
Interfaces and Binding in Component Based Development
of Formal Models

G. Franceschinis
Università del Piemonte

Orientale, Italy
giuliana@unipmn.it

M. Gribaudo
Università di Torino, Italy
marcog@di.unito.it

M. Iacono
Seconda Università di Napoli,

Italy
mauro.iacono@unina2.it

S. Marrone
Seconda Università di Napoli,

Italy
stefano.marrone@unina2.it

F. Moscato
Seconda Università di Napoli,

Italy
francesco.moscato@unina2.it

V. Vittorini
Università di Napoli
“Federico II”, Italy

vittorin@unina.it

ABSTRACT

Component based modeling is of great importance for build-
ing and analyzing models of real systems. It is based on a
well known paradigm which makes use of abstraction and
composition. In this paper we focus on abstraction, by de-
scribing a practical approach to the definition of very sim-
ple interface models allowing the substitution of components
within composed multiformalism models. The work extends
the OsMoSys methodology and relies on meta-modeling.
This paper does not discuss formal aspects about interface
theory and components interaction, but focuses on the prob-
lem of building component models in practice with the ul-
timate goal of solving them by using (the existing) analysis
tools. The paper formally extends the OsMoSys conceptual
model in order to introduce model interfaces and to provide
some rules for interface compatibility. The paper also de-
scribes some steps towards the full definition of mechanisms
for interface binding and their implementation.

Categories and Subject Descriptors

I.6 [Computing Methodologies]: Simulation and Mod-
eling—Simulation Support Systems; C.4 [Computer Sys-

tems Organization]: Performance of Systems—Modeling
techniques

General Terms

Design, Languages, Performance, Reliability

Keywords

Formal Models, Interface, Binding, Metamodeling, Depend-
ability, Performability

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VALUETOOLS 2009 October 20-22, 2009, Pisa, Italy
Copyright 2009 ICST 978-963-9799-70-7/00/0004 ...$5.00.

The vision of component software engineering is to pro-
vide reusable, off-the-shelf software components for design-
ing large applications from existing building blocks [22],
hence providing a general solution for the reuse problem.
The basic idea is that a software component is a “unit of
composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can
be deployed independently and is subject to composition by
third parties” [19]. The aim of the research work (partially)
described in this paper is to realize this vision into the de-
velopment of formal models. More, we want to introduce
the possibility of dynamically changing or choosing parts of
the model during the solution steps (e.g. a similar concept
is implemented by dynamic Web Service substitution and
orchestration [12]).

This paper does not discuss formal aspects about inter-
face theory and components interaction, but focuses on the
problem of building component models in practice with the
ultimate goal of solving them by using (existing) analysis
tools. In order to achieve these goals we extend the Os-
MoSys Modeling Methodology with a notion of model in-
terface, interface compatibility and binding, and then we
introduce some of the mechanisms to implement them. In-
deed, a powerful technique in component programming is
being able to implement multiple interfaces on an object.
By this technique multiple classes may implement the same
interface, and a single class may implement one or more in-
terfaces. By implementing interfaces, a component can pro-
vide functionalities to any other component requiring that
interface. This allows for the interchangeability of different
versions of a component without affecting the whole system.
In this paper we define the concept of interface for mod-
els considered as components. Our goal, besides promoting
model reuse, is to globally improve the OsMoSys modeling
approach for the analysis of complex systems by allowing on-
the-fly (re)definition of parts of a complex model, i.e. while
solving the model.

The scientific community has studied this topic from dif-
ferent points of view leading to different research directions.
One research direction concerns the application of formal
methods and notations to object oriented and component
based approaches [4]. Other approaches, as e.g. [7], for-
malize the difference between interface models and behav-
ior models by means of a definition of an “Interface alge-

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
VALUETOOLS 2009, October 20-22, Pisa, Italy
Copyright © 2009 ICST 978-963-9799-70-7
DOI 10.4108/ICST.VALUETOOLS2009.7677

Table 1: The OsMoSys modeling stack

Level OsMoSYs layer Description
M3 Metaformalisms Languages to

define formalisms.
M2 Model Metaclasses Formalisms to

build models
M1 Model Classes Model

specifications
M0 Model Objects Model

instances

bra” putting the stress on stateless interfaces. Objects and
component typing problem is addressed in [5] where a λ-
calculus has been specialized in order to deal with types
and in [1] that focuses on object oriented typing theory
(with another extension of λ-calculus, too). The research
direction of Model Driven Engineering (MDE) [15] studies
models, languages and model transformations. It is aimed
at formalizing component based theory of models, in order
to improve reusability. Several works aim at this objective
also by means of a model typing theory [21, 16].

The approach proposed in this paper focuses on the prob-
lem of practically building component models: in partic-
ular we addressed the problem of building up a coherent
methodology and framework for multiformalims-based mod-
eling and analysis.

