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ABSTRACT

Recently some stochastic (probabilistic) extensions of the
deterministic network calculus have been developed, mainly
for exploiting the statistical multiplexing of flows aggregated
in packet based communication networks. This exploitation
could result "better” stochastic performance bounds than
those bounds provided by the inherently worst case analy-
sis of the deterministic network calculus. The core of these
stochastic extensions is the re-definition of the so-called ar-
rival and service curve in a probabilistic manner. Until this
time the re-definitions of these curves are based on tail prob-
ability like functionals. In this paper we perform a new kind
of stochastic network calculus based on defining arrival and
service curves using a different functional called tail weight.
The power of this approach is demonstrated by presenting
fundamental results on backlog and delay bounds and con-
catenation of nodes, furthermore suitable service curves and
numerical examples are also presented for one of the most
complicated packet service disciplines, the generalized pro-
cessor sharing scheduler.

Keywords
stochastic network calculus, workload loss ratio, statistical
multiplexing

1. INTRODUCTION

In this paper we perform a new kind of stochastic network
calculus based on defining arrival and service curves using
a different functional called tail weight. The application
of this functional is two-fold. On one hand, a very similar
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functional can be used to estimate the loss rate of traffic,
hence, this approach might inherently be suitable for loss
performance analysis in communication networks. On the
other hand, this functional is fully conformant to the use-
ful stochastic ordering of random variables by convex func-
tions. This type of stochastic ordering turned out to be
extremely efficient for calculating the new type of arrival
and service curves. The power of this approach is demon-
strated by presenting fundamental results on backlog and
delay bounds and concatenation of nodes, furthermore suit-
able service curve is also presented for one of the most com-
plicated packet service disciplines, the generalized processor
sharing scheduler.

The results of this paper are performed (without restrictions,
only for presentation purposes) in the discrete time domain
(having t = 1,2, .... discrete time instants) and the following
notations are used: A(s, t] denotes the number of bits arrived
to a node from a flow and D(s, t] is the output flow from the
node within the interval (s,t]. If A(t) and D(t) are used
that will mean A(0, ¢] and D(0, t], respectively. The backlog
at time ¢ is given by B(t) = A(t) — D(t) and the delay at
time ¢ is given by W (t) = inf{d > 0: A(t —d) < D(¢)}. In
a network context let AN (t) and DY (t) denote the arrivals
and departures at node N. Finally, let the positive part
operator be defined as (expr)™ = max[ezpr, 0].

In this paper A and D are assumed to be stationary and
ergodic processes, no further assumptions are imposed.

2. DETERMINISTIC NETWORK CALCU-
LUS

The original deterministic network calculus [25] operates
with envelope functions defined in a deterministic manner
to describe arrivals and services. The typical calculations
are built around a set of well-constructed algebraic manipu-
lations, which are coined as min-plus and max-plus algebra

[3]-

In data communication networks two operations on the min-
plus algebra has a particular importance. In what follows
the original definitions from [16] are recalled.

DEFINITION 1 (MIN-PLUS CONVOLUTION). Let f and g
be two wide-sense increasing' functions. The min-plus con-

LA function f is wide-sense increasing if and only if f(s) <
f(¢t) for all s <.
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volution of f and g is the function f®g(t) = info<s<:{f(t—
s)+g(s)} -

DEFINITION 2 (MIN-PLUS DECONVOLUTION). Let f and
g be two wide-sense increasing functions. The min-plus de-
convolution of f and g is the function

foglt) = ggg{f(HU) —g(w)}. 1)

The deterministic envelope function for the arrival process
is called arrival curve and its definition is as follows [16]:

DEFINITION 3 (ARRIVAL CURVE [16]). An arrival pro-
cess A(t) has an arrival curve «, if

At) —A(s) S alt—s) @ A< A®a. (2)

DEFINITION 4  (SERVICE CURVE [16]). Consider a node
N and a flow through N with input and oulput functions
A(t) and D(t) respectively. We say that N offers to the flow
a service curve 3 if and only if

D(t) = A® B(1). ®3)

The power of deterministic network calculus lies in the us-
age of the end-to-end (network) service curve, which can
provide much better results in performance bounds, than
that of analyzing the nodes in isolation and simply sum
up the per node bounds. If the hth node within the route
(h=1,2,..., H) of nodes offers to a flow a service curve S,
then the network service curve can be expressed as Bner =
b1®P2®...0 Bu.

3. STOCHASTIC EXTENSIONS OF THE DE-

TERMINISTIC NETWORK CALCULUS

Although the deterministic network calculus is a powerful
and expressive tool for describing the properties of commu-
nication networks, its worst-case system view cannot take
the effects of the statistical multiplexing into consideration.
This fact usually leads to the overestimation of the resource
requirements of multiplexed traffic sources. In order to uti-
lize the statistical multiplexing phenomenon, the extension
of network calculus in a stochastic manner is a valuable re-
search directions in performance evaluation tools and method-
ologies.

3.1 Saturation (tail) Probability Versus Loss
Ratio

Recently, several proposals have been made [21, 2, 4, 22, 27,
9] to overcome the weaknesses of the original determinis-
tic network calculus, most of them concentrating on adding
stochastic functionality to the original deterministic rules
(inequalities (2) and (3)). The so called effective envelope
approach achieves it in the following way.

