The Concert/Cafeteria Queueing Problem:
A Game of Arrivals

Sandeep Juneja
School of Technology and Computer Science
Tata Institute of Fundamental Research
Mumbai, India - 400 005
juneja@tifr.res.in

ABSTRACT

We introduce the concert or the cafeteria queueing problem:
Fixed but a large number of users arrive into a queue which
provides service starting at time 0. Users may arrive before
0. They incur a queued waiting cost - W, where W is the
time to wait in the queue until service, and service time cost
B (t + W), where ¢ is the arrival time and t + W is the
total time until service. Each user picks a mixed strategy
for arrival to minimize E[aW + B(t + W)]. We analyze the
system in an asymptotic regime and develop fluid limit for
the resultant queueing system. The limiting system may be
modeled as a non-atomic game for which we determine an
equilibrium arrival strategy. In particular, we note that the
equilibrium arrival strategy is to arrive uniformly between
some 7o < 0 and 71 selected so that the queue is never empty.
We note that larger the 3/« larger the queue. Furthermore,
we note that the ‘price of symmetric anarchy’ of this system
equals 2. In addition to modeling queue formation at large
concerts or cafeterias in certain settings, the model may be
relevant more generally, for instance, in explaining queue
formation in DMV offices at opening time, and at retail
stores at opening time during peak shopping season.
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1. INTRODUCTION

In this paper we introduce the concert or the cafeteria
queueing problem. Many people before going to a concert
where a large queue may be anticipated choose their arrival
time strategically. There is a cost to going very late as then
the best seats may be taken. Going early may involve a
large and annoying wait in the queue. Similarly, people may
like to eat their lunch early as soon as the cafeteria opens for
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lunch. However, for this very reason, the delays may be large
initially. Similar trade-offs govern customer decision making
in many queueing situations such as visiting a retail store on
the day of a huge sale; going to the DMV office, to a movie
theater, in communications and computer networks, etc. In
this paper we make an initial attempt to study the strategic
trade-offs faced by customers in such queueing situations.

In our model we assume that there are a large but fixed
number of customers that need to be served by a server in
a first come first serve manner. The server at the queue
becomes active at a particular time. We allow the flexi-
bility that the customers can choose to arrive before that
time. Under the assumption that each customer implements
a mixed strategy, i.e., selects her time of arrival as a sam-
ple from a probability distribution, we develop fluid limit
for the resultant queueing system. This fluid limit offers
a great deal of analytical simplification. In particular, we
show that in the resulting limiting fluid system the arrival
distribution can be modeled as a non-atomic game [10] for
which we solve for a symmetric Nash equilibrium arrival dis-
tribution for each customer under linearity assumptions on
costs associated with the time of service and with the time
spent in the queue. We also show that under this symmet-
ric equilibrium the queue never becomes empty until every
customer has been served. Importantly, we show that more
the customers value early service, the larger the resultant
queue size is under this equilibrium. We also identify the
cost of the global welfare solution associated with our game.
This allows us to infer the interesting fact that the price of
symmetric anarchy of this game equals 2 for all parameter
values.

We note that in many settings, costs for a given customer
may be modeled as a sum of a term proportional to the delay
in the queue and another term proportional to the number
of customers that have arrived before this customer. The
latter differs from our earlier assumption of cost depending
on the time at which service is received. This, for instance,
is relevant in concert hall, movie theater etc. settings where
more people have entered before a given customer, the worst
the seats that may be available to that customer. We note
that similar results hold under these modified assumptions
as well.