The paper is organized as follows. Section 2 summarizes
the main concepts on which the OsMoSys methodology is
based and the notations used. Section 3 extends the method-
ology by introducing the definitions of Pure Interface and
Interface Implementation. Section 4 introduces some of the
rules that must be applied to guarantee compatibility be-
tween component models and interfaces, and the concept of
early and late binding in OsMoSys. Section 5 discusses the
implementation of these mechanisms within the OsMoSys
framework. Finally Section 6 contains closing remarks and
some hints about future work.

2. FORMALISMS AND METAMODELING
The goal of the OsMoSys (Object-baSed multi-formalism

MOdeling of SYStems) research project is the definition
of a methodology and the implementation of a software
framework for the development and the analysis of multi-
formalism models. The OsMoSys Modeling Methodology
(OMM) has been formerly introduced in [11, 23] and it is
supported by the DrawNET tool [13, 14] for the develop-
ment of models, and by the OsMoSys Multisolution Frame-
work (OMF) [17] for the analysis of complex multi-formalism
models; moreover such approach has been effectively used to
model and analyse complex critical systems [9, 10].

OMM defines a conceptual framework based on object
orientation concepts and metamodeling, in which formalisms
are classes and new formalisms can be easily introduced or
defined by inheritance from existing ones. Table 1 shows the
four layers of meta-modeling [3, 8] on which the OsMoSys
approach is based.

As introduced in section 1, Model Driven Engineering de-
fines a (meta)-modeling language stack [3] and heavily relies
on model transformations [6]. This approach historically fo-
cuses its attention on Model Driven Software Development
[20] as an extension of OMG’s Model Driven Architecture

[18]. A growing interest on building UML profiles must
be cited: some of these profiles have become OMG stan-
dard as MARTE [2], a UML profile for modeling reliable
and mission-critical systems. Although there are few Model
Driven research works that deal with formal methods and
languages (e.g. [24] describes formal languages as a partic-
ular cases for source and target languages in model trans-
formation), at the best of our knowledge these works do
not focus on the definition of a Model Driven Engineering
oriented framework for multiformalism modeling and multi-
solution analysis.

Fig.1 depicts the OsMoSys conceptual model which repre-
sents the main concepts involved in the modeling methodol-
ogy. It is organized into a set of packages mainly including:

• Level M3: Metafomalisms. This package provides the
two languages used to define formalisms. The For-
malism Description Language (FDL) is used to de-
fine modeling languages. FDL allows to define for-
malism elements type (ElementType), element proper-
ties (PropertyType) and constraints (ConstraintsType)
used to define grammar rules. The Result Definition
Language (RDL) is used to define the properties (e.g.
performance indices) that may be associated to a mod-
eling formalism and to its elements. Hence the prop-
erties refer to element types (ElementTypeRef) and to
element properties (PropertyTypeRef).

• Level M2: Formalisms and Results. These packages
include the languages (built by M3 meta-languages)
used to describe the modeling formalisms of interest
(Formalisms), and the languages used to describe and
ask for indices evaluation (Results). Results Types
are introduced by the DataType package. A special
role among formalisms is played by the Bridge For-
malisms used to build composed multi-formalism mod-
els. The concept of Bridge Formalism is introduced
by the MultiFormalism package. Formalisms are com-
posed by Elements. In particular the Elements of a
Bridge Formalism may be Formalisms or composition
Operators. Operators define the composition seman-
tics and In, Out and In-Out Parameters that models
can exchange. The inner class relation among For-
malism and Element limits the scope of the Elements
inside the Formalisms they belong to. Hierarchies of
Formalisms and hierarchies of Elements may be built
in order to introduce new Formalisms also from the
existing ones.

• Level M1: Classes. This package introduces the Model
Classes. A Model Class describes a family of models
compliant with a specified Formalism and sharing a
common structure (built by using the elements intro-
duced by the Formalism). A Model Class defines a
parametric model, in the sense that the values of a
non-empty subset of its properties are not specified.
Hence the model needs to be instantiated in order to
be solved.

• Level M0: Objects. Instantiated models are called
Model Objects and basically they are Model Classes
where all properties are defined.

A hierarchy of formalisms is briefly exemplified in Fig.2.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

Figure 1: OsMoSys Conceptual Model

As explained before, Formalisms are Metaclasses (Level
M2) and they include modeling formalisms as Petri Nets,
Fault Tree etc., but also other formalisms useful to define
them, for example by inheritance. This is the case of the
GraphBased formalism in Fig.2. GraphBased is defined by
using FDL and it is the base class for all the formalisms
which define Elements like nodes and edges. Hence, Petri
Nets inherits from GraphBased, the Elements Place and Tran-
sition inherit from the Element Node of GraphBased , and
the Element Arc inherits from Edge. Place adds the Prop-
erty token. GSPN in turn is derived by Petri Nets and the
Elements Immediate Transition and Timed Transition in-
herit from Transition. Timed Transition adds the rate prop-
erty; Immediate Transitions instead add the priority and
weight properties.

