
From partially to fully lumped Markov chains in Stochastic
Well Formed Petri Nets

S. Baarir
LIP6

UPMC Paris
Souheib.Baarir@lip6.fr

M. Beccuti
Dip. di Informatica

Univ. di Torino
beccuti@di.unito.it

C. Dutheillet
LIP6

UPMC Paris
claude.dutheillet@lip6.fr

G. Franceschinis
Dip. di Informatica

Univ. Piemonte Orientale
giuliana@mfn.unipmn.it

ABSTRACT

This paper presents a generic framework for building quo-
tient graphs for Stochastic Well-formed Net models by ex-
ploiting the symmetries implicitly defined in the model. Two
instantiations are presented, one based on static symmetries
and the other one based on dynamic symmetries. The sec-
ond method can usually deal with partially symmetric sys-
tems in a more effective way than the first one. However,
in some cases it may result in a larger graph. We present
here a new approach that overcomes the weakness of these
methods. All these techniques can be used for efficient per-
formance analysis of systems.

1. INTRODUCTION
ICT systems have become pervasive and their complex-

ity is growing, also because most systems tend to be inter-
connected either locally with their environment, or globally
through telecommunication networks. Performance, relia-
bility, security, energy efficiency, are examples of issues that
need to be faced since the early stages of their design.

Model-based analysis and simulation can support the ver-
ification and evaluation of the system under design. Often
the analysis methods are based on the generation of the
state space: these methods must cope with the combinato-
rial explosion of the number of states. Several approaches
have been proposed in the literature to manage this prob-
lem: decomposition, approximations, bounding, and the use
of very efficient data structure (namely Decision Diagrams).
In this paper we concentrate on symmetry-based methods,
exploiting the presence of similarly behaving components to
aggregate the states and state transitions into equivalence
classes, hence generating a more abstract and compact state
space (a quotient graph).

This idea has been applied in the literature to both ver-
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ification [6, 8, 9] and performance evaluation (through the
notion of lumpability [5, 13, 14]). Such methods have also
been proposed in the specific context of the high-level Petri
net formalism called Stochastic Well-formed Nets (SWN) [3,
4, 5] for both qualitative (i.e. model checking) and quantita-
tive (i.e. performability) analysis: exploiting the structured
syntax of the formalism, a quotient graph is directly derived
from the model and used for verification purposes, moreover
a Continuous Time Markov Chain (CTMC) can be derived
from the quotient graph: either the quotient graph already
satisfies a markovian lumpability condition, or a refinement
algorithm is applied. The resulting CTMC can be solved to
compute performance/reliability measures. These methods
have been implemented in the GreatSPN tool [1, 15].

In ICT systems, symmetries can be global, i.e., symmetric
components always behave in a similar way, or local, mean-
ing that they almost always behave in a similar way but at
some point, they perform different actions. Among existing
quotient graphs, the Symbolic Reachability Graph (SRG)
and the Dynamic SRG (DSRG) satisfy the exact lumpa-
bility condition by construction. The SRG has proved very
efficient for representing globally symmetric systems but the
reduction is poor when considering local symmetries. The
DSRG attempts to efficiently deal with such systems. In-
deed the representation of “state aggregates” in the DSRG
is more flexible than in the SRG, allowing to capture sym-
metries that change during the model evolution. Many ex-
periments show that the DSRG can improve significantly the
size of the representation with respect to the RG. However,
in some cases, its size is greater than that of the RG.

In this paper, a unifying framework for building quotient
graphs for SWNs is presented. We show how it can be ap-
plied to the SRG and the DSRG constructions. We use
this framework for proposing an alternative construction,
the Partially Lumped DSRG (PLDSRG), that makes it pos-
sible to efficiently represent locally symmetric systems by
partially relaxing the lumpability constraint on the DSRG
construction. A lumped Markov chain can still be derived
from the PLDSRG by refinement.

The paper is organized as follows: Sec. 2 introduces the
SWN formalism and the notions of symbolic marking and
firing, Sec. 3 presents a generic algorithm that can produce
a quotient graph for SWNs, and how it is instantiated to
produce the SRG or the DSRG. In Sec. 4, a new method
is proposed with the aim of overcoming the weak points
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of the SRG and DSRG. Two examples are then presented
in Sec. 5, showing the effectiveness of the proposed new
method in practice, also comparing it with the Extended
SRG method. Conclusions and future work directions are
presented in Sec. 6.

2. PRELIMINARIES

2.1 Lumpability in Markov chains
Lumping of (finite) MCs is a useful method for dealing

with large chains [10]. The principle is simple: substitute to
the MC an “equivalent” one, where each state of the lumped
chain is a set of states of the original one. We focus here on
exact lumpability. More details can be found in [3].

Definition 1 (Continuous Time Markov Chain).
A CTMC C = 〈S, Q, π0〉 is defined by a state space S, an in-
finitesimal generator Q, that is an S × S matrix whose off-
diagonal elements are non negative reals, while each diagonal
element is defined as Q[s, s] = −

P
s 6=s′ Q[s, s′], and π0, an

initial probability distribution over S. We note {Xt}t∈IR≥0

the associated stochastic process.

Exact lumpability is defined by:

Definition 2. Let C be a CTMC and {Si}i∈I be a par-
tition of the state space. Then Q is exactly lumpable w.r.t.
{Si}i∈I iff:
∀i, j ∈ I, ∀s, s′ ∈ Si,

P
s′′∈Sj

Q(s′′, s) =
P

s′′∈Sj
Q(s′′, s′).

The following proposition holds:

Proposition 3. Let C be a CTMC that is exactly lumpable
w.r.t. a partition of the state space {Si}i∈I . Let Qlp be the
generator associated with this lumped CTMC, then:
• ∀i, j ∈ I,∀s ∈ Sj , Qlp(i, j) = (|Sj |/|Si|)×(

P
s′∈Si

Q(s′, s))

• If ∀i ∈ I,∀s, s′ ∈ Si, π0(s) = π0(s
′) then

∀t ∈ IR≥0, ∀i ∈ I,∀s, s′ ∈ Si, πt(s) = πt(s
′),

where πt is the probability distribution at time t.
• If Q is ergodic and π is its steady-state distribution

then ∀i ∈ I,∀s, s′ ∈ Si, π(s) = π(s′).