P{A(t+7)— A(t) > E°(1) + x} < e(x) (4)
and for services:

P{A®S(t) > D(t) + 2} < e(2) (5)
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In (4) and (5) the terms E° and S° are called as arrival and
service envelopes with violation probability €. The term
P{A(t+ 1) — A(t) > E°(7) + z} is called tail or saturation
probability. This approach is useful since a set of QoS re-
quirements can be expressed in the form of tail probabilities
which provides a convenient description of the investigated
systems, at least in shorter time scales. For example the
buffer saturation probability in queueing models of network
nodes is often proposed as a Quality of Service measure [7,
15, 11, 25, 24, 23]. In numerous queueing theoretical studies
the buffer saturation probability (in infinite buffer systems)
is analyzed [26, 1, 18, 6, 5, 11, 25, 24, 23] and its estimates
are promoted as built-in elements in Quality of Service ar-
chitectures. This measure quantifies the fraction of time
during which the buffer occupancy exceeds a certain thresh-
old, and bounds from above the fraction of time during the
finite buffer (with the size of the threshold) is full.?

Although with the effective envelope approach the satura-
tion type network characteristics can be easily derived, it
faces some problems when important long-time behavior
characteristics such as workload loss ratio are to be quan-
tified. The buffer overflow probability is frequently used
for loss ratio estimation [7, 15, 25, 24, 23], nevertheless,
it is shown in [11], that the ratio of the workload loss ra-
tio (WLR) and the buffer saturation probability can be ar-
bitrary under certain circumstances. The expected traffic
(packet) loss ratio at network nodes or a network of nodes is
one of the key QoS parameters which should always be con-
sidered and controlled in almost all kind of traffic. Traffic
management functions (like connection admission control,
packet scheduling algorithms) and network designing meth-
ods strongly rely on loss performance analysis.

The characteristics of a system in longer time scales can be
conveniently expressed with a different stochastic extension
of the inequalities (2) and (3). This approach has been pre-
viously examined in [10], however, the statements presented
there are not valid for the entire sample path. The main
result of this paper is the introduction of this novel type
of probabilistic extension completed with a time adaptive
approach that is used in sample path arguments.

The novel definitions will take the following form with the so-
called tail weight functional : E[(A(t+71)—A(t)—Z¢(1))1] <
. for arrivals and E[(A ® S¥=(t) — D(t))*] < @s. for ser-
vices. Between the left hand side of (4) and the tail weight
functional above the following relation holds E[(A(t + T) —
A(t) = 2#(1))"]

= [, P(A(t+7)— A(t) > Z?(7) +x)de . From this it can
be seen that the novel definitions are related to the weight
of the tail, that is the integral of the tail probability which
has some practical consequences. The tail probability based
approaches try to find a bound on the distribution function
of A(t+7)— A(t). In our novel approach there is no need for
the upper bounds on the entire distribution function, since
a bound on the tail weight is enough for the analysis. It will
be shown that the expected value form of the definitions pro-
vides a simpler interpretation and proof of the statements,
due to the linearity of the expected value operator. One

2Such measures are usually referred to as resource based
measures or time-blocking, because they express the proba-
bility that a resource (like buffer) is blocked.



the other hand, the expected value approach gives a long-
run insight into the behavior of the investigated networks in
contrast with the time-instant® view of the saturation prob-
ability approaches. Such long term characterization can also
be more naturally supported by measurements.

3.2 Prior Works on Stochastic Network Cal-

culus

The recently developed probabilistic network calculi [21, 2,
12, 8, 27] follow the overflow type description of the inputs
and the services similar to inequalities (4) (5) introduced in
the previous section. The basic problem of these theoretical
studies is the handling of the expressions like the following®:
P(supg< <, {A(t) — A(t — s) — E°(s)} > z) for arrival pro-
cesses and P(supg<,«,{A® S°(s) — D(s)} > z) for services,
which require a sample path view.

These expressions can be evaluated by adding some addi-
tional assumptions regarding to the arrival and service pro-
cesses. For example, in [17] it is assumed that a bound is
available which limits the length of the busy period over mul-
tiple nodes®. In [12] the author uses a priori upper bounds
, however the derivation of such maximum virtual backlog
centric arrival and stochastic service curves that fulfill these
bounds is far from trivial. In [27] the authors define a calcu-
lus on stochastic processes that have a generalized stochasti-
cally bounded burstiness (gSBB) [20], which contains a pri-
ori assumptions on the backlog of these processes in a virtual
constant rate server. More recently in [8] based on the def-
inition of the stochastically bounded burstiness (SBB [22]),
one can observe rate correction terms besides the statistical
envelopes and service curves as additional constraints.

4. A LOSS ORIENTED AND TIME ADAP-
TIVE APPROACH

In this section a new type of arrival and service curve def-
inition are introduced, which relies on bounding the ex-
pected deviations from the envelope functions. It will also be
proven, that the proposed new descriptors with time adap-
tivity have the same convenient properties as that of the
original ones. The min-plus and max-plus algebra are also
applicable to the new functions and the concatenation theo-
rems are also valid. We provide theorems in the new frame-
work to compute such important network descriptors as the
backlog or the expected delay. It will be demonstrated how
the expectation operator fits naturally into the framework
of the network calculus when quantifying important charac-
teristics in long time scales.

If the system is stationary and ergodic the following defini-
tion is used for the expected workload loss ratio, LR :

_ E[# of lost bits in a time slot]
~ E[# of bits arriving in a time slot] =

E[(B—g¢)t
[(E[Aﬁ) 1 (6)

LR

3The tail probability approach often considers questions like:
What is the probability of a buffer overflow at time instant
t?