An example of Results specification (defined over the Petri
Net and GSPN formalisms) is reported in Fig.3 where the

Liveness Aggregate Result and the Throughput Element Re-
sult are shown.

The following notations will be used throughout the pa-
per. The set of element types included in a given formal-
ism F is denoted EF ; an alternative notation (F , E) may
be used to couple a formalism with the set of its element
types. Each element type e ∈ EF has a name and one or
more “properties” that are used to specify the attributes of
the related elements. Let F be a formal language, and let
(F , E) be the corresponding Metaclass with its non-empty
set of element types. A Metaclass in OsMosys, as metafor-
malism in traditional approaches of Language Engineering,
can be inherited from another one: inheriting a Metaclass
implies the possibility to add or to hide formalism element
or elements properties. The formal definition of Metaclass
inheriting mechanisms are out of the scope of this paper.
Formally a Model Class MCF is a triple (N, S, SM) where:

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

Figure 2: An example of Formalisms Hierarchy

Figure 3: An Example of Results specification

• N is the class name i.e., the type name of all the in-
stances of the class;

• S is the class structure i.e. set of Elements (and their
Properties and Constraints) that is common to all the
models of type N .

• SM is the set of the (sub)models that a model con-
tains.

The structure S of the class is a set of element instances
of element type E ∪ SM that are simply called “elements”
instead of “element instances”, abusing notation. For each
element e ∈ S, Type(e) is the element type of e (hence
Type(e) ∈ (E ∪ SM)). For example, if a Model Class is
created using the Petri Nets formalism, its structure will
comprise instances of element types from EPN (i.e. instances
of Place, Transition and Arc): if P1 is a place instance,
then Type(P1) = Place.

S is the union of two different sets:

S = ExternalS ∪ InternalS ; ExternalS ∩ InternalS = �

- ExternalS is the interface of the class i.e., the subset of
the elements, possibly belonging to some (sub)models,

that have the role of connectors or ports to the external
environment;

- InternalS is the subset of elements that are encapsu-
lated by the class.

Both external and internal elements in S may have a set of
attributes denoted PS . PS = EPS ∪ IPS , where EPS is the
set of the attributes that may be set when a model of type
N is instantiated (called “parameters” in the following), and
IPS is the set of attributes that are statically defined by the
class definition.

The distinction between External and Internal elements
does not include the concepts of Model Class Interface and
Interface Binding. A more suitable definition of Model Class
Interface will be given in Section 3. Further details on the
modeling methodology can be found in [23].

3. COMPONENTS AND INTERFACES
In this Section we provide an extension to OMM in order

to introduce a new definition of interface of a Model Class.
We define here the mechanisms by which multiple Model

Classes may implement the same interface and a single Model
Class may implement more than one interface. The main
drawback of the Model Class interface definition reported
in Section 2 is that ExternalS is a set of elements, hence it
strictly couples the interface of a Model Class to the partic-
ular formalism and structure through which the model is ex-
pressed. For example, let us suppose that SimpleProcessorF
is a Model Class representing a CPU and that its interface
consists of one element:

• through which it exchanges information with the ex-
ternal environment, or

• that can be used for model manipulation and transfor-
mation purposes (e.g. Petri Nets transitions superpo-
sition).

Let us suppose that SimpleProcessorF is used to build
a complex composed model. When a different version of
SimpleProcessorF is needed and available, it should be
possible to substitute this sub-model without modifying the
whole model. The new version of SimpleProcessorF could
be implemented by using a different formalism F (e.g. Queu-
ing Networks instead of Petri Nets) or it could have a dif-
ferent structure S even if it is expressed by the same for-
malism (e.g. two different Petri Nets PN1 and PN2: PN2
is a version of PN1 that takes into account the presence of
a cache). This substitution is not possible if the interface
of the Model Class changes when varying the implementa-
tion of the Model Class itself. This difficulty is overcome
by introducing interface elements, as informally exemplified
below.

In Fig. 4 (a) and (b) two simple Generalized Stochastic
Petri Nets (GSPN) models are shown. They represent a
processor read operation without and with caching features
respectively.

The average time required by a read operation is repre-
sented by the inverse of transition T1 firing rate in the GSPN
model of the processor without caching features (Fig. 4 (a)).
In the GSPN model of the processor with caching features
(Fig. 4 (b)), a datum (a cache line) is stored in the cache
with probability Prob−Cache. The access to a cache line is

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

Figure 4: Two simple GSPN models

Figure 5: An example of interface element

assumed to be a not time consuming operation (modeled by
the immediate transition t1), otherwise the read operation
takes the same (average) time assumed in the first model.