As states within an aggregate are equiprobable, exact
lumpability makes it possible to retrieve original state proba-
bilities, provided that the cardinality of aggregates is known.
As a consequence any performance index that can be com-
puted on the MC can also be obtained from the exactly
lumped one.

2.2 The Well-formed Petri Net model
In this section we formally define the SWN syntax and the

notions required for building a quotient reachability graph.

Definition 4 (Stochastic Well-formed Nets). An
SWN is a nine-tuple:

N = 〈P, T, C,Cd ,Pre,Post, Inh,pri,w〉

• P and T are the finite, disjoint, non empty sets of
places and transitions, modeling the state and the pos-
sible state changes respectively.

• C = {C1, . . . , Cn} is a family of finite and disjoint ba-
sic color classes. By convention, classes with index up
to h are not ordered, while classes with higher index are

(circularly) ordered (a successor function is defined on
their elements); basic color class Ci may be partitioned
into static subclasses {Cij}j. The global partition of
C is Parta = {{Cij}j}i.

• Cd defines the color domain of each place and tran-
sition; place color domains are specified as Cartesian
products of color classes (with repetitions), transition
color domains define their parameters and the cor-
responding types (in C); each parameter is associated
with a variable appearing in expressions labeling some
arc connected to the transition; V ar(t) (V ari(t)) de-
notes the variables of t (of type Ci). The instances
of a transition (i.e., the possible values assigned to
its parameters) can be restricted by means of a guard
pred, specified through a standard predicate, that is a
Boolean expression of basic predicates. Basic predi-
cates are: x = y, x = !y, d(x) = Cij, d(x) = d(y),
where x, y ∈ V ari(t) have the same type, !y is the suc-
cessor of y (if y belongs to an ordered class), and d(x)
denotes the static subclass x belongs to.

• Pre[p, t],Post[p, t] : Cd(t) → Bag(Cd(p)) are the pre-
and post- incidence matrices, whose elements are arc
expressions.

• Inh[p, t] : Cd(t) → Bag(Cd(p)) is the matrix defining
the inhibitor arcs and associated arc expressions.

• Arc expressions are weighted (and possibly guarded)
sums of tuples; the tuple elements in turn are weighted
sums of basic functions:

fi =

nsiX

q=1

αi,q.SCiq +
X

x∈V ari(t)

(βx.x + γx.!x)

where αi,q, βx and γx are integers. The multiset re-
turned by a tuple of basic functions is the Cartesian
product of the multisets returned by its elements.

• The domain of basic functions is a class Ci ∈ C, their
codomain is the set of multisets over Ci (Bag(Ci)).
There are three types of basic functions: the projec-
tion, denoted x, where x ∈ V ar(t), and selecting the
value of x from transition instance (t, c); the successor,
denoted !x, returning the successor of x; and the diffu-
sion / synchronization, denoted SCi (or SCij ), which
is constant and returns the whole set of colors of Ci

(of Cij ⊆ Ci).

• Function pri : T → IN is a function associating a
priority with each transition: priority zero is reserved
to timed transition (with random firing time, exponen-
tially distributed), the other values to immediate tran-
sitions (with zero firing time). w is a T indexed vector
of functions that assigns rates to timed transitions and
weights to immediate transitions (used for the proba-
bilistic characterization of conflicts resolution): it can
be both color and marking dependent, however, we con-
sider here the simpler case where w is color and mark-
ing independent.

It is worth noting that arc expressions of SWN prevent
objects belonging to the same static subclass from having
different behaviors: whatever action an object can perform,
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any other one will be able to perform the same at some point
of its evolution.

Let us illustrate the above definition on the example SWN
of Fig. 1: it comprises two color classes, each partitioned into
two static subclasses. The elements of a basic color class rep-
resent (identities of) objects of the same nature; a color class
may be partitioned into static subclasses: elements in differ-
ent static subclasses represent objects of the same nature
but with different behavior.

Figure 1: A simple example of SWN model

The color domain of a place defines the multi-field data
structure associated with its tokens. In the SWN of Fig.1
Cd(P3) = C1 ×C2, i.e., its tokens contain two fields of type
C1 and C2 respectively.

The transition color domains define their (C-typed) pa-
rameters and a guard: in the SWN of Fig.1 transition t2 has
two parameters, x and y, of type C1 and C2 respectively; the
guard d(y) = C21 requires y to take values in C21. All arc
expressions in the example are simply tuples of projections:
for instance transition t2 has an input arc with expression
〈y〉 and an output arc with expression 〈x, y〉: when an in-
stance of t2 fires, a token of the color associated with y is
withdrawn from P2 while a token with the first field equal
to the value of x and the second field equal to the value of
y is put into P3.

The priority of transitions is specified through a natural
number: in the example all transitions have priority 0, i.e.
they are all timed (immediate transitions are depicted as
black bars and labeled with a priority number if it is greater
than 1). w defines a firing rate for each transition (in this
example it is not color nor marking dependent).

An ordinary marking m is a function mapping each place
p into a multiset on Cd(p) (denoted as a weighted sum of
colors, represented by tuples). m0 is the initial marking.

We call instance of t, denoted (t, c) a binding c of the
variables of V ar(t) to elements in the appropriate color class.