4The difficulties with these expressions are discussed in de-
tails in [17].

5Such bound is difficult to obtain.
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where B represents the stationary backlog of the system
with infinite buffer, ¢ is the so-called buffer threshold and
E[A] = E[A(0,1)] is the number of bits arriving in a unit
time slot®. We proceed from the definition of the workload
loss ratio (6), and based on this, a novel calculus is defined
which is suitable for packet loss estimations.

First, the mv-arrival curve”, the mv-service curve and their
time adaptive versions are defined for describing the inputs
and the service, than we prove fundamental per-node state-
ments for the backlog, delay and the mv-arrival curve of the
output traffic. Finally, it is shown, that the per-node results
can be extended to a network of nodes with the definition
of the network mv-service curve. The connection between
the mv-arrival curve and effective bandwidth [13], which is
a widely used template for resource usage estimation, is also
pointed out. For the theorems we assume only the station-
arity and ergodicity of the input and output processes.

DEFINITION 5  (MV-ARRIVAL CURVE). Let define Z¥ as
the mu-arrival curve of the flow with arrival process A if for
allt, T and ¢ > 0: E[(A(t+7)— A®t) — Z?(7)*] < o.

DEFINITION 6  (TIME ADAPTIVE MV-ARRIVAL CURVE).
2% s the time adaptive mu-arrival curve of the flow with
arrival process A if for all t and T

E[(A(t+ 1) — A(t) — 27D (r)) ] < (7). (7)

The function ¢(7T) is assumed to be positive valued and hav-
ing a finite sum (322 (1) < 00). ®

We note that the time adaptive mv-arrival curve enables the
relaxation of the stronger assumption set about the input
processes used in [8]. Now we continue with the definition
of the mv-service curve:

DEFINITION 7  (MV-SERVICE CURVE). For an input with
arrival process A a node offers an muv-service curve S¥° if
for allt >0 and ps > 0: E[(A® S%(t) — D(t))"] < ¢s.

DEFINITION 8
an input with arrival process A a node offers a time adaptive
mu-service curve S¥*® if for all t > 0:

E[(A® 5% (t) - D(t))"] < s (0). (8)

b1t is proven (e.g., in [11] and [14]) that the expected value
of the number of lost bits in a finite buffer system can be
bounded from above by the number of packets overflown
(when the queue size exceeds a certain buffer threshold) in
the system with infinite buffer.

"The abbreviation mv stands for 'mean value’, and is used
to clearly differentiate the mv-arrival and mv-service curves
from other definitions.

8The time dependence of the bounds in [17] and in this pa-
per is fundamentally different. Authors in [17] assumes that
there exist an upper bound on the busy period for all sample
paths and derives a bound along this assumption (as a con-
sequence the bounds in [17] rely on a busy period analysis).
In our paper there is no need to require this property. The
construction of the time-adaptive mv-arrival curve achieves
that upper bounds can be given for the performance mea-
sures without having such assumption.

(TIME ADAPTIVE MV-SERVICE CURVE). For



Again, @s(t) is assumed to be positive valued and having a
finite sum (372 @s(t) < 00).

The ultimate advantage of time adaptive curves is that the
non time adaptive versions cannot be used for bounds re-
quiring sample path arguments. In other cases the non time
adaptive curves still can be used (e.g., the mv-service curve
in single node performance bounds.). Note, that by letting
v and ¢, to zero the arrival and service curves of the deter-
ministic network calculus can be recovered. In other words if
© equals to zero, Z¥ becomes a deterministic arrival curve of
the arrival process A, and S¥* becomes a deterministic ser-
vice curve if ¢, equals zero. The previous property involves
that the time adaptive curves converges to the deterministic
curves as the time goes to infinity since if > 72 ¢(t) < oo
then lim; .o ¢(t) = 0.

Within the framework of the following theorems we formal-
ize stochastic bounds on some fundamental system charac-
teristics like backlog, delay and output traffic, with min-
plus calculus operations on mv-arrival curves and mv-service
curves. For the proofs the following lemma is needed about
the positive part operator:

LEMMA 1. For given X1, X2, X3, X4 random variables:

E[(X1 — X2 4 X3 — X2)T] < B[(X1 — X2)T] + B[(X3 — X4)T]

THEOREM 1  (BACKLOG BOUND). Let Z9™) be a time
adaptive mv-arrival curve of an arrival process A and S¥°
be a mu-service curve offered by a system that the flow tra-
verses. Z¢7 ©8%%(0) is a probabilistic bound on the backlog,
in the sense that, for allt > 0,
797 o 59(0

E[(B(t) — Z )+ es. (9

PrOOF. It follows from the definition of the backlog that
E[(B(t) — 277 @ §7:(0))*] = E[(A(t) - D(t) — 277
Se=(0)F] = E[(A(t) + A® S?=(t) — D(t) — A® S¥=(t) —
79(7) o §¥s (O))+]

By using Lemma 1 we get:

E[(A(t)+A®S%=(t)— D(t)— A®S%: (t) - Z2*M @5%+(0))*] <
E[(A(t) — A® S (t) — 2*(7) @ §%=(0))*] + B[(A® 5% (t) —
D(t))*].

From the definition of the mv-service curve and by extract-
ing the A ® S¥*(t) we recover that

E[(A(t) = A® 5% (t) = 277 © 5% (0)) ] + E[(A®@ 5% (1) -
D(t))*] < E[(A(t) — infocs<e {A(t —5) + 57 (s)} = 2°7 @
$9:(0))*] + ..