Strategic models involving queues are not new. They were
first considered in [9] using pricing as a means to queueing
stability. Mendelson and Whang [8] introduced a stylized
model for a single queuing service provider with multiple pri-
ority classes, and each user has private information about job
parameters (such as delay cost and expected service time).
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For such a model, they introduced an incentive-compatible
priority pricing rule for the M/M/1 queue which is efficient
as well (maximizes the social welfare). In [11], a general
equilibrium model with congestion externality (i.e., queue-
ing delays) is considered. They conclude that the compet-
itive price is social welfare maximizing. A dynamic pric-
ing model is considered in [7] with adaptive learning by the
users. Various models of learning of congestion delays are
considered: rational expectations, Markovian expectations
and exponentially smoothed expectations and conditions of
network stability are established. In [4], a cost sharing per-
spective is taken on sharing the total delay cost, and the
Aumann-Shapley mechanism is used to determine individ-
ual user payments. Most of the work discussed above is
summarized in the book [3]. In [6], a multi-server extension
of the Mendelson-Whang model is considered. However, a
competitive setting is considered where there are enough
servers in the market, and the influence of each is negligi-
ble, i.e., the servers act as price takers. Thus, the existence
of competitive equilibrium is established. While there has
been a lot of work on studying pricing by queues to study
stability, games of timing involving queues, where the ar-
riving users choose time of arrival strategically are not so
well-understood. The earliest such work is [2] which intro-
duced a model where users choose strategically the time of
their arrival into a 7/M/1 queue. However, they considered
a discrete population model where each user is interested
in minimizing its queueing delay, and service times were as-
sumed to be exponential. In contrast, we consider a more
general framework: Each user has a linear cost function of
waiting delay as well as a linear cost function of the time
of service of the user or the number of people who arrive
before that user, a significant motivation for people in many
scenarios for arriving early. Thus, our cost structure is more
realistic in many settings. On the other hand, we consider a
fluid approximation of the discrete population model. A re-
lated paper is [5] which addresses a problem with a similar
motivation but the model is different. They consider dis-
crete time, and users arriving at any time, may be served in
any random order, and thus experience only average delay.
Moreover, there is no queueing: All users that arrive in any
time slot, are served in that time slot. In [13], Tian, Huang
and Yang consider a related problem of equilibrium behav-
ior of discrete population of morning commuters arriving to
a mass transit system.

The organization of this paper is as follows: In Section 2
we spell out the mathematical framework for the queueing
system that we consider. Here we conduct asymptotic anal-
ysis and derive the fluid limit of this queueing system. In
Section 3, we show existence of a symmetric Nash equilib-
rium solution, and compute a price of symmetric anarchy.
Finally, we end with a brief conclusion in Section 4.

2. MATHEMATICAL FRAMEWORK AND
THE FLUID LIMIT

‘We consider a series of queueing systems indexed by n that
we analyze as n — oo. For the system n, we assume that
there are n customers, each of whom independently picks
an arrival time as a sample from a distribution F),(-) where
F,(+) denotes a distribution with support within [—nT, nT]
for a constant T' > 0 that is sufficiently large (as specified
later). The queue begins to serve at time 0. The service
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time of each customer is an i.i.d process (V; : 1 < ¢ < n)
with rate EV; = 1/u. We assume that 7' > 1/u so that as
n — 00, all the customers are served before time nT'.

We first develop a fluid limit for this system. Some ad-
ditional assumptions and notation is needed for this. We
restrict F), to satisfy the limit

Vi (Fa(nt) = F(t)) — 0 (1)

uniformly on compact sets (uoc), where F(-) is a distribu-
tion function with support in [—7,T]. Thus, for instance,
F,(-) may correspond to a uniform distribution between
[-nT,nT] while F(-) corresponds to a uniform distribution
between [—T',T].

Let A, (t) denote the number of arrivals by time ¢ in sys-
tem n. Similarly, for ¢ > 0, let S, (¢) denote the number of
service completions in queue if the server is busy throughout
the time ¢, i.e.,

m

Sn(t) = sup{m : Z Vi <t}

i=1

Then, the queue length process Q,(t) for t < 0 equals A, (t),
and for ¢ > 0,

Qn(t) = An(t) = Sn(Bn(t))

where B, (t) denotes the time that the queue has been busy
between [0, ¢] and

t
Bu(t) = / 1(Qn(s) > 0)ds.
0
For t < 0, we may re-express Qn(t) to equal X, (t) where,
the ‘net input process’
Xn(t) =nFn(t) + (An(t) — nFy(t)).
For ¢t > 0,
Qn(t) = Xn(t) + Ya(t)
where,
Xn(t) = (nFn(t)—pt)+(An(t)—nFn(t))—(Sn(Bn(t))—pBn(t))
and ‘the regulator process’
Yo (t) = pu(t — Bn(t))-
It then follows (see Chen and Yao 2001) that for ¢ > 0,
Ya(t) = sup [~Xa(s)]*
0<s<t

and
Qn(t) = Xn(t) + sup [~Xu(s)]".
0<s<t
Let V((m) = 31", Vi. Then the workload at the queue at

time ¢ > 0 equals
Zn(t) = V(An(t)) — Bn(t).

It equals V(A,(t)) for ¢ < 0.
We define the normalized values of arrival, service and
related process as follows:

iy ot
Zn(t) — @7



and

Qu(n) = L0
For t > 0,

S(t) = Snint)
and

Bn(t) = w.