Given a marking m, an instance (t, c) has concession in
m iff: (1) pred(t)(c) holds true; (2) ∀p: Pre[p, t](c) ≤ m(p);
(3) ∀p, ∀c′ ∈ C(p) : Inh[p, t](c)(c′) = 0 or Inh[p, t](c)(c′) >
m(p)(c′), An instance is enabled in m iff no instance of
a higher priority transition has concession in m. An en-
abled instance (t, c) may fire, producing a new marking m′

(m[t, c〉m′): ∀p, m′(p) = m(p) − Pre[p, t](c) + Post[p, t](c).
A path is a sequence m0[t1, c1〉m1[t2, c2〉m2 . . . mn−1[tn, cn〉mn.
The set of all markings reachable from m is denoted by [m〉
([m0〉 is called Reachability Set, RS). The Reachability Graph
(RG) structure includes all possible paths from initial mark-

ing m0 and models the behaviour of the system.

2.3 Symbolic Marking and Symbolic Firing
The interest in SWN is due to the Symbolic Marking and

Symbolic Firing notions that allow an (automatic) construc-
tion of reduced representations of the RG.

Symbolic marking: a symbolic marking is a compact rep-
resentation of a set of ordinary markings, which are equiv-
alent up to a permutation/rotation of colors within static
subclasses of non ordered/ordered basic classes; a symbolic
marking can also be interpreted as a more abstract repre-
sentation of the system state. It can be formally defined
through the group of permutations/rotations operating on
Ci ∈ C (the group of permutations operating on a set E is
the group of all the bijections of E on itself; rotations are
the permutations preserving the successor relation). The
need to partition the basic classes into finer subsets (i.e.
the static subclasses) requires to consider the subgroup of
permutations that exchange only elements within the same
static subclass (with each static subclass corresponding to
the so called “orbit” of some color element with respect to
the subgroup). The groups of permutations operating on
basic classes can be combined to obtain a group operating
on the markings.

An equivalence relation can thus be established between
markings: the equivalence classes induced by such relation
are the so called symbolic markings. Let us define a a sym-
bolic representation for each equivalence class: it relies on
a set-based notation where objects (colors) used for the de-
scription of symbolic markings are replaced by set-variables.
The set of possible instances of those variables gives exactly
the set of ordinary markings in the symbolic marking.

Notice that the average number of ordinary markings into
a symbolic marking depends on the partition into static sub-
classes, namely Parta: the finer the partition, the more re-
strictive the set of permutations, the less efficient the group-
ing of ordinary states; the maximum grouping is achieved
when Parta = Parts, where Parts is the degenerate parti-
tion with only one static subclass for each class. For the net
of Fig.1, Parts = {{{a, b, c}}, {{d, e, f}}}.

Definition 5 (Symbolic partition of C and Cd). Let
Part = {Parti}i=1,...,|C| be a partition of C into subclasses.
We define a symbolic partition of C into dynamic subclasses
as Symb = {Symbi}i=1,...,n where Symbi = 〈Dyni, cardi, di〉
is the symbolic partition of class Ci, and:

• Dyni = {Zk
i }k=1,...,ki

is a representation of a set of
partitions of Ci. Each element Zk

i is called dynamic
subclass.

• cardi : {1, . . . , ki} → N, is a function that associates
with each Zk

i its cardinality (also denoted |Zk
i |), i.e.,

the number of objects (basic colors) that it represents.

• di : {1, . . . , ki} → {1, . . . , |Parti|}, such that:

1. Parti,di(k) is the partition element in which the
colors represented by Zk

i are instantiated,

2.
P

k|di(k)=j cardi(k) = |Parti,j |.

The extension to color domain D =
Qn

i=1 Cei
i is straight-

forward:

SymbD =
nY

i=1

eiY

j=1

(Dyni)
def
=

nY

i=1

(Dyni)
ei
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Consider again the model in Fig. 1. A possible symbolic
partition associated with Parta is given by:

Dyn1 = {Z1
1 , Z2

1 , Z3
1} Dyn2 = {Z1

2 , Z2
2}

card1(1) = card1(2) = card1(3) = 1
card2(1) = 1 card2(2) = 2
d1(1) = 2 d1(2) = 1 d1(3) = 2 d2(1) = 2 d2(2) = 1

This means for instance that dynamic subclass Z3
1 represents

any object chosen in C12 (d1(3) = 2). Hence, the above
symbolic partition represents two actual partitions of C:
Z1

1 → {b}, Z2
1 → {a}, Z3

1 → {c}, Z1
2 → {f}, Z2

2 → {d, e}
Z1

1 → {c}, Z2
1 → {a}, Z3

1 → {b}, Z1
2 → {f}, Z2

2 → {d, e}.

Now, we can formally define a symbolic marking.

Definition 6 (Symbolic Marking). A symbolic mark-
ing is a tuple s = 〈bm,Part〉 where bm = 〈mark,Symb〉
and bm.Symb is a symbolic partition of C w.r.t. Part while
bm.mark is a function that associates with each place p ∈ P
a multiset on SymbCd(p): bm.mark(p) ∈ Bag(SymbCd(p)).
The equivalence class represented by s is denoted [s].

As there are several ways to symbolically represent the same
set of ordinary markings, a canonical representation is de-
fined so that the indexes assigned to each dynamic subclass
satisfy a given (arbitrary) ordering condition that ensures
the unicity of representation [5].

The syntax of SWN ensures that for a symbolic marking
where Part = Parta, the ordinary markings within this SM
reach sets of successors that are equivalent, up to a permu-
tation of the elements in their instances. To compute the
set of successors at the symbolic level, we define a symbolic
firing rule which is valid only when Part = Parta.

Symbolic firing: our symbolic firing rule is an adaptation
of the ordinary firing rule to symbolic markings. The sym-
bolic instance of a transition requires the introduction of two
additional functions, λ and µ: λ(x) identifies the dynamic
subclass assigned to variable x. If two variables x and x′ in
V ari(t) are assigned to the same dynamic subclass, function
µ is used to determine whether the chosen objects are the
same or not. If Ci is ordered, µ gives the position of the se-
lected object in the dynamic subclass that has been chosen
for the instance. For this definition let’s assume an arbitrary
ordering (e.g. a lexicographical one) among the variables of
t in V ari(t).