According to the interface definition provided in Section 2
the transition T1 in Fig. 4 (a), may be specified to be an
interface element of this Model Class. In Fig. 5 (a) a new el-
ement has been added to the Model Class and the transition
T1 is associated to this particular element called interface
element (through a dotted-line connecting them). This new
element is labeled L1 and it is explicitly addressed when
the Model Class interface is involved in composition and/or
substitution instead of the transition T1.

Similarly, in Fig. 4 (b), the transitions t1 and T1 may
be specified to be interface elements: they both represent
the occurrence of a read operation and they are mutually
exclusive. Hence, in Fig. 5 (b) they are associated to the
same interface element L1.

In order to formally define interfaces and interface ele-
ments, the concept of Pure Interface formalism and Pure
Interface Model Class are introduced.

The Pure Interface formalism IF is defined at level M2 of
the OsMoSys stack. IF inherits from GraphBased and its
set of element types is:

EIF = {IE}

where IE is derived by the element type node of Graph-
Based. Each interface element must have a unique identifier,
that is one of its properties. We shall denote such identifier
IE.name: in Fig. 5 this corresponds to the label L1.

Definition 1: Pure Interface Model Class (PI).
A Pure Interface Model Class (or Pure Interface for short)

is a Model Class MCIF compliant with the Pure Interface
formalism IF .

A Pure Interface is thus defined at level M1. The set
S of a Pure Interface only contains elements of type IE.
Similarly to abstract classes in object oriented programming
a Pure Interface cannot be instantiated to produce a Model
Object: it must be “implemented” by the structure of a
“concrete” Model Class. In other words a Pure Interface
can be substituted by a Model Class which “implements”
the interface.

To this aim, the structure of a Model Class must contain
interface elements and proper arcs, as in the example of
Fig. 5. This is obtained introducing at level M2 the formal-
ism Interfaceable (INF), which in turns inherits from IF
adding an element type derived by the element type edge of
GraphBased. Hence the set of element types in INF is:

EINF = {IE, IFEdge}

A modeling formalism suitable to develop component based
models should inherit from INF . Hence the PN formalism
used to develop the models in Fig. 5 is derived from INF .

INF defines two element types: interface element (IE)
and interface edge (IFEdge). IFEdge is a (not oriented)
arc used to connect interface elements and elements of for-
malisms inheriting from INF .

The relationships among the introduced formalisms and
elements are shown in Fig.6. To state if a Model Class may
implement a Pure Interface the property BindingConstraint
of the element IE is used. This will be discussed in the next
section.

Now, let D be a Formalism which inherits from INF and
MCD a Model Class compliant with D. Hence, the set of
elements in the Model Class may contain IE and IFEdge
elements, in addition to the elements defined in the formal-
ism D. If S is the set of elements in the Model Class newly
defined in the formalism D, SD = {s ∈ S : Type(s) ∈ ED −
EINF}, and SINF the set of elements in the Model Class
defined in the formalism INF , SINF = {s ∈ S : Type(s) ∈
EINF}, then S = SD ∪ SINF , where SD ∩ SINF = �. We
denote:

• ESD
the (sub)set of elements in SD that are intended

to be interfaced with the external models;

• ENSINF
the (sub)set of IE elements in SINF , i.e.

ENSINF
= {e ∈ SINF |Type(e) = IE}

• EASINF
the (sub)set of IFEdge elements in SINF ,

i.e. EASINF
= {e ∈ SINF |Type(e) = IFEdge}

We can give now a definition of a Well Structured Model
Class, which is a Model Class that can be bound to a Pure
Interface.

Definition 2: Well Structured Model Class (WSMC).
MCD is Well Structured iff it is a Model Class compliant

with the Metaclass D inheriting from INF and:

1. EASINF
⊆ (ESD

× ENSINF
)

2. ∀e ∈ ESD
, ∃ ie ∈ ENSINF

: a = (e, ie) ∈ EASINF

3. ∀ie ∈ ENSINF
, ∃ e ∈ ESD

: a = (e, ie) ∈ EASINF

The first condition says that the set EASINF
is a set of

arcs between the elements in ESD
and the IFEdge elements

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

in ENSINF
. The second condition says that for each ele-

ment e in ESD
at least one element ie exits in ENSINF

so
that e and ie are connected by the arc a = (e, ie) ∈ EASINF

.
Finally the third condition says that for each interface ele-
ment ie at least one element e exists which is connected to
it by an arc in EASINF

.
In particular, each element e ∈ ESD

may be connected to
more than one interface element ie ∈ ENSINF

and vicev-
ersa.