It can be easily verified that

E[(A(t) — info<s<{ At = ) + 5% (s)} = 27 © 5% (0)) "] +

@1 = El(supge o< (A1)~ Alt—5)+5% (s) - 2¢ D 25% (0)}) ]+

05 < Lo BI(A() — At —s5) = 5% (s) = 277 0 5%(0)) ]+
Ps-

Now we can increase each term of the sum by the substitu-
tion of s into the min-plus deconvolution, so we get:

> om0 BI(A() = A(t —5) = 5% (s) = 27D @52 (0)) "] +ps <
> iso BI(A®) — At —5) =59 (s) = 277 () +5%*(5)) ]+ ps.
After simplification we get:
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Siso BI(A(t) = A(t = 5) = 5% (s) = 277 (s) + 5% (s)) ] +
ps =20 BIA(1) = At — 5) = 277 ()] + s

From the definition of the time adaptive mv-arrival curve we
conclude that

Yo EI(AW) = At =5) =277 (5) s < 32, El(A(t)~
Alt —s) = Z“’(”( N+ e S TZ00(s) +onn

which completes the proof. [

One may notice that the left hand side of (9) expresses the
expected value of the number of bits above a certain buffer
level Z#(™ @ §%¢(0) in an infinite buffer system. In other
words, in a buffered system with a buffer size Z¢(™) @ 5% (0)
the statement in (9) establishes a definition based upper
bound on the loss rate. Dividing this loss rate with the
expected value of the bits arriving to the node gives a direct
upper bound on the workload loss ratio.

THEOREM 2 (MV-ARRIVAL CURVE FOR THE OUTPUT).
Let Z¢9) be a time adaptive mv-arrival curve of an arrival
process A and S¥° be a mu-service curve offered by a sys-
tem that the flow traverses. The function Z*( @ §%=(t) is
a mu-arrwal curve for the output traffic of the node in the
sense that:

Bl(D(t+u)-D(t)~2°T28% (u) 1< o(r)+ep.. (10)

K

7=0

PROOF. E[(D(t+u)—D(t)—Z?7 5% (u)*] = E[(D(t+
u) + A® 5% (t) = D(t) = A®@ §°*(t) = 27 @ 5% (u ))*]
Using Lemma 1 and the fact that A(t +7) > D(t + 7) wi
obtain that:

E[(D(t+u) + A® 8% (t) — D(t) — A® S*:(t) — 2* ¢
5% (u))*] < E[(A(t+u) - A® 5% (t) = 277 0 5% (u)) "]+
E[(A® 8%(t) — D(t))"].

From the definition of the mv-service curve and by extract-
ing the A ® S¥*(t) we obtain:
E[(A(t+u)—A®S%: (t)— 29D 05 (u)) ]+ E[(AQ 5% (t)—
D(#))*] < Bl(A(t+u)—infoc.<i{A(t—5)+ 5% ()} 297
S (u))ﬂ + @s.

It can easily be verified that

E[(A(t+u)—infocs<i{ A(t—s)+5% (5)} =27 057 (u)) ]+

s < Bl(supoc, < { A +u) = At = 5) + 5% (s) = 277 0
5% (u)}) ]+ ps < D BI(A(t+u) — A(t = 5) — 5% (s) -
790 0 8% (u)*] + ps. < X220 Bl(A( +u) — Alt —5) -

595 (s) — 7¢(7) o §¥s e

Now each term of the sum is increased by the substitution
of s into the min-plus deconvolution:

2220 El(A(t+u) — At — ) = 5% (s) = 27 @ 5% (u)) T] +
05 ST El(A(t+u) — At —5) = 57 (s) = 27 (u+s) +
§°(5)) T+ g

After simplification:

S El(A(t 4+ u) — At — 5) = 5%5(s) — 27D (u + ) +
S ()] + s =S50 E[(A(t +u) — A(t — s) — 2% (u +
$) ]+ s

From the definition of the time adaptive mv-arrival curve it
follows that

S El(At +u) — At — s) — 27T (u + )] + ¢ <
Zﬂo—o:o o(r) +ps. O



THEOREM 3  (DELAY BOUND). Let Z#() be a time adap-
tive mu-arriwal curve of an arrival process A and S¥° be a
mu-service curve offered by a system that the flow traverses.
Ifd: 29w —d) < 8% (u) (d is considered as a delay
threshold) for all u then:

E[(A(t — d) — Z ) + s (11)

PROOF. E[A(t—d)—D(t)] = E[(A(t—d)—
A® S?=(t) — D(t))"].
From Lemma 1 it follows that
E[(At—d)—A®S?(t) + AQ S¥:(t) —
d) — A® S?(t))"] + E[(A® S?=(t) —
d) — A® 5% ()] + ps.
The last step comes from the definition of the mv-service
curve. By extracting the min-plus convolution we obtain
E[(A(t—d)—A®S5%* (6)) |+ = E[(A(t—d)—infoc.< { Alt—
$)+ 5% ()] + .
Now it can be easily verified that
E[(A(t — d) — infoc.<i{A(t — 5) + 57 () )] + s <
El(supye.,c {Alt—d)—A(t—s)+5 ()}) T rpe < Y0y E
d) — At — ) + 5% (5)) "] + s < X2, El(A(t —d) — At —
s)+ 59 (s) "]+ 5.
It follows from the additional assumption of the theorem
that
S o BI(A(t—d)— A(t—8)+5% ()T +pe < T, BI(A(-
d) — At =)+ 27D (s = d)) "]+ s < 32 0(7) + ps.
The last step follows from the definition of the time adaptive
mv-arrival curve. []

A®S?(t)+

D(t))"] < E[(A(t -
D(t))*] < E[(A(t —

One can notice that Theorem 3 establishes a bound on the
expected value of the number of bits that suffers from a delay
larger than d. In order to establish end-to-end bounds from
the single node results we express the mv-service curve of a
network of nodes. In the following theorem the mv-service
curve of two concatenated nodes is given.