Definition 7 (Symbolic instance). Let t be a tran-
sition such that Cd(t) =

Qn

i=1 Cei
i . Let 〈bm,Parta〉 be a

symbolic marking. Let λ = {λi : V ari(t) → {1, . . . , |Dyni|},
µ = {µi : V ari(t) → N}, inst = (t, (λ, µ)) is a symbolic
instance of t referred to bm iff ∀i ∈ {1, . . . , n},∀x ∈ V ari(t)
• µi(x) ≤ cardi(λi(x)),
• If i < h then ∀0 < l < µi(x), ∃x′ < x such that λi(x

′) =
λi(x) ∧ µi(x

′) = l.
If V ari(t) = ∅ then µi et λi are not defined.
The equivalence class represented by inst is denoted [inst].

The symbolic firing of symbolic instance (t, (λ, µ)) from
a symbolic marking 〈bm,Parta〉 is composed of three steps:
splitting, firing and canonization of the reached symbolic
marking. We briefly describe these three steps, the detail of
which can be found in [5]:

1. In order to test the enabling of a symbolic instance
in a symbolic marking, we need to isolate the sym-
bolic objects selected by functions λ and µ: a dynamic
subclass of cardinality 1 is created for every object in-
volved in the firing (observe that this operation is a
refinement of the symbolic partition). The resulting
representation is called split symbolic marking.

2. The usual firing rule can directly apply on the split
representation. The only difference is that dynamic
subclasses of cardinality 1 substitute colors in the tran-
sition instance.

3. After the symbolic firing, a canonical representation is
computed that is minimal and unique for every sym-
bolic marking.

A symbolic transition instance represents several ordinary
transition instances departing from any ordinary marking
in the symbolic marking. Assigning a dynamic subclass to
a transition parameter means assigning any element in that
subclass to the parameter: it can be shown that this is cor-
rect because all the represented ordinary firings lead to the
same destination symbolic marking.

3. SYMBOLIC QUOTIENT GRAPH
A symbolic quotient graph is a graph whose nodes are

symbolic markings and whose edges represent symbolic fir-
ings among these nodes. We denote by SM (resp. SE) the
set of symbolic markings (resp. firings).

3.1 Generic Symbolic Quotient Graph

Algorithm 1 SQG(N , s0)

1: NewSt : 2SM

2: Succ, Succ′, RefSt : 2SM

3: Edges, Edges′ : 2SE

4: Inst : Set of Symbolic F iring Instances

5: Graph.Nodes = {s0}; Graph.Edges = ∅
6: NewSt.push(s0)
7: while NewSt 6= ∅ do
8: s1 = NewSt.P ick()
9: RefSt = CompSymbRef(s1,Parta)

10: Succ = ∅; Edges = ∅
11: for s1k ∈ RefSt do
12: for t ∈ N .T do
13: Inst = CompSymbInst(s1k, t)
14: for i ∈ Inst do
15: s2 = CompSymbSucc(s1k, i)
16: Succ

U
= {s2}

17: Edges
U

= {s1
lab(s1k,i)
−−−−−−→ s2}

18: end for
19: end for
20: end for
21: 〈Succ′, Edges′〉 = Optimize(Graph, Succ, Edges)
22: NewSt.Add(Succ′)
23: Graph.Nodes

U
= Succ′

24: Graph.Edges
U

= Edges′

25: end while
26: return Graph
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Algorithm 1 presents a generic reachability graph con-
struction for SWN models. It aims at giving a homoge-
neous overview of the different symbolic structures (quotient
graphs) that can be obtained from an SWN. As such, it is
not optimal since it cannot take into account optimizations
that would be suitable for only a subset of structures.

As standard reachability construction algorithms, this one
takes, as inputs, a net N and an initial marking s0, and itera-
tively applies the firing rule on each new reachable state until
saturation (i.e., until no new state is constructed). However,
unlike standard algorithms, this algorithm handles symbolic
states and firings.

In order to explain how it affects the construction, let us
first recall that each symbolic state s constructed by Algo-
rithm 1 is a pair s = 〈m̂,Part〉, whose elements are denoted
by s. bm and s.Part.

The symbolic firing rule (of section 2.3) operates on sym-
bolic states whose associated partition is Parta. Using this
partition makes it possible to build a graph on which we can
check properties we are interested in. Hence, we will never
handle symbolic states whose associated partition is finer
than Parta: the representation would be less efficient with-
out bringing any new valuable information. Yet, we may
be interested in using coarser partitions and have a more
compact representation of the state space while preserving
properties under consideration.

In this case, to apply our symbolic firing rule, we need to
get back to Parta. This is the goal of function CompSymbRef
on line 9: it rewrites a symbolic marking s1 according to a
finer partition, Parta in this case. This operation is called
symbolic refinement and generates a set of symbolic mark-
ings representing a partition of [s1]:

RefSt = {s1k = 〈m̂1k,Parta〉}.

Each symbolic marking s1k of RefSt fulfills the condition
s1k.Part = Parta, and the classical symbolic firing rule,
with the computation of successors, can be applied to it.
Lines 11-20 perform this computation for each symbolic state
s1k. Function lab(s1k, i) of Algo. 1 returns the following
value:

lab(s1k, i) =| [s1k] | . | [i] | .wt(i)

where wt is the (constant) rate function of transition t. As
we will see later, this label is used to generate a CTMC of
the studied system.

As we handle symbolic markings with possibly different
associated partitions, the problem of non-empty intersection
among the represented classes occurs. Several strategies can
be considered, depending on the property that we want to
check/preserve on the resulting structure. For instance, for
checking the reachability property, we can consider the pos-
sibility of removing some existing nodes if the set of states
that they represent is included in the set of states repre-
sented by a new symbolic marking, while the lumpabiltiy
property can be affected by this operation. The applica-
tion of the chosen strategy is assigned to function Optimize
(line 21).