Notice that being Well Structured does not mean for a
Model Class that it is able to implement a Pure Interface.
The notion of Well Structuredness simply implies that in
the structure of the Model Class all interface elements cor-
respond to the interface elements of the Pure Interface and
that each interface element has to be connected at least to
one element belonging to the model structure. The “Imple-
ments” relation between Model Classes and Pure Interfaces
is introduced in the next Section.

4. CONSTRAINTS AND BINDING
In order to define the “Implements” relationship, it should

be possible to state if the interface of a Model Class is com-
patible with a given Pure Interface. The definition of IE
in the Pure Interface Formalism in Section 3 includes the
property BindingConstraint (Fig.6). It is used to introduce
a kind of interface typing which allows for binding mecha-
nisms definition and implementation.

The constraints defined on interface elements may belong
to the following three categories:

1. Constraints on formalisms element types (ElementType-
Con);

2. Constraints on the data types of the elements proper-
ties (PropertyTypeCon);

3. Constraints on the data types of the results elements
(ResultTypeCon).

Let be (F1, E1), · · · , (Fn, En) n formalisms and let eij ∈
Ei, j = 1, · · · , p an element of Ei. Let eij .pk, k = 1, · · · , q and
eij .rl, l = 1, · · · , r be respectively a property and a result of
eij .

Let elMC be an element of a WSMC, and let us indicate
with elMC .pe and with elMC .rf respectively one of its results
an properties.

The three kinds of constraints are expressed by proposi-
tional logic. If P is a logic proposition built by means of
logical connectives, the above constraints have the following
form:

1. P(Type(elMC) = eij);

2. P(Type(elMC .pe) = X);

3. P(Type(elMC .rf) = X);

where X is a name of a Type in the Package Types in
Fig.1. Examples of the three constraints are the following:

1. ElementTypeCon = PN.P lace OR QN.Service

2. ElementPropertyCon = float OR int

3. ElementResultCon = int

Let ieMC and iePI be interface elements of a Well Struc-
tured Model Class MC and of a Pure Interface PI.

Inside MC, ieMC is connected to Model Class Elements
by means of IFedges. Let be celMC one of these elements.

We can say that constraints defined on iePI are verified
by one or more ieMC iff all celMC elements verify the con-
straints above mentioned. We indicate this with:

ieMC |= constr(iePI).
Notice that, thanks to formalisms (elements) inheritance,

the relation Type(elMC) also allows the verification of the
constraint ElementTypeCon = PN.P lace if Type(elMC) =
GSPN.P lace.

The same is for properties and results types if proper cast-
ing functions exist which translate, for example, Normal dis-
tribution to float (for example: the meanvalue).

Constraints as they are defined, are only related to ele-
ments in Pure Interfaces Model Classes. If a Well Formed
Model Class exists such that:

1. the number of its ieMC is equal to the number of the
iePI ;

2. all constraints defined by iePIs are satisfied by ieMCs

this model class is said to implement the Pure Interface
Model Class.

Formally,

Definition 3: Implementation of a Pure interface.

Let IEPI =
S

i
(iePIi

) and IEMC =
S

i
(ieMCi

) be the sets
of IEs respectively in PI and in MC. We say that

MC implements PI iff:

∃I : IEMC → IEPI such that:

1. I is bijective;

2. ∀ieMC ∈ IEMC , ieMC |= constr(I(ieMC)).

Hence an implementation of a Pure Interface must “match”
all its interface elements and the correspondence between an
interface element in the pure interface and interface elements
in the implementation must be 1 : 1 (since the function I is
bijective); moreover, all constraints of each iePI = I(ieMC)
have to be verified by (all) the elements connected to the
corresponding interface element ieMC in MC.

For simplicity, we use labels for mapping elements between
Pure Interfaces and Well Formed Model Classes: IEs in a
Pure Interface will be mapped to IEs in a Well Structured
Model Class with the same label. Formally speaking, in the
current implementation we require that:

∀ieMC ∈ IEMC , ieMC .name = I(ieMC).name .

When allowing the derivation of new Interface Elements
from the basic ones, some additional constraints on function
I() could be required, for example that the corresponding
Interface Elements according to I(), must be of the same
(more specific) type, or that the value of a given attribute
of such elements must be equal (e.g. this could be useful
in case the value of such attribute expresses the type of the
data exchanged through that interface).

Interface Model Classes cannot be instantiated (i.e. no
Model Object can be created from them). They are inter-
faces and they must eventually be implemented by a Model

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

Figure 6: The Interface Hierarchy

Class. Fig. 7 shows an example of Implements function,
consistent with the above definitions: the Model Classes in
Fig. 7(b), (c) and (d) are three alternative implementations
of the Pure Interface in Fig. 7(a); the correspondence be-
tween Interface Elements is represented by means of match-
ing labels in the figure.