THEOREM 4 (CONCATENATION OF NODES). Assume that
a flow traverses nodes N1 and N2 in sequence. If E[(AN' ®

SH O (1)~ AN (1)) 1] < @1 (t) and E[(AN?@S%3(t)—-DV2(t)*] <
P2, then

SBO-DVEW)TT <Y ei(t) e, (12)

t=0

[(ANI ®S<ﬁ1(f)

which means, that Sf,ll(t) ® S¥ is a mu-service curve for
the system which consists of the concatenation of these two
nodes with Y52 ¢1(t) + p2 parameter.

Proor. E[(AN'®@S2 @582 (1)—DN2 ()] = E[(AN'®
5810 592 (1) — AN? @ 5€2 (1) + AN? @ 53, (t) — DV2(1))T].
From Lemma 1 it follows that
Bl(AN' @ S ® 5%5(1) - AN @ S54(0) + AV @ SE(1)
DN*(1)*] < B[(AM' @ SRi" @ S (1) — AN @ S (1) ] +
E[(A™? ® S{3(t) — DV2(1)) 7).

Using the definition on the min-plus convolution and the
mv-service curve we recover that

Bl(A™ @ S @ G (1) — AN @ SER())1] + B[4 @
S%3(1) = DM(6)*] < El(infosssi{infosuse-o{ AV (t =5 —
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[(A(t—

w)+SELY (u) H-Sna(s) ) —infoc o< LAV (t—5)+ 553 (5)}) F1+
2.
It can be verified that

Bl(infos,<efinfocuse— oA (t—s—u)+ ST () }+ 53 ()}

infocs<i {AN2(t — s) + SE2(s)) T+ 2 <

E[(supy< o< {infocusi- A (s u) 4S5 (u) S (s)—

A“(t )+S53()1) 1 Hpe < X1 Bl(infocuc-{AN (t—
— )+ SE (W)} + 554 (s) - AN (1 5) = SEE(9)) ] 2 <

zszoEumfosUsH{A Nt s =)+ SEE ()} + S5 (s) —

AN2(t — 5) = SR ()] + 2.

After simplification we obtain:

0 Bl(infocuce—o{ AV (= s —u) + SEL ()} + SE3(s) -
ANZ(t—5) = Sna(s) ] +p2 < 222, El(infocuce—s AN (-
s—w) + S5 (W)} = AVt =)+ 2 = T E[(AV @
SEA (= 5) = AVt = 9))T] + 02 S 3 1 (8) + 2
The last step follows from the definition of the time adaptive
mv-arrival curve. [

9 The application of Theorem 4 iteratively to a network of
nodes gives the following corollary.

COROLLARY 1  (NETWORK MV-SERVICE CURVE). If the
service offered at each node h = 1,..., H on the path of a
flow is given by a time adaptive mv-service curve S,fSh(t) for
h=1,..,H—1 and by a mv-service curve S for the H-th
node, then a network mu-service curve Sfe“t for the flow is
given by

S,f;f(t) — st1(t) ® S;SZ(t) Q.® S}fI‘*H (13)
with a parameter
H—-1 oo
u=psu+ Y. > pen(t). (14)
h=1 t=0

Using Corollary 1 it is possible now to draw up end-to-end
workload loss ratio bounds according to Theorem 1.

S. THE MV-ARRIVAL CURVE AND THE EF-

FECTIVE BANDWIDTH

The theory of effective bandwidth [13] defines a framework
for service provisioning, and as a template (function) it en-
ables computing the bandwidth or buffer requirement for
traffic sources in terms of the QoS requirements and the
operating point of the buffered system. Hence, this con-
cept provides a measure of resource usage which takes into
account the varying statistical characteristics and QoS re-
quirements of traffic sources. The exact definition is recalled
here from [13]:

DEFINITION 9  (EFFECTIVE BANDWIDTH [13]). The effec-
tive bandwidth of the source with arrival process A(t) is de-

9Note that, if we assume the second node also has a time-
adaptive curve, a similar (but more difficult to read) proof
can be given for the concatenation of the two nodes. This
also means that the convolution remains associative in this
case.



fined as:

1
(s, T) = sup{— log E[eS(A(HT)*A(m}} ,0< 8,7 < o0.
t>0 st

(15)

The following theorem relates the mv-arrival curve and the
effective bandwidth.

THEOREM 5. The muv-arrival curve of an input source can
be expressed from it’s effective bandwidth, according to the
following equation:

2°(r) = inf {me(s,r) - @} . (16)

PRrROOF. According to exponential bounds on random vari-
ables

L PP rac(sm)
BI(A(t+7) — A1) — 2°(r))T] < S (17)
holds for all positive values of s. Let ¢ identified as:

o5(— 2% (T)+rac(s,T))

Y= S . For Z#(r) we obtain:
Z%(1) = Tae(s, ) — @. (18)

By taking the infimum over s we obtain the smallest mv-
arrival curve as the right hand side of equation (16). [

A similar proof can be given for the following statement
about time adaptive mv-arrival curves.