Section 3.2 discusses the instantiations of function Opti-
mize for the SRG and the DSRG.

3.2 Instantiations of the generic algorithm
We discuss here on the existing instantiations of the generic

algorithm. They correspond to different trade-offs between

the size of the generated quotient graph and the needed ef-
fort for the satisfaction/preservation of exact lumpability.

SRG: the construction starts from a symbolic marking whose
associated partition is Parta. The symbolic firing rule ap-
plies directly and does not affect the partition. Thus, we
choose Parta as the associated partition for every symbolic
marking. As a consequence, strict inclusion is not possi-
ble between any two symbolic markings, only equality must
be considered. The edge resulting from a symbolic firing is
added to the graph, together with the head node.

The advantage of this construction is its simplicity : nei-
ther function CompSymbRef, nor functionOptimize is needed.
Exact lumpability is directly guaranteed, provided that the
performance parameters of the system are defined at the
static subclass level rather than the object level. Unfortu-
nately, when Parta is partitioned into many subsets of small
size, a symbolic marking represents only a small number of
markings and the efficiency of the method is poor [12, 7].

However, it may not be necessary to distinguish objects
belonging to different elements of Parta throughout the con-
struction of the graph: it is often the case that in several
states of the system, the element of Parta to which an object
belongs is not relevant. The DSRG exploits the possibility
of defining equivalence among objects on a dynamic basis,
i.e., the equivalence relation between states is reconsidered
after every firing.

DSRG: the partition associated with the initial symbolic
marking is Parts. Before applying the symbolic firing rule,
a symbolic marking is rewritten as a set of symbolic mark-
ings whose associated partition is Parta. This rewriting is
done by function CompSymbRef. For each of the resulting
symbolic markings, a set of enabled symbolic instances is
computed (function CompSymbInst at line 13) and the cor-
responding symbolic firings are executed.

However, the symbolic refinement may break symmetries
that actually remain valid after the firings. To optimize the
size of the graph, we must retrieve these symmetries.

The idea is to consider the elements in Succ and see if
some of them can be merged, so that we end up with fewer
markings and associated partitions coarser than Parta.

Let us now give an example of this operation. Consider the
net of Fig. 3, with a single color class C = {c1, c2, . . . , c5}.
The guard associated with transition lcs makes a comparison
between two objects of C. The only way this comparison
can be expressed in the syntax of SWN is by defining a
static subclass per object of C and an implicit order on
static subclasses derived from the enumeration order of the
elements of C. If Ci is the static subclass that contains ci,
then the SWN syntax of the guard is:
[(d(p) = C2 ∧ d(q) = C1) ∨ . . .∨ (d(p) = C5 ∧ (d(q) =
C1 ∨ . . . ∨ d(q) = C4))]

We focus on the symbolic marking 〈m̂,Parts〉 for which
two objects are in place ID, one is in place RQ, and the
remaining two in place GS. As the static partition is Parts,
function d of the symbolic partition is meaningless and we
use a notation for the symbolic marking in which only the
cardinality of the dynamic subclass representing the objects
in each place is given: 〈m̂,Parts〉 = ID(2)+RQ(1)+GS(2).

A significant subset of the refinement of this marking on
Parta and the corresponding firings of transition lcs are rep-
resented in the shaded part of Fig. 2. When trying to group
the newly obtained markings, we notice that whichever pair
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Figure 2: Refinement and grouping

of markings we consider, there exists a permutation be-
tween them. However, for grouping states, we need that
also the exact lumpability condition be satisfied. It means
that the states must be reached from markings belonging to
the same symbolic marking (which is true), with the same
input rate. The two markings on the left are reached with
a rate wlcs, while the two on the right have an input rate
2.wlcs, thus restraining the possibilities of grouping. We end
up with two symbolic markings, one with an associated par-
tition Part = {{c1, c2}, {c3}, {c4}, {c5}}, the other one with
Part = {{c1}, {c2}, {c3}, {c4, c5}}. The information in the
shaded part is then removed, and only what is in the white
portion is actually stored in the graph.

The notation {ci, cj}k represents here a dynamic subclass
Zk that is instantiated in {ci, cj}: in the left symbolic state,
d(Z0) = d(Z1) = 1 (i.e., both are instantiated in the first
element of Part), card(0) = card(1) = 1, meaning that
either c1 or c2 is in RQ, the other one is in place ID.

Formally, the recovering of lost symmetries is performed
by function Optimize DSRG (Algorithm 2) that instantiates
function Optimize of the generic algorithm. It calls function
CompSymbLump that

• examines Succ to find a set {s2k}k which can be grouped
from a qualitative point of view :

∃〈m̂,Part〉, [〈m̂,Part〉] =
[

k

[s2k] (1)

• with the additional constraint that all s2k must have
identical input rates from states of RefSt. The rate
from s1 to s′ is computed using the following formula:

rate(s1, s
′) =

| [s′] |

| [s1] | . | [s′′] |
.

X

s1

lab(s1k,i)
−−−−−−→s′′ ∈ Edges

lab(s1k, i)

(2)
where s′′ is any of the successors of s1 that have been
grouped to obtain s′.

The result is a set Succ′ of nodes that will be added to
the graph. Input arcs of elements that have been grouped
are redirected on the corresponding aggregate.

The effect of this local optimization on the size of the
graph is hard to predict. In fact, such a symbolic grouping
may generate a phenomenon of non-empty intersections be-
tween symbolic states, leading to several occurrences of a
marking in the final graph.