Figure 7: The Implements relationship

The singleProcessor Model Class is compliant with a GSPN
Metaclass inheriting from IF , and it implements a single
processor model of a simple machine. It has a parameter
represented by the rate µ (Fig. 7(b)). The cachedProcessor
Model Class is compliant with a GSPN Metaclass inherit-
ing from IF and it implements a model of a processor in
which data can be in a cache (and then can be read im-
mediately with probability p) or not (and can be read in a
time 1/µ with probability 1-p). Thus, it has two parame-
ters: µ and p (Fig. 7(c)). The multiProcessor Model Class
is instead a queue model of a multi processor system, thus
it is compliant with a different Metaclass inheriting from
IF , e.g. a QN Metaclass. Its only parameter is S which is
a composite parameter, including all the information (ser-

vice rate, number of servers, scheduling policy) on the server
used in the queue (Fig. 7(d)). We recall that the parame-
ters must be instantiated when the Model Objects are cre-
ated from the Model Classes. It is easy to verify that the
Model Classes singleProcessor, cachedProcessor and multi-
Processor are Well Structured and that they all implement
the SimpleProcessor Interface Model Class.

Notice that in Fig.7(c), two elements are linked to the in-
terface element L2. When multiple IFEdges are connected
to an IE, its constraints must be verified for all the linked
Model Class Elements.

Interface Model Classes can be part of a larger model and
represent placeholders for alternative implementations: in
Fig. 8 an example is shown representing a parallel machine
consisting of two processors on which it is possible to dis-
tribute the workload arriving from the environment. The
model contains four sub-models: the models of the proces-
sors (in the middle) are Pure Interfaces, whereas the arrival
of new processing requests and the corresponding replies are
modeled by means of two simple GSPN Model Classes. The
two pure interfaces can be implemented by one of the model
classes in the bottom part of the figure. Examples of criteria
for the substitution are given in the next section.

5. IMPLEMENTATION
In order to implement the interface binding, the OsMoSys

Core level of the OMF [17] has been integrated with new
dedicated software components. A general description of
how the OMF operates is illustrated in Fig. 9, where the
new components are shadowed.

Models in OsMoSys are solved by generating a solution
process, that is a workflow (expressed in SPDL, Solution
Process Description Language) in which all actions needed
to perform the solution of a complex multiformalism model
are described. The solution process is generated by the
SPDL Compiler which analyses the model and a user query
describing what results have to be produced. The OsMoSys
Core is composed by a WorkFlow Engine (WFE) that or-
chestrates solvers and other OsMoSys components to enact
solution processes, a Result Manager (RM) that stores and
supplies all partial results obtained during the enactment
of a solution process, and an Instancer that performs the
instantiation of Model Classes to obtain the Model Objects.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

Figure 9: Operations in OsMoSys

Figure 8: An example of Binding

In order to provide interface binding the architecture of
the OMF Core has been extended by adding the Decision
Maker and the Binder components (Fig. 9 c)): the Decision
Maker is in charge of deciding which Model Class may be
used to implement a Pure Interface, while the Binder checks
if the binding constraints specified by a Pure Interface are
verified by the Model Class indicated by the Decision Maker
and, if all constraints are satisfied, it performs the substitu-
tion.

When a solution process is generated by the SPDL Com-
piler, it is ready to be executed by the WFE (see Fig. 9 a)).
The WFE identifies submodels that are ready to be solved
(Fig. 9 b)) and executes the proper activities specified in the
related fragments of SPDL. At the end of each fragment ex-
ecutions the WFE activates the RM that collects and stores
partial results.

For each submodel the related SPDL fragment specifies
the activities that need to be executed to solve it: the sim-

plest case of fragment is graphically described in Fig. 9 c). If
the submodel is a Model Class it is instantiated by using the
parameters values specified by the user and solved. If the
submodel is a Pure Interface a binding is needed to replace
the Pure Interface by a Well Structured Model Class which
implements it.

To this aim three tables have been introduced.

• Status Table (ST);

• Decision Table (DT);

• Link Table (LT).

ST describes the status of: a) the system on which the
solution process is being executed (e.g. the WFE workload,
the availability of computing nodes etc.) and b) the solu-
tion process (e.g. the values of some relevant data of the
workflow). These information are generated by the WFE
and some of them may be used by the user when compiling
the Decision Table.

DT contains the user’s indication about the Model Classes
that should be involved in the binding phase and the condi-
tions that will drive the choice among the specified alterna-
tives. Hence, this information must be provided by the user
when submitting to the OMF a model which contains Pure
Interfaces.

An example of DT (related to the model in Fig. 8) is
reported in Fig. 10. This DT consists of two parts that
say which are the candidates to implement the two Pure
Interfaces (SM1 and SM2) in the middle of Fig. 8.

