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ABSTRACT
Consider a single server queueing system with several classes
of customers, each having its own renewal input process and
its own general service times distribution. Upon completing
service, customers may leave, or reenter the queue, possibly
as customers of a different class. The server is operating
under the egalitarian or the discriminatory processor sharing
discipline.

In this paper, we consider the fluid approximation of this
multiclass processor sharing queue. We first provide the re-
sults allowing to compute the trajectories for this model,
under the egalitarian PS discipline. Asymptotic results for
overloaded queues are also stated. Next, we show that a
simple transformation allows to compute the solution for the
discriminatory PS queue as well. Finally, we illustrate the
different results through numerical experiments. We com-
pare transient trajectories with simulations, and we discuss
the fairness issue that may arise in overloaded PS queues.

Keywords
Fluid Limit, Fluid model, measure valued process, multiclass
networks, Processor sharing

1. INTRODUCTION
The processor sharing queue is a central model for evaluat-
ing the performances of various computer and telecommu-
nication systems. Relatively few analytical results seem to
be available for the calculation of performance metrics in
multiclass PS queues: see for instance [12]. On the other
hand, when the “load” of the queue is important (be it mea-
sured in terms of arrival intensity or just the amount of
work present), fluid approximations become an interesting
complement to a purely stochastic analysis. In the last ten
years, many detailed results have been obtained on the fluid
limits of the PS queue in [6, 10], refining the initial findings

∗Part of this work was performed while the author was a
CNRS Postdoctoral fellow at LIRMM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VALUETOOLS 2009, October 20-22, 2009 - Pisa, Italy.
Copyright 2009 ICST 978-963-9799-70-7/00/0004 $5.00.

of [4]. We have recently extended this analysis to the mul-
ticlass case, where customers may re-enter the queue, pos-
sibly changing classes. Fluid approximations for PS queues
are an active topic of the current literature, see e.g. [7, 13,
8]. Some of these variants consider features like impatiences,
limited service or network of queues, but no work has so far
addressed the multiclass, single server queue.

The purpose of this paper is twofold. First, we present in
a synthetic and self-contained way several results recently
obtained on the fluid approximation for the Multiclass PS
queue, and the correspondence that can be established be-
tween the egalitarian PS queue and the discriminatory PS
(DPS) queue. The complete analysis and the proofs are too
long to be reported here, and can be found in [3].

The second purpose of this paper is to illustrate the use-
fulness of these results through several numerical experi-
ments. First, we discuss the computation of trajectories
for the population within classes, and compare with simula-
tion, for standard PS and DPS examples. We also illustrate
the asymptotic results when time goes to infinity. Next,
we exploit a correspondence between the single-class queue
and the multiclass queue to revisit the dependence of the
response time on the service time duration in an overloaded
queue. Finally, still for an overloaded queue, we discuss
the effect of the service time distribution in classes, on the
growth rate of the different populations.

The paper is organized as follows. In Section 2, we introduce
the queuing model. We describe the fluid approximation in
Section 3, together with the theoretical results obtained for
this model: existence, calculation of the solution, asymp-
totic behavior. Section 4 is devoted to the illustration of the
different results.

2. THE MODEL
We consider first a single-server queue operating under the
egalitarian Processor Sharing discipline. Then we shall ex-
tend the analysis to the discriminatory PS discipline.

Customers belong to a set K of K classes. For each k ∈ K,
customers arrive to the queue from the “exterior” according
to a renewal process of intensity αk. Customers of class
k have a service duration generically denoted as vk and
distributed according to some probability distribution Bk.
Upon service completion, a customer of class k may re-enter
the queue as a customer of class l with a fixed probability
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pkl, or leave the system with probability pk0 := 1−P
l∈K

pkl.

The service requirements of different customers are assumed
to be independent. It is assumed that arrival processes, ser-
vice durations and routing decision processes are mutually
independent as well.

As it will be clear shortly, the analysis of the processor shar-
ing queue is centrally based on a state-space representation
using a measure of residual service times. For this reason,
many results are conveniently expressed using this formal-
ism, which we briefly describe now. For any Borel measure
µ, and some function f , we shall use the scalar product
〈f, µ〉 =

R
f(x)µ(dx). In particular, 〈1, µ〉 is the total mass

of the measure. If µ is a probability measure associated with
some cumulative distribution function B(·), and some ran-
dom variable X, then 〈1[0,x], µ〉 = P(X ≤ x) = B(x). In
particular, 〈1, µ〉 = 1.

Introduce νk, the Borel probability measure associated with
Bk. It is assumed that for each k ∈ K, the distribution
νk does not charge the origin, νk({0}) = 0, and we define

βk = Evk and β
(2)
k = E(vk)2. It is assumed that βk < +∞.