EELEI

() _ _
Z (r) = ;r;g {Tozc(s,T) S

For demonstration, the time adaptive mv-arrival curve of
multiplexed regulated input flows'® is shown on Figure 1.
The time adaptive mv-arrival curve is normalized by the
number of flows and the per flow deterministic arrival curve
is also shown for easier interpretation. One can see that the
time adaptive mv-arrival curve exploits a significant statis-
tical multiplexing gain.

6. DETERMINING MV-ARRIVAL AND MV-
SERVICE CURVES

In the followings an illustration is given about the derivation
of the mv-arrival and mv-service curves for given inputs and
schedulers. For this purpose the mv-arrival curve for regu-
lated arrivals and the mv-service curve of the GPS (Gener-
alized Processor Sharing [19]) scheduler is investigated.

6.1 MV-arrival curve for Regulated Arrivals

We may consider regulated inputs as any kind of inputs
shaped by a general traffic shaper'!, e.g., a token bucket
controller. This traffic shaper ensures, that the output flow
has « as an arrival curve (see Definition 2), where « is a

10The mix of collection 1 and 2. See Table 1 in section 7.

"Traffic shaping is frequently used in QoS architectures, e.g.,
in DiffServ.
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Figure 1: The statistical multiplexing gain.

non-negative wide-sense increasing function. Consider the
collection (Z) of I inputs and assume, that these inputs
are independent and for each ¢ € Z, and for any s,t € R,
E[Ai(s,t]] < @ - (t — s), where &; = lim;—.o0 ;(t)/t < 00 is
the average rate of the flow.!> The effective bandwidth of
such an aggregate satisfies [13] the following equation:

a(s, t) < = Zlog (1 + (i) (e<ml(t)) - 1>> . (20)

161

Therefore in the sense of Theorem 5 the mv-arrival curve is
given by

;gf{SZIOg(H- @it ( <sai(t>>_1>)_log(;ps)}.

(21)

6.2 MV-service curve for the GPS Scheduler

For the proof of the main results in this subsection the fol-
lowing lemma is needed.

LEMMA 2. For given X1, X2, X3, X4 random variables:

E[((X1—X2)T — (X3 - X)) T <E[((X1 - Xz)—(Xs—Xéxz)J’%
22

Consider a GPS scheduler with I sessions. Let Z; be an mv-
arrival curve of the input from session %, 1); be the weight of
session 4, and assume that the Z7 functions are concave.

THEOREM 6 (GPS SCHEDULER). The curve

S¥e(t) = git + l9;t
;Zk 1"/’k_1/)1 !

is a mu-service curve for the input of session i with s =
K . . )
D i ST om0 where C is the rate of the link repre

—Z{OI" (23

sented by the scheduler, and g, = gf is the guaranteed
J

2The limit a; always exists for the wide class of sub additive
functions and can be computed as sup,{a:(t)/t}.



minimum service rate for session i. Here we note that (23)
is the expected value calculus type refinement of the effective
service curve deriwed in [17].

ProOF. For simplification in the followings let li; = by

The meaning of this coefficient is, that if there is some left-
over capacity from session j, session i receives the f{;--th part
of that from the scheduler.

Fix t > 0 and let t, = max{s < t : B.(s) = 0} and
tey = max{s < tq,x # y : By(s) = 0}. Here t.y can be
considered as the latest backlog clearing time point in the
system before t,. Since:

By (t) = Ax(t) — Da(t) < Aa(t) — Au(ta) — gu(t — ta),

by replacing ¢t with ¢, and t, with t,, we get:
Da(t)=Da(ty) < Au(t)=Au(ty)+Bulta) < Ae(t)~ Au(tys)
Go(ty — tya).

From this it follows that:

Dy(t)—Dy(ty) > gy(t_ty)+zz¢y #2[g2t—Dq (1) —=Dq ()]

gy(t —ty) + 2, s, KE[gst — Au(t) — Au(tya)],
so finally we obtain that:

Y

Dy(t) > Ay(ty) +gy(t —ty) + (24)
Y RUga(t = tya) = (Aa(t) — Axltya))]"
z Ay

From the definition of the mv-service curve we obtain
B[(Ai@SF* (t)—Di(t)) "] < E[(Ai(t:)+S7° (t—t:)—Di(t)) "]
E[(Ai(t:) + gi(t — ti) + 22, /5lg5(t — i) — ZF (¢ — ta)]* —
Di(t)*].

By applying (24) we recover that:

Bl(Ai(ts) + gi(t —t:) + 32, 4 k5le5 (t — ti) = ZF(t — ta)]" —
Di(t))"] < E[(As(ts) +gi(t—t:) + 32, w5lg;(t—t:) = Z7 (¢~
)] = Auti) — gt — ta) + 30, w5105 (t — tig) — (Aj(t) —
Ay ()] )

After some simplification we get:

E[(Ai(ti) + gi(t — ti) + 2,4 R5lg5(t = ti) = ZF(t — t)]" —
Ai(ti)=gi(t—t)+32 4 1595 (t—ts) — (A5 ()= A; (£:5)]7) *]
E[(X; 4 w5105 (t =) = Z2(t — ta)]* — [g;(t — tig) — (A; () —
Aj(ti))] ).