Then, under mild regularity conditions, A, (t) — F(t) and
for t > 0, Sn(t) — wpt uniformly on compact sets. It then
follows that the processes

(angnazn) - (Q7B72)7

where for t <0,

Q) = X (1),
where
X(t) = F(t),
and for ¢t > 0,
Q) = X(t) +Y(t)
where,
X(t) = F(t) - s,
Y(t) = sup [-X ()",
Z(t) =Q)/n,
and

B(t) =t —Y(t)/p.

The proof for these results essentially follows, for instance,
from the proof of Theorem 6.5 in [1], and is omitted.

REMARK 1. The arrival process A(-) has an interesting
diffusion limit. To see this, define

An(t) = Vn(An(t) — F(t) = W'

This may be re-expressed as

An(t) = V(An(t) = Fo(nt)) + v Fa(nt) — F(1))

Then, since the latter term converges to zero, by the con-
verging together theorem A,(t) has the same distribution
limit as

Vi(An(t) — Fa(nt)).

The latter has mean zero and variance F,(nt)(1 — Fy(nt))
that converges to F(t)(1 — F(t)) the variance of a Brown-
ian bridge evaluated at F'(t). Under mild restrictions it can
be shown that the process {An(t)} converges to an appro-
priate time changed Brownian bridge. (Similar convergence
is used in Kolmogorov-Smirnov test; see for instance [14]).
Furthermore, it can be shown that the diffusion limit of the
queueing process, wherever the queue is positive is a Gaus-
sian process.
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3. GAME OF ARRIVALS

Consider a tagged arrival s in System n. Suppose that
W (t) denotes her expected waiting time in the queue if she
arrives at time ¢ given that the arrival process of all the other
customers is described by the CDF F,. Further suppose
that her cost structure is as follows: She incurs a cost 3(s)
if she is served at time s. In addition, if she spends time ¢
in the queue then that costs her at. Suppose she samples
her arrival (she selects a mixed strategy) from a probability
distribution G (-) whose support is within [-nT,nT]. To
ease the analysis we assume that 3(t) = fSt, that is, 5(-) is
a linear function. Then her expected cost is

nT

(Bt + Wn(t)) + aWn(t)) dGn(t)
(2)

and her problem is to find G,, that minimizes this. This
clearly corresponds to putting all the probability mass at
times that minimize

Bt + (o + B)Wh(2).

This problem can be solved once we can evaluate Wy, (t) for
each ¢, which in turn would depend on the probability dis-
tribution F), used by other customers to select their arrival
times.

We analyze this problem asymptotically. Setting £ = t/n,
the equation (2) may be re-expressed as:

Os,n(Gny Fn) = /

—nT

/ (B(ni + Wi (nf)) + aWa (nd)) dGu(nd). (3

-7
Consider the case where %n{) — W(t) as n — oo for
some function W(-), and Gnp(nt) — G(i) as n — oo for
some distribution function G(-) with support within [T, T7.
Then, asymptotically the problem of the tagged arrival re-
duces to finding a distribution G that minimizes

T ~ — ~ — ~ ~

/ (B(E + W (D)) + oW () dG (D).
-7
Again, the solution corresponds to assigning the probabil-

ity mass to times t € [T, T] that minimize

(a4 B)W(t) + Bt.
3.1 Game of Arrivals: The Fluid Problem

This asymptotic ‘fluid’ problem can be modeled as a non-
atomic game where each customer is a point in the unit
interval [0,1]. All customers have identical cost functions.
This is given by

T - —
oG, F) = / (B(t + W(8)) + al¥ (1)) dG ()
-7
for a customer who chooses her arrival using distribution
G, when everyone else selects their arrival using distribution
F. Note that this determines the waiting time W (¢) for an
arrival at time ¢ in the limiting fluid model.

We first define a symmetric Nash equilibrium for such a

game.

DEFINITION 1. A mized strategy profile F' is a symmetric
Nash equilibrium if for any player s € [0,1] who plays Fs,

C(F,F) < C(F., F),VF..



That is, if all the other customers use mixed strategy F,
then an arbitrary player s’s best response is to also play F'
(though the best response may not be unique).