As for SM1 (see the first tag DIRECTIVE) the user wants
that it is replaced by the Model Class CP1 if the value of
the throughput of the transition t1 (tag NUMERICCONDI-

TION) evaluated by solving the model LM1 is greater than
10 OR by the Model Class MP1 if this value is in the in-
terval [7, 10]. The Model Class is compliant with the GSPN
formalism, whereas the Model Class MP1 is compliant with
the QN formalism. Notice that a default Model Class is
also specified (SP1, compliant with the GSPN formalism).
It will be used, for example, if the throughput of t1 is less

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

<DECISIONTABLE>

<DIRECTIVE INSTANCEABLE="SM1"

DEFAULTSUBMODELNAME="SP1"

DEFAULTSUBMODELTYPE="GSPN">

<NUMERICCONDITION VARIABLE="LM1.t1.throughput"

KIND="RESULT">

<GT VALUE="10" SUBMODELNAME="CP1"

SUBMODELTYPE="GSPN"/>

<BTW INFVALUE="7" SUPVALUE="10" SUBMODELNAME=

"MP1" SUBMODELTYPE="QN"/>

</NUMERICCONDITION>

</DIRECTIVE>

<DIRECTIVE INSTANCEABLE="SM2"

DEFAULTSUBMODELNAME="SP2"

DEFAULTSUBMODELTYPE="GSPN">

<BOOLEANCONDITIONTRUE VARIABLE="StatusVar1"

KIND="STATUS" SUBMODELNAME="MP1"

SUBMODELTYPE="GSPN"/>

</DIRECTIVE>

</DECISIONTABLE>

Figure 10: An example of Decision Table

than 7. In this example the Model Class used to replace
the Pure Interface SM1 will be established by the Decision
Maker after the model LM1 is solved, according to the value
of a result obtained from the Result Manager.

As for SM2 (see the second tag DIRECTIVE) the user
wants that it is replaced by the Model Class MP1 according
to the value of a status variable, a default is also specified
(SP2). In this case the decision depends on a value that will
be contained into the ST table.

LT is the output of the Decision Maker, it says to the
Binder which are the Model Classes that should implement
the Pure Interfaces. Hence, LT contains an entry for each
Pure Interface of the model. Each entry specifies the name
and the type of the Model Class that implements that in-
terface.

Notice that we are supposing that the candidates Model
Classes are Well structured. This condition is verified when
building the Model Class.

Figure 11: Binding Sequence Diagram

The UML Sequence Diagram in Fig. 11 details the inter-
actions between OsMoSys components that implement the

binding. According to the DT, for each entry the Decision
Maker either examines ST to evaluate the current value of
status variables or requires the Result Manager in order to
evaluate the current value of result variables. The Decision
Maker produces the LT, that is used by the Binder. The
Binder examines the model, searching for a PI: whenever the
search is successful, its name is used to access the LT and
check the correctness of the instantiation. The candidate
implementation interface constraints are checked against the
PI Constraints and, in case of success, the interface instan-
tiation is performed. If all interface instantiations are suc-
cessful, the Binder produces a parametric model, which is
then passed to the Instancer.

6. CONCLUSIONS
In this paper we focused on the problem of supporting

component based definition of multi-formalism models. The
possibility of allowing the re-use of components expressed in
different specification languages, posed new challenges that
were tackled with the definition of model interfaces. In par-
ticular, we introduced the concept of constraints, to restrict
the composition only to meaningful and formally identifiable
cases.

Many points still have to be clarified, and need further
investigation. Nevertheless, the methodology proposed in
this paper serves as a basis for further studies in this direc-
tion. The adoption of model interfaces allows the modeler to
create models with components that can possibly be spec-
ified at run-time, creating more flexible specifications that
can dynamically adapt to match tradeoffs between quality
of the results and solution efficiency.

Future works are firstly aimed at completing the proposed
approach, both under methodological and software frame-
work aspects. In particular further development of interface
typing and constraints expressions are planned.

Future works will also include the application of the pro-
posed methodology to real-world problems. For what con-
cerns OMF, support for both interface typing and runtime
components selection will be enhanced to allow for more
complex expressions in constraints and decision table spec-
ifications.

Acknowledgements

This work has been partially supported by grant MIUR-
PRIN 2007J4SKYP.

7. REFERENCES

[1] M. Abadi and L. Cardelli. A Theory of Objects.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1996.

[2] S. Bernardi, J. Merseguer, and D. C. Petriu. Adding
dependability analysis capabilities to the marte profile.
In MoDELS ’08: Proceedings of the 11th international
conference on Model Driven Engineering Languages
and Systems, pages 736–750. Springer-Verlag, 2008.

[3] J. Bezivin. In search of a basic principle for model
driven engineering. CEPIS, UPGRADE, The
European Journal for the Informatics Professional,
V(2):21–24, 2004.