For example, starting from three markings {s1, s2, s3}, we
can end up with four symbolic markings: a separated group-

Algorithm 2 Optimize DSRG(Graph, Succ, Edges)

1: Succ′ : 2SM ;
2: Edges′ : 2SE ;
3: Edges′ = Edges;
4: Succ′ = CompSymbLump(Succ, Edges);
5: for s′ ∈ Succ′ do
6: Ed = {s

∗
−→ s′′ ∈ Edges′ | [s′′] ⊆ [s′]};

7: Edges′ = (Edges′ \ Ed) ∪ {s
rate(s,s′)
−−−−−−→ s′};

8: if s′ ∈ Graph.Nodes then
9: Succ′ = Succ′ \ {s′};

10: end if
11: end for
12: return 〈Succ′, Edges′〉;

ing of Set0 = {s1, s2, s3}, Set1 = {s1, s2}, Set2 = {s1, s3}
and Set3 = {s2, s3}, reached by different firings, may end
up with the construction of four symbolic states S0,S1,S2

and S3, which are not disjoint.
Although we are not yet able to predict the efficiency of

the approach on a given example, many experiments show
that it can improve significantly the size of the representa-
tion with respect to the RG. However, in some cases, the
size of the resulting symbolic graph is greater than the size
of the underlying RG.

By not considering the lumpability condition when trying
to regroup states after a set of firings, i.e., by weakening the
condition used by function Optimize DSRG, we may dra-
matically reduce the size of the final symbolic graph. Ac-
tually, lumpability prevents us from considering strict inclu-
sion between sets of states, because if two sets independently
satisfy a lumpability condition and one is strictly included
in the other, then their superposition cannot satisfy it.

Hence, the idea is to allow taking into account inclusion
in function Optimize so as to reduce the size of the resulting
structure, and then apply a refinement algorithm to obtain
a (lumped) Markov chain.

A such, two-step, approach has already been used in the
so-called Extended SRG (ESRG) construction for deriving a
lumped Markov chain starting from a quotient reachability
graph. However, this approach uses only partitions Parta

and Parts, resulting in a domino effect in the refinement
and a peak in memory usage [4].

4. THE PROPOSED APPROACH
The Partially Lumped DSRG (PLDSRG) is a preliminary
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structure on which a refinement algorithm can be applied
to obtain a fully lumped CTMC. The PLDSRG is said to
be partially lumped because it may happen that some of its
states do not satisfy the lumpability condition.

Algorithm 3 Optimize PLDSRG(Graph, Succ, Edges)

1: Succ = CompSymbLump(Succ, Edges)
2: for s′ ∈ Succ do
3: Edges = (Edges \ {sr

∗
−→ s′′ | [s′′] ⊆ [s′]}) ∪

{sr
rate(sr,s′)
−−−−−−−→ s′}

4: if ∃v ∈ Graph.Nodes s.t. [s′] ⊆ [v] then
5: Succ = Succ \ {s′}
6: if [s′] == [v] then

7: Edges = (Edges \ {sr
rate(sr,s′)
−−−−−−−→ s′}) ∪

{sr
rate(sr,s′)
−−−−−−−→ v}

8: else
9: Edges = (Edges \ {sr

∗
−→ s′}) ∪ {sr ∗

 v};
10: end if
11: else
12: Set = {v ∈ Graph.Nodes | [v] ⊂ [s′]}
13: if Set 6= ∅ then

14: Edin = {s
∗
−→ v | v ∈ Set}

15: Edout = {v
∗
−→ s | v ∈ Set}

16: Setin = {s | s
∗
−→ v ∈ Edin}

17: Setout = {s | v
∗
−→ s ∈ Edout}

18: Graph.Nodes\ = Set
19: Graph.Edges\ = (Edin ∪ Edout)

20: Edges = Edges ∪ {s′
l
−→ s | v

l
−→ s ∈ Edout}

21: Edges = Edges ∪ {s ∗
 s′ | s ∈ Setin}

22: end if
23: end if
24: end for
25: return 〈Succ, Edges〉

The generation of a PLDSRG requires the introduction
of a new Optmize function, called Optimize PLDSRG and
depicted in Algo. 3. Like Optimize DSRG, this function
uses CompSymbLump to group symbolic markings (line 1).
If one of the obtained states, namely s′, had been already
visited (lines 4-10), then only its input rate is added to the
graph (line 7), in case [s′] == [v]. If [s′] ( [v] then a spe-
cially annotated arc, ∗

 , is used to notify that there is an
inclusion relation (line 9). The case where a s′ is itself in-
cluding a set of states of the graph is treated in lines 11-21:
The whole set of states Set, s.t.

S
s∈Set[s] ⊂ [s′], is replaced

by s′ and, as consequence, the input/output edges are up-
dated. Here also, it appears an inclusion relation that must
be notified on the resulting structure (line 21).

Trivially, all those states that are linked by inclusion arcs
(arcs of the form  ) do not satisfy the lumpability condi-
tion. Then, to obtain a (fully lumped) CTMC, the PLDSRG
must be refined using these arcs as guides. We call F(ully)
L(umped) DSRG the resulting structure.

4.1 The algorithm for checking exact lumpa-
bility

We describe here an extension of Paige and Tarjan’s par-
tition refinement algorithm [11], for the exact lumpability
check of state aggregations induced by the PLDSRG. With
respect to Paige and Tarjan’s algorithm this extension uses

Algorithm 4 Algorithm for the exact lumpability check

1: B, D : 2SM

2: A, X : 22SM

3: Succ : 2(SM×R×N)

4: PartSucc : 2(2SM×R×N)

5: X.Create(PLDSRG)
6: A = X.PreSplit(Parta)
7: while X 6= A do
8: D = X.Remove() s.t. ∀Ai ∈ A, Ai 6= D
9: B = A.P ick(D) s.t. B ⊂ D ∧ ∀Ai ⊂ D, |B| > |Ai|

10: X.Add({B, D \ B})
11: Succ = CompAllSymbSucc(B,Parta)
12: PartSucc = PartWrtRateA(Succ)
13: A.Split(PartSucc)
14: end while
15: return A

Algorithm 5 Algorithm of the Split function

1: Set, Aj : 2SM

2: for 〈S, rate, j〉 ∈ PartSucc do
3: Set = ∅
4: Aj = GetElement(j)
5: Set =

U
s∈Aj

CompSymbRef(s,Parta)

6: Set = Set \ S
7: Set = CompSymbGroup(Set)
8: S = CompSymbGroup(S)
9: Aj = Set

10: Add(S)
11: UpdateEdges(S)
12: UpdateEdges(Ai)
13: end for

a different aggregation condition (the exact lumpability one)
and works using the information contained in the PLDSRG.