Suppose that everyone else aside from the tagged customer
s follows the distribution F'(-) (this may be the limiting dis-
tribution in (1)). Then, W (t) for ¢ < 0 equals

—t+ F)/n=F(t)/p—t

where —t is the customer wait before the server becomes ac-
tive, and F'(t)/p denotes the remaining queueing delay, once
the server is active. For t > 0, W(t) equals the asymptotic
workload at time ¢, that is, Q(t)/u. So the solution to the
tagged customer’s arrival distribution problem corresponds
to finding times t that minimize

(a+B)F)/ 1 — at
for t < 0 and

(a+B)Qt)/ 1+ Bt
for t > 0.
Let
t" =inf{t > 0: F(t) < ut}.

This denotes the first time the server starts to serve at less
than the full rate p after it starts serving at time zero. Note
that t* < 71 = 1/ since, otherwise, there exists an € > 0
such that F (1 +¢€) > u(m1 +€) > 1, a contradiction.

Consider the case where t* = 71. This corresponds to the
case where the server continuously serves customers at her
full rate p till time 7 and at that time all the customers are
served. In this case for ¢ € [0, 71],

Q(t) = F(t) — pt,
so that
W(t)=F(t)/un—t (4)
for all t € [T, 71]. Hence, in this case tagged customer’s ar-
rival distribution is selected so that all the probability mass
is assigned to times in [T, 71] that minimize
(a+B)Ft)/n— at
for t € [-T, 7).

3.1.1 Game Theoretic Analysis

Let G denote the space of all probability distributions on
[-T,T]. Recall that F denotes the arrival distribution fol-
lowed by everyone else in the non-atomic game described
earlier. For this F' to be a symmetric equilibrium, we need
that

F € arg min /; ((a+ B)W (t) + Bt) dG(2).
Recall that
t* =inf{t > 0: F(t) < pt}.
The following lemma helps characterize such an F'.

LEMMA 1. If F' is a symmetric Nash equilibrium for our
non-atomic game, then t* = 71 so that F(11) = 1.

Proof: To see this, suppose that for a given F, t* < 1.
Then, it is easy to see that F' cannot be a symmetric Nash
equilibrium. To see this, note that at time t*, there is no
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queue and hence W (t*) = 0. Furthermore, since t* < 71, all
the customers have not arrived and hence F(t*) < 1.

Now select an arrival distribution G for a tagged customer
as follows: Set G(t) = F(t) for t < t* and G(t*) = 1. This
distribution puts a positive mass at time ¢t* when the waiting
time is zero. It is easy to see that C(G, F') < C(F, F) so that
F' cannot be a symmetric Nash equilibrium. O

Therefore, in our search for equilibrium solution we re-
strict ourselves to F with t* = 7 and F(71) = 1. In partic-
ular B(t) =t for all t € [0, 71].

It follows from (4) that for such an F, the cost at any time
t € [T, 7] equals

(a+B)F(t)/1— at. (5)

Let 7o = —ig (We select T such that T' > ig) The
equation (5) becomes independent of ¢ for ¢t € [ro, 1] if we
select F' = F* where F*(t) = 0 for t € [T, 70],

* t— 70

F® = T —To
t € [t0,71], and F*(t) = 1 for t € [r1,T]. In that case, (5)
equals 8/ for t € [0, 71]. Hence, if each customer samples
their arrival from F*, the cost to each customer equals 3/ pu.

THEOREM 1. The distribution F* corresponds to a unique
symmetric Nash equilibrium solution to our non atomic game.

Suppose that F' is a symmetric Nash equilibrium. Let
S denote its support (smallest closed set so that its com-
plement has probability zero under F'). Then, along this
support the cost is a.s. constant ¢ for some ¢, and it is > ¢
a.s. elsewhere. Let to be the left boundary of S and 1 be
its right boundary. Clearly to < 0 and from Lemma 1, we
have that ¢t; < 7. Note that the cost to arrival at time ¢
equals (a+ B)F(t)/p— at. For this cost to a.s. equal cin S,
S must be an interval [to,¢1] (note that there cannot be an
open interval where F is constant and the (a+3)F(t)/pn—at
is also constant).

Also note that t1 < 71 is not feasible as then

c=(a+pB)/n—at>(a+p)l/p—an =p/p

and this is greater than the cost 3/p incurred by a customer
that comes at time 71 with probability 1. Thus, t; = 71
and ¢ = /p. This, further implies that to = —8/(pa) =
70. Note that an arrival outside interval [ro,71] incurs a
cost > (B/u. This is because the cost of customer coming
before ¢ is higher than her coming at 79 (due to the cost
of increased wait) . Similarly, the cost of coming after 7;
is more than coming at 71 (in both cases the waiting cost
is zero). Therefore, ' = F* is the unique symmetric Nash
equilibrium to our game. O

3.2 Global Welfare Solution and Price of Sym-
metric Anarchy
We now discuss the global welfare solution for the limiting
fluid problem. Here we identify a distribution F' followed
by all the customers that minimizes the overall cost. The
associated fluid problem cost equals

/ i ((a+ BW() + Bt) dF(Q).