The Laplace transform of the distribution will be denoted

with bBk(·).

Finally, define the non-negative matrix P = ((pkl))(k,l)∈K×K

and its transpose P ′. The system is assumed to be open in
the following sense. We allow that αk = 0 for some classes k,
but at least one of them must be strictly positive. Moreover,
the matrix Q = I + P ′ + (P ′)2 + ... is assumed to be finite,
which is equivalent to requiring that (I − P ′) be invertible,
or that P has a spectral radius less than 1. In that case,
Q = (I − P ′)−1.

Initial conditions. For each k ∈ K, we assume that the
system initially contains an integer random number of cus-
tomers of class k, denoted with Zk(0). Those customers have
a (residual) service time distributed according to a distribu-
tion B0

k. These service times are assumed to be mutually
independent and independent from the other variables al-
ready introduced. Any customer belonging to class k at
time zero in the system is referred to as an “initial customer
of class k”. After service, an initial customer of class k is
routed exactly as an external customer.

Mapping to the single-class case. When a customer leav-
es the queue to re-enter it immediately, the total number of
customers in the system is not changed. Therefore, this
event has no effect on the other customers: everything is “as
if” the considered customer has simply completed a phase of
its service and begun the next phase. Consider the variable
Vk representing the total service requirement of some cus-
tomer, entering initially the queue as a customer of class k,
up to the moment when it leaves the queue forever. From
the point of view of the total number of customers, the mul-
ticlass queue with routing is equivalent to a multiclass queue
without routing and a service time Vk for customers of class
k. Next, consider the variable V constructed as a mixture
of the Vk, with probabilities proportional to the external ar-

rival rates to each class. This variable represents the service
requirement of a “typical” customer taken at random in the
global input flow. In the case where the arrival process of
each class is constructed as a Bernoulli sampling of some re-
newal process (this includes Poisson-distributed arrival pro-
cesses), the multiclass queue is equivalent to a single-class
one with services distributed as V . This equivalence turns
out to happen in the fluid limit, even if the coupling of input
processes and service durations is not exact in the stochastic
and discrete queue.

As a consequence, it is possible to consider the fluid multi-
class processor sharing queue as a single-class one and use
results from the literature for this system, e.g. [9, 10, 11, 6].
Note however that this reduction concerns uniquely global
quantities such as the total number of customers. It is not
possible to infer a priori per-class quantities from the results
about the single-class queue.

The following lemma provides the formulas for passing from
the multiclass description to the single-class one. Those for-
mulas involve matrix manipulations and we introduce here
the notation which will be used throughout the rest of this

paper. LetB(x) = diag{Bk(x); k ∈ K}, bB(x) = diag{ bBk(x);
k ∈ K} and and β = diag{βk; k ∈ K}. Let e be the (row)
“vector of ones”. For two matrices of measurable functions
F (.) andG(.) defined on R+, we denote by the matrix-valued
functions (F ∗ G)(x) for x ∈ R+, the matrix convolution
formed of the elements: (F ∗ G)ij(x) =

P
k(Fik ∗ Gkj)(x).

This operation is associative and distributive over matrix
addition. The multiplication by a constant matrix C can be
seen as a convolution, where each element Cij is interpreted
as the function Cij1x≥0. Associativity therefore holds for
mixed scalar products and convolutions. The n-th convolu-
tion power of a matrix F (x) is denoted with F ∗n(x).

The following renewal-like matrix function is central in the
calculations.

B(x) =
∞X

n=0

(BP ′)∗n(x) . (1)

Finally, let αe :=
P

k∈K
αk = e.α be the “equivalent” arrival

rate of single-class customers. The“.”denotes here the inner
product for vectors.

Lemma 1. We have the following properties.

i) The distribution function of the variable Vk is given
by:

Vk(x) =
`
e(I − P ′)(B ∗B)(x))

´
k
, (2)

with first moment E(Vk) = (eβQ)k and Laplace trans-
form given by:

bVk(s) =
“
e(I − P ′)(I − bB(s)P ′)−1 bB(s))

”
k
. (3)

ii) The variable V , formed as a mixture of the Vk, propor-
tionally to the arrival rates αk, has a distribution func-
tion V (x) =

P
k∈K

αkVk(x)/αe with Laplace transform
given by:

bV (θ) =
1

αe
e(I − P ′)(I − P ′ bB(θ))−1 bB(θ)α .
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These results can be proved as follows. The total service
time of a customer of class k is the sum of one service time
vk and of the service it requires after the end of this ser-
vice. The latter duration is distributed according to Vj with
probability pkj and is zero with probability pk0. The service
time after re-entering the queue is independent