmark Model
In our simulation algorithm, we classify D(t) into two

groups, and simulate them in different ways. In this ex-
ample, we give a quantitative study of the computational
saving brought by this practice. We utilize an artificial bio-
chemical network (Figure 8) as a benchmark to assess the
efficiency of 5 algorithms: S, AH1, AH2, SH1, and SH2. S
is the fully stochastic model which serves as the standard.
AH1 is the adaptive hybrid algorithm which classifies D(t),
and AH2 is the adaptive one which does not classify D(t),
and simulates D(t) with the direct hybrid method. SH1 is
the static hybrid algorithm classifying D(t), and SH2 is the
static one not classifying D(t). SH1 and SH2 share the same
partition function:

Par(tij , M) =

{

C for i = 1, j = 0, . . . , k,

D for i = 2, 3, j = 0, . . . , k.
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Figure 8: The benchmark model. The firing rates
of transitions is shown in the figure. The number
of places per line, k, indicates the size of the model.
The benchmark model has 3k places and 3k +3 tran-
sitions.

From Figure 9, we can see that with respect to one type of
hybrid algorithms (adaptive or static), the algorithm which
divides D(t) into two groups (AH1 or SH1) is more efficient
than the one which does not divide D(t) (AH2 or SH2).
Thus, the practice of classifying D(t) brings to the hybrid
simulation algorithms a considerable saving on computing
time. Compared to the adaptive hybrid algorithm, the static

hybrid algorithm need not monitor the state of the system or
update C(t) and D(t) accordingly. However, AH1 is slightly
faster than SH2, which is the contribution of classifying D(t)
into two groups.

From Subsection 7.1, we show that adaptive hybrid mod-
els are more accurate than static hybrid ones since adaptive
models can accommodate to the dynamical behavior of the
biochemical system and attain reliable results. Thus, al-
though the adaptive hybrid algorithm consumes more time,
it obtains more accurate results.
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Figure 9: Average computing time of 5 algorithms as
the size of the benchmark increases. k is the number
of places per line in Figure 8. In the beginning,
every place has one token. The simulation time is
5 seconds. Results are based on 100 trials. The
simulation is run on a 2.2GHz processor and the
version of MATLAB is R2008b.

8. CONCLUSION
In this paper, we introduce the hybrid adaptive Petri net,

a unified framework which is capable of integrating various
types of models. This modeling framework is of great value
to biological scientists, since within this framework, issues of
little biological importance are removed and they can focus
on modeling and analyzing biological systems. Our formu-
lation of biological systems applies to the scenario of well-
mixed systems. We are now interested in adding the spatial
attribute to the HAPN, which will further enhance its mod-
eling ability.

We also make an improvement on the hybrid simulation al-
gorithm. By exploring the mutual dependency of transitions
in discrete mode, we classify transitions in discrete mode
into two subsets and simulate them with different methods.
We implement an HAPN simulator on MATLAB, and in-
corporate the improved algorithm in the simulator. Numer-
ical examples show that the improved algorithm significantly
promotes computational efficiency and attains satisfactory
accuracy.

When we design and implement the hybrid simulation al-
gorithm, two important issues should be concerned: effi-
ciency and accuracy. The hybrid simulation algorithm is
a compromise between the two issues. Our work is a sub-
stantial contribution to the first issue. On the other hand,
with a precise analysis of the approximation error of the
hybrid model compared to the fully stochastic one, we can
develop reliable criteria for partitioning the set of reactions,
which attain expected accuracy as well as minimized compu-
tational effort. [1, 21] present some attempts at the mathe-
matical analysis of the error caused by the hybrid simulation
algorithm. However, a full analysis of this issue remains to
be done. Our paper focuses on the first issue, and we hope
to contribute to the second issue in the future work.
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