[4] M. Büchi and E. Sekerinski. Formal methods for
component software: The refinement calculus

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

perspective. In Proceedings of the Second Workshop on
Component-Oriented Programming (WCOP), volume
5 of TUCS General Publication, pages 2332, Short
version in ECOOP97 workshop reader LNCS 1357,
pages 23–32. Springer-Verlag, 1997.

[5] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. ACM
Computing Surveys, 17:471–522, 1985.

[6] K. Czarnecki and S. Helsen. Classification of model
transformation approaches, 2003.

[7] L. de Alfaro and T. A. Henzinger. Interface theories
for component-based design. In EMSOFT ’01:
Proceedings of the First International Workshop on
Embedded Software, pages 148–165, London, UK,
2001. Springer-Verlag.

[8] J.-M. Favre. Foundations of meta-pyramids:
Languages vs. metamodels – episode ii: Story of
thotus the baboon1. In J. Bezivin and R. Heckel,
editors, Language Engineering for Model-Driven
Software Development, number 04101 in Dagstuhl
Seminar Proceedings, 2005.

[9] F. Flammini, M. Iacono, S. Marrone, N. Mazzocca,
and V. Vittorini. A multiformalism modular approach
to ertms/etcs failure modelling. submitted to: IEEE
Transactions on Dependable and Secure Computing,
2009.

[10] F. Flammini, S. Marrone, N. Mazzocca, and
V. Vittorini. A new modeling approach to the safety
evaluation of n-modular redundant computer systems
in presence of imperfect maintenance. to be published
in: Reliability Engineering and System Safety, 2009.

[11] F. Franceschinis, M. Gribaudo, M. Iacono,
N. Mazzocca, and V. Vittorini. Towards an object
based multi-formalism multi-solution modeling
approach. In Proc. of the Second International
Workshop on Modelling of Objects, Components, and
Agents (MOCA’02), Aarhus, Denmark, August 26-27,
2002 / Daniel Moldt (Ed.), pages 47–66. Technical
Report DAIMI PB-561, Aug. 2002.

[12] M. Fredj, N. Georgantas, V. Issarny, and A. Zarras.
Dynamic service substitution in service-oriented
architectures. In Proc. IEEE Congress on Services -
Part I, pages 101–104, 2008.

[13] G. Gribaudo, M. Iacono, M. Mazzocca, and Vittorini.
The osmosys/drawnet xe! languages system: A novel
infrastructure for multi-formalism object-oriented
modelling. In ESS 2003: 15th European Simulation
Symposium And Exhibition, 2003.

[14] M. Gribaudo, D. C. Raiteri, and G. Franceschinis.
Drawnet, a customizable multi-formalism,
multi-solution tool for the quantitative evaluation of
systems. In QEST, pages 257–258, 2005.

[15] S. Kent. Model driven engineering. In IFM ’02:
Proceedings of the Third International Conference on
Integrated Formal Methods, pages 286–298.
Springer-Verlag, 2002.

[16] T. Kühne. Matters of (meta-) modeling. Software and
Systems Modeling (SoSyM), 5(4):369–385, December
2006.

[17] F. Moscato, F. Flammini, G. D. Lorenzo, V. Vittorini,
S. Marrone, and M. Iacono. The software architecture
of the osmosys multisolution framework. In ValueTools

’07: Proceedings of the 2nd international conference
on Performance evaluation methodologies and tools,
pages 1–10, 2007.

[18] O. Pastor and J. C. Molina. Model-Driven
Architecture in Practice: A Software Production
Environment Based on Conceptual Modeling.
Springer-Verlag New York, Inc., 2007.

[19] C. Pfister and C. Szyperski. Summary. In Proceedings
of the International Workshop on
Component-Oriented Programming (WCOP96), 1997.

[20] T. Stahl, M. Völter, and K. Czarnecki. Model-driven
software development: technology, engineering,
management. John Wiley & Sons, 2006.

[21] J. Steel and J.-M. Jezequel. On model typing.
Software and System Modeling, 6(4):401–413, 2007.

[22] C. Szyperski. Component Software: Beyond
Object-Oriented Programming, 1997.

[23] V. Vittorini, M. Iacono, N. Mazzocca, and
G. Franceschinis. The osmosys approach to
multi-formalism modeling of systems. Software and
System Modeling, 3(1):68–81, 2004.

[24] T. Zhang, F. Jouault, J. Bézivin, and J. Zhao. A mde
based approach for bridging formal models. In TASE
’08: Proceedings of the 2008 2nd IFIP/IEEE
International Symposium on Theoretical Aspects of
Software Engineering, pages 113–116, Washington,
DC, USA, 2008. IEEE Computer Society.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7677
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7677