At the global welfare solution, each customer selects a dis-
tribution in a such way so that the total cost to all the



customers is minimized. We first develop a lower bound on
this cost and then propose a distribution that achieves this.
To get a lower bound, note that the smallest value of W ()
is zero for all t. Also note that the total time to service is
minimized if the server serves at the fastest possible rate.
That is, it functions at full rate p starting at time zero and
serves all the customers by time 71. Then, the average time
to service for each customer is 71/2. So the lower bound on
the overall cost is 871/2 = 3/(2p).

It is easy to see that F(t) = t/m for 0 < t < 7y achieves
this lower bound. Note that under this arrival distribution,
the queue always equals zero and there is no waiting so
W (t) = 0. Furthermore, under this distribution, the service
is provided to all at the fastest possible rate: All customers
are served by time 71, so the average time to service of all
customers is also minimized. Therefore, the minimum pos-
sible cost in the system corresponds to everyone following
the distribution F(t) = t/71 for 0 < t < 71 and equals
Bri/2=B/(2p).

Recall that the cost associated with everyone following a
symmetric equilibrium distribution F* equalled 2 so that
the equilibrium solution is twice as expensive as the global
welfare solution. Therefore the price of symmetric anarchy
defined as the ratio of maximum cost over all symmetric
Nash equilibria with the global welfare solution, equals 2.

REMARK 2. In our cost structure, we have thus far con-
sidered two components: The cost of time at which service
is received plus the cost of waiting in a queue. In many set-
tings, such as at the concert hall, while the cost of waiting
is appropriate, the other component of cost is better mod-
eled as proportional to the number of customers that have
received service before the tagged customer gets served. For-
tunately, that leads to only minor changes in our fluid anal-
ysis.

To see this note that in the fluid model this change corre-
sponds to replacing the cost

Bt +W(t) +aW(t)
with
BE(t) + aW (t).

Again, consider the case where t* = 71. As discussed earlier,
in this setting

W(t) = F(t)/u—t.
so the overall cost equals

F(t -
Iz
where § = Bu. This differs from the previously analyzed
cost function in that 3 replaces 3. It is then easily seen

that if we define 7o = —ig = —g. (We select T such that

T> g) and select F'(t) = 0 for ¢ € [T, 7o),
- t — 7o
F(t)= ———
( ) T1 — 7A'0
t € [fo,m] and F(t) = 1 for ¢ € [r,T]. Then, F is a
Nash equilibrium solution to the fluid problem. This fol-
lows essentially from the proof of Nash equilibrium of F™*
in the previous case. One simply needs to note that an ar-
rival before time 7y incurs extra waiting cost compared to
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an arrival at time 7y, both see no customers in the queue.
Furthermore, an arrival at any time > 71 sees all the cus-
tomers arrive before her and incurs no waiting. So the total
cost is independent of her arrival time once it is > 7.
Under this Nash equilibrium, it can be seen that the cost
to a customer equals 8 (as compared to 3/u in the previous
settings). Furthermore, it is again easy to see that 8 bounds
from above the cost of any other symmetric Nash equilib-
rium. Furthermore, the global welfare solution corresponds
to any strategies employed by customers that leads to zero
waiting. In that case the cost to each customer equals

5 [ Far) =5 [ in =2

so that the price of symmetric anarchy again equals 2.

4. CONCLUSION

In this paper we considered the queueing problem that
may arise in settings such as concert halls, movie theaters,
cafeterias etc., where a large number of customers may queue
up before a facility that opens for service at a particular
time. The customers strategically selected their arrival time
distributions. We developed a queueing framework for this
problem for which we identified the fluid limit. We observed
that fluid limit allows a great deal of tractability in analyz-
ing the strategic arrival problem faced by each customer. We
identified the unique symmetric Nash equilibrium strategy
for each customer and showed that the price of symmetric
anarchy equalled 2 in our framework. In our ongoing work,
we study the equilibrium properties of the fluid model under
general cost functions. We generalize our analysis to multi-
ple classes of customers and we discuss structural changes in
the queueing discipline that may reduce the price of anarchy.

We hope that this analysis motivates further research in
strategic analysis of queues using fluid model simplifications.
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