Since Z{ is concave, the function [g;t—Z¥ (t)] is nondecreas-
ing in ¢. Si_nce t; > ti; we can replace t — t; with ¢t — ¢;;:
E[(X . R5lgi(t =) = ZL (¢ — ta)] T = [g5(t — tiz) — (As(t) —
At < El(C ., w5195 (t—ti) = Z5 (t—ti;)] T — g5 (¢~
tig) = (A;(t) — A; (1) )7

With the usage of Lemma 2:

B(X s k595 (t—tis) = ZF (t—ti)]" = [g5(t —ti) — (A;(t) —
Aj ()] < E[(3Z; 4 K519t —ti) — Z7(t—tij) — g;(t =
tig) + Aj(t) = Aj L)) ) = B[, w51A(8) — Aj(tiy) —
ZE(t—tig) "] = X, kG El[A; (8) — Aj (i) = Z7(t = ti;]F] <
Zj;éi Kjp-

The last step follows from the definition of the mv-arrival
curve. [

Note, that if we consider a wide-sense decreasing function
©(7), then a slightly different proof can be given for the fol-
lowing statement about the time adaptive mv-service curve:
The curve

S = g4 Y

m[ﬂﬂ—z}cm(ﬂﬁ (25)
A Lak=1 j
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E£:1 Y=Y

is a time adaptive mv-service curve for the input of session
. . _ w’t
i with o (1) =32, ST om0, (7).

7. NUMERICAL RESULTS

In this section we present the results of some numerical in-
vestigations in connection with our novel statistical calculus.
Let the packets size be fixed to 1500 bytes and let the time
be measured in milliseconds. For analysis different flow col-
lections are used. We have four types of input flows which
are token bucket constrained with some deterministic arrival
curve «;(t) = @;t+o0;. From these input flows we define four
flow collections as listed in Table 1.

Number of flows

Coll. a; o;
Coll. 1. | 0.016666 ppms | 5 50
Coll. 2. | 0.033333 ppms | 8 50
Coll. 3. | 0.066666 ppms | 5 50
Coll. 4. | 0.133333 ppms | 8 50

Table 1: The summary of collections.

The sustainable rate of the flows are given in packets per
milliseconds (ppms) and the maximal burst size is given in
packets. These parameter values are close to many practical
and common applications, since the flows has 200, 400, 800
and 1600 Kbps respectively.

L ‘ ‘ ‘ " time édaptivé curve -
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Figure 2: MV-arrival and time adaptive mv-arrival
curves.

7.1 MV-arrival and Time Adaptive mv-arrival

curves
In Figure 2 the comparison of the mv-arrival and the time
adaptive mv-arrival curves is shown for the mix of collection
1 and 2. Based on the effective bandwidth for regulated
inputs in [13] we used the following formula for the calcu-
lation of the time adaptive mv-arrival curves in accordance
with Theorem 5:

Zso(ﬁ(t)—ggg{z élo<1+%2i) (e<sai ) _Q)_W}

(26)
For the mv-arrival curves the setting ¢ = 1074, ¢ = 107°
etc. was used, and we set ¢(7) = e~ 7 for the time adap-
tive curve. Figure 2 demonstrates that as the time goes



to infinity the time adaptive mv-arrival curve suppresses all
mv-arrival curves. Despite of this property the time adap-
tive curves can be efficiently applied in performance bounds
referring for example to the workload loss ratio (see subsec-
tion 7.2). The success of these newly defined curves relies
on the fact that for typical arrival processes the supremum
in Z¢(" @ 5§¥+(0) is attained for small time values that are
smaller, than e.g., an upper bound on the busy period.

7.2 Performance Bounds over Multiple Net-

work Nodes
The scalability of the performance bounds over multiple net-
work nodes is crucial property regarding to the applicability
of the novel calculus. Therefore in this section we present
loss ratio and delay bounds for the network scenario in Fig-
ure 3.

s kR

Node 1 Node 2 Node H
Ple e |

Figure 3: The investigated scenario.

The performance bounds are calculated for the flow collec-
tion (F in Figure 3) that traverses H nodes in sequence.
For simplicity at each node the same flow collection will be
considered as cross traffic (F.). Within this analysis a static
priority scheduler is used in each node with a setting that
the cross traffic (F.) has higher priority than the flows in
F. The investigated packet forwarder has a finite capacity
and offers service curve 3(t) = 12.5 - ¢, for the aggregate of
the input flows in a work-conserving manner. This choice
ensures that the packet forwarder has a typical bitrate of
150Mbps.

For the calculation of the time adaptive mv-service curve,
which is offered to the aggregate of the flows in F' the fol-
lowing statement is used:

Consider a static priority scheduler with I classes. Let i =
1,...,I denote the priority of the classes, where the lower
number represents higher priority. If we consider a wide-
sense decreasing function ¢(7), then the curve

S () = [B(r) — 225 (1)) (27)

is a time adaptive mv-service curve for the input of class 4
with ¢4(7) = (1), where (7) is the deterministic service
curve offered by the scheduler for the aggregate inputs from
all classes, and ng) (7) is the mv-arrival curve of the aggre-
gate traffic from classes j < i. The proof of this statement

is similar to the proof of Theorem 6 and it is omitted here.

The calculation of the workload loss ratio happens according
to Theorem 1 and the delay according to Theorem 3. For
functions ¢ () and (1) functions in a form of Ke % have
been used and an optimization has been performed accord-
ing to K and 6.