The stability condition of Paige and Tarjan’s algorithm is
weaker than the exact lumpability one, and is implied by
the latter. In fact, the exact lumpability condition does not
only check that all elements in each aggregate are reached
by the same source aggregates, but it also requires that they
are reached with the same rate.

The algorithm presented in this section exploits the ag-
gregations suggested by the PLDSRG, rather than blindly
applying state aggregation to the RG. This has two advan-
tages, in the initialization of X and A, and in the total
memory usage.

Algorithm 4 depicts the pseudo-code of the algorithm. It
has two main phases: the initialization (lines 5-6) and the
iterative refinement phase (lines 7-13).

The initial phase. The PLDSRG nodes are partitioned ac-
cording to the following invariant:

∀Xi ∈ X, ∀s1, s2, s1 ∈ Xi ∧ s2 ∈ Xi ⇔
∃s, s.Part = Parts ∧ [s1] ⊆ [s] ∧ [s2] ⊆ [s]

(3)

In other words, every element Xi contains all the symbolic
states that could be represented by s. Note that s may
not be a node of PLDSRG. Function Create operates this
partitioning (line 5).

PreSplit (line 6) returns a refinement A of X, such that
each element Ai ∈ A satisfies the exact lumpability condi-
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tion w.r.t. each element Xj ∈ X:

∀s1, s2 ∈ Ai,
X

sk∈Xj

rate(sk, s1) =
X

sk∈Xj

rate(sk, s2) (4)

This splitting is performed by dividing those sets of X
that are reached by some inclusion arcs. This is sufficient
to ensure condition 4, because blocks without any inclusion
arcs already satisfy condition 4. The splitting requires to
symbolically refine on Parta

1 the elements of the consid-
ered Xi and compute their input rates. Then in A, Xi is
split in a set of sets Ak : Xi =

U
k Ak (line 6).

The iterative refinement phase. The algorithm core consists
in repeating a refinement step until X converges to A (X =
A). This step is performed as follows: in X, an element D
that has been refined in a previous step is selected (line 8),
then the largest (in terms of number of contained items)
element B ∈ A s.t. B ⊆ D is chosen (line 9). Finally, X is
updated by replacing D with the set {B, D \ B} (line 10).

All successors of B are computed. This requires to refine
on Parta all the elements included in B and to store the
following information in Succ (line 11): the successor, the
rate with which it is reached and the index of the A-element
that contains it. Then, function PartWrtRateA performs a
partitioning PartSucc of Succ by grouping the tuples with
the same second and third element.

At this point, A must be refined according to the new par-
tition represented by PartSucc, as described in Algo 5: for
each element 〈S, rate, j〉 ∈ PartSucc, we refine all symbolic
markings of Aj on Parta and store them in Set (line 5).
Then, we remove elements of S from Set. Finally the ob-
tained sets Set and S are symbolically grouped (lines 7-8):
function CompSymbGroup checks whether subsets of its pa-
rameter satisfy condition (1).

Observe that function CompSymbGroup is crucial for pre-
venting the fragmentation of the representation of symbolic
markings. Any symbolic marking that is affected by Al-
gorithm 4 is split in a set of symbolic markings with as-
sociated partition Parta. In models where symmetries are
not global, static subclasses are often reduced to singletons.
Hence, without function CompSymbGroup, the size of the
FLDSRG tends to the size of the RG.

5. CASE STUDY
In this section, a distributed critical section (DCS) model

and a client-sever (CS) algorithm are studied. These two
models are locally symmetric: in both cases the colored el-
ements distinguish their behavior only when some specific
conflict situations must be solved.

A distributed critical section model: The SWN of
Fig. 3 models a system where a finite set of processes, whose
identifiers are represented by color class C, are in competi-
tion to access a critical section. The color domain of all the
places of the net is C. As there is a single class, the con-
stant function representing the set of all processes is simply
denoted by S.

Initially, all processes are idle (place ID), meaning that
they do not request the critical section. The firing of transi-
tion rcs represents a process requesting the critical section.
As soon as a request is accepted and reaches the selection

1The symbolic refinement used in Algo. 1.

phase (place GS), no new request can be accepted: permis-
sions for applying are removed from place PR by the firing
of fr (with priority over other transitions).

If there are several candidates, i.e., the number of tokens
in places RQ and GS is greater than one, a selection is per-
formed based on the identifiers: successive firings of transi-
tion lcs eliminate all candidates but the one with the highest
identifier. Actually, the function labelling the arc from place
FDR to transition wcs prevents a process from entering the
critical section (firing of wcs) until all the tokens represent-
ing other processes are in place FDR, meaning that either
the corresponding process did not apply, or its request was
discarded because at least one process with higher identity
applied too.

When a process releases the critical section (firing of tran-
sition ecs), all processes become idle again and a new round
can start.

A client/server model: the system represented by the
SWN of Fig. 4 is composed of a finite number of terminals
and a Remote Terminal Server (RTS). In subnet N1, the ini-
tial marking of place Clients corresponds to the number of
terminals. Via a terminal, a client tries to open a connection
with the RTS. This connection is accepted if the maximum
load of the RTS has not been reached yet, then it is authen-
ticated. The maximum load is given by the initial marking
of place MaxReq. The authentication is performed within
subnet N2. Variable x associated with transition AuthOk,
memorizes the user class of the client.