The logarithm of the LR is shown in Figure 4 as the function
of the buffer size, with collection 1 as through flows and
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collection 2 as cross flows. This mix eventuates a utilization
of 0.2 for the scheduler. The curves with different patterns
are referring to the different number of network elements.

-1 T T T T T T T T
1 node
-15 2 nodes --------- i
4 nodes -
2 b 8 nodes ]
-25 1
g B S 1
a \ .
s -35 \ ]
D A\ "
o N -
- -4 F \ . -
-45 1
-5 L ‘\\ 4
-55 E
-6 L L L Ay L L L L L

20 40 60 80 100 120 140 160 180 200
Buffer size (packets)

Figure 4: The LR bounds for collection 1 as through
flows (F) and collection 2 as cross flows (F.).

One can see that the buffer requirement of the LR bounds
grows rapidly with the increasing number of concatenated
network elements. For example for a typical LR value of 10™4
the buffer requirement is 50, 68, 98 and 148 packets for the
1, 2, 4 and 8 node case respectively. From these values the
gain of the network service curve becomes plain with respect
to the values expected from the node-by-node analysis. The
buffer requirement increases significantly when the utiliza-
tion factor is increased. The same scenario with collection 3
as through and collection 4 as cross flows is shown in Figure
5 for illustration. The mix of collection 3 and 4 produces a
utilization of 0.8 for the scheduler. Figure 5 shows how the
difference of the buffer requirements for different number of
concatenated nodes grows, with the higher utilization. The
same phenomenon can be observed by increasing the number
of input flows at the schedulers.

-1
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-15 2 nodes - i
4 nodes -

-2 8 nodes i

-25 1

g 3 1
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2 -35 4
j=2)
o

o -4 4

. i . M . . . ,
200 400 600 800 1000 1200 1400 1600 1800 2000
Buffer size (packets)

Figure 5: The LR bounds for collection 3 as through
flows (F') and collection 4 as cross flows (F.).

These trends become more obvious when considering delay
bounds. For illustration, the logarithm of the expected num-
ber of packets that suffer a delay larger than a specific delay
value is plotted in Figure 6 From Figure 6 one can see, that



1node ——
2 nodes ---------
4 nodes -

2 b 8 nodes

Log(Expected number of packets)

20 30 40 50 60 70 80 90 100
Delay (ms)

Figure 6: The delay bounds for collection 1 as
through flows (F') and collection 2 as cross flows (Ft).

for example 1072 packets per milliseconds will suffer a delay
of 6.5, 12.3, 24.5 and 50 milliseconds in the 1, 2, 4, and 8
node case respectively.

7.3 MV-service curves for the GPS Scheduler

Finally we should like to illustrate that in case of some sched-
ulers, tighter stochastic service curves (or service envelopes)
can be derived by taking into account the special proper-
ties of the scheduling algorithm. Theorem 6 presents a mv-
service curve for the GPS scheduler in a concise closed form.
The mv-service curve there consists of the guaranteed min-
imum service rate of a given input flow and a term which
a lower estimates the capacity left by the sessions that al-
ready cleared their backlog. However, as it is shown in [19],
the scheduling gain can be much larger than its estimate
based on Theorem 6. In some cases the difference can be
as large as that the deterministic service curve suppresses
the stochastic curve. Figure 7 and 8 illustrate this kind of
tradeoff between the scheduling and multiplexing gain.

350 | "Deterministic GPS serive curve ]
PS mv-service curve --—-—-——

300 | E
250 | s

200 8

Amount of traffic (packets)

100 | 1

50 | 1

0 . . . . .
0 10 20 30 40 50

Time (ms)

Figure 7: The mv-service and the deterministic ser-
vice curve offered by the GPS scheduler for a specific
session in a scenario with significant multiplexing
gain.

Figure 7 shows the mv-service and the deterministic service
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curve offered by the GPS scheduler for a specific session in a
scenario where each session contains a large number of (mi-
cro) flows to produce a significant multiplexing gain. One
can see that despite of the loose estimation of the scheduling
gain the resulting mv-service curve is always larger than the
deterministic curve for a typical setting of ¢s = 107°. Fig-
ure 8 shows the same curves of a modified scenario, where
in one session we replaced the flows with their determinis-
tic aggregate to ignore the statistical multiplexing gain. In
this case the deterministic curve becomes larger than the
stochastic one over a specific time interval.

400

T . .
Deterministic GPS serive curve

PS mv-service curve --—-—-——
350

300 | P
250 | 1
200 - g

150 b ,

Amount of traffic (packets)

100 | ,

50 F 4
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0 10 20 30 40 50
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Figure 8: The mv-service and the deterministic ser-
vice curve offered by the GPS scheduler for a spe-
cific session in a scenario with negligible multiplex-
ing gain.

The incorporation of the scheduling gain to the stochastic
service curves can be one of the future works on the stochas-
tic service curves.

8. CONCLUSIONS

In this paper a novel stochastic network calculus is defined
which inherently relates to loss performance analysis thanks
to the mean value like definitions of arrival and service curve.
Time adaptive versions of this calculus can resolve sample
path problems and avoid the use of additional restrictive as-
sumptions used in prior works. Fundamental results have
been proven for the backlog, delay and output traffic en-
velope. The power of this approach is also demonstrated
through analytical results and numerical examples for gen-
eralized processor sharing (GPS) schedulers.
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