Once authenticated, a client asks for a service that can be
non-critical (e.g. a read transaction) or critical (e.g. a write
transaction). Non-critical services can be handled simulta-
neously (inside subnet N3) while a critical service must be
performed in mutual exclusion with any other service. The
system ensures a weak priority for non-critical services based
on a wave mechanism. The wave consists of the clients cur-
rently accepted by the RTS. Once a client chooses a critical
service (transition ChCs) accepted by the RTS (transition
AccCs), no client can join the wave anymore (inhibitor arc
from place Wave to transition AccR). Critical services are
performed only when there are no more clients in the authen-
tication stage or in a non-critical service execution. Place
NbReq is used to control this requirement. When the last
critical service of the wave completes, a new wave can start.

Subnet N3 models the handling of a non-critical service.
A service identity (variable i) is attached to the two parallel
tasks that perform the service in order for them to synchro-
nize at the end (transition eNCs).

For efficiency reasons, during a wave the RTS accepts a
limited number of different concurrent user classes (initial
marking of place MaxQueues) in the critical services. This
management is modeled by subnet N4. A critical service re-
quest related to a user class not already in competition (i.e.,
without its colour in place Queues) is rejected (transition
Rej) if the maximum number of concurrent user classes has
been reached.

A critical service is divided into two sequential stages: a
preprocessing step that can be performed concurrently and
a main step that is performed in mutual execution (see sub-
net N6). If a priority rule is applied then the requests access
the critical section following the order of the user classes.
Observe that in this case the first critical service that has
achieved its preprocessing step must wait if it does not be-
long to the highest priority user class in competition (see

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7733 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7733 



Figure 3: SWN of the Distributed Critical Section

Figure 4: SWN of the Client/Server System.

subnet N5). If there is no priority among user classes then
the access to the critical section is granted as soon as pos-
sible after having completed the preprocessing phase. This
can be represented by a fully symmetric net obtained by
deleting subnet N5.

From a modeling point of view, the priority among user
classes is managed in N5 using a swap mechanism based on
asymmetric guarded transition Swap (observe that [y < x] is
again not standard SWN syntax, but this is only syntactic
sugar). It ensures that place Elected always contains the
highest user class of the remaining critical services requests.
In order to guarantee that Swap is always performed before
allowing the next critical section entry, transition Swap is
given the highest priority (which is denoted prio3).

5.1 Experiment results
To experiment our methods, we have implemented our

algorithms on top of GreatSPN’s kernel. In our tool, one
can specify an SWN, and use different options to obtain the
results for the described constructions. The machine used
for our tests is a PC/Linux of 3.2 GHz and 3 Gb of RAM.

Tables 1 and 2 summarize the results, in terms of size of
the lumped Markov chain, obtained on the two examples
for different approaches: SRG, Refined ESRG (RESRG),

DSRG, PLDSRG and FLDSRG. The RESRG is the CTMC
obtained from the ESRG.

Column P represents the used parameter for each model.
For the DCS model, this corresponds to the number of pro-
cesses involved in the algorithm. For the CS model, and for
sake of simplicity, all the parameters of the algorithm are
set to the same value P .

Among the graphs that satisfy a lumpability condition,
these examples show that the approach introduced in this
paper, i.e., FLDSRG, improves the size of the resulting graph.
For the DCS example, the reduction w.r.t. the DSRG is not
very significant. Actually, there is a strong synchronization
among processes at the end of the critical section, as they
all return to idle state. Hence a few nodes with non-null
intersections are constructed.

In the Client/Server system, the asymmetric part is rep-
resented by subnet N5. Each firing of transition Swap may
partition the processes in a different way: this partitioning
is propagated along every future action in the net. Hence,
many groups of states with non-null intersections are cre-
ated and stored in the DSRG, while the FLDSRG can group
them.

It is worth noticing that the intermediate structure, i.e.,
PLDSRG, can be dramatically small. On the DCS exam-

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7733 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7733 



P SRG RESRG DSRG PLDSRG FLDSRG

6 2.001 688 444 44 424

8 23.041 6.343 4.150 74 3.748

10 250.769 58.082 40.320 112 34.004

12 2.632.641 527.425 394.500 158 316.084

14 27.655.686 4.757.825 3.893.311 166 3.113.024

Table 1: Results for the DCS model.
P SRG RESRG DSRG PLDSRG FLDSRG

2 265 147 147 144 147

4 82.978 9.020 7.922 7.070 7.856

6 26.501.875 368.571 317.996 215.954 275.564

8 - - 3.497.956 1.501.268 2.074.648

10 - - 11.956.692 4.811.931 6.326.812

Table 2: Results for the Client/Server model.

ple, this is due to the fact that asymmetries affect a limited
part of the graph, i.e., the selection for entering the critical
section. As soon as a process leaves the critical section, all
processes come back to idle state. Although only intermedi-
ate in our approach, PLDSRG is a useful structure that can
be used to check reachability or the existence of dead states.

6. CONCLUSION
In this paper, we presented an approach for automatically

deriving a lumped Markov chain from a Stochastic Well-
formed Net. Compared with existing approaches, this one
looks more efficient when the system under consideration
is locally symmetric, meaning that some of its components
almost always behave in a similar way.

The gain in efficiency depends on the way the asymmet-
ric and symmetric parts of the system are connected. We
presented an example of distributed critical section where
processes “synchronize” at the end of a critical section (they
all end up in the same idle state), thus blocking the propaga-
tion of asymmetries in the construction of the graph. In such
a situation, the gain is not significant compared with some
existing approaches. However, when asymmetries are likely
to hold in many situations, which is usually the case in real
systems, the FLDSRG construction compares favourably to
other approaches.

Among the different approaches that exist for building a
lumped Markov chain from an SWN model, we are not yet
able to predict which one will be the most efficient. However,
it is possible to run all of them in parallel and gather the
results from the first that succeeds.

We plan now to investigate the possibility of detecting at
the SWN model structural level whether, for some given sys-
tem, one of these approaches is likely to give better results
than the others. A discussion on this topic can be found
in [2]: this is based on four case studies that can be con-
sidered as model patterns, representative of typical locally
symmetric models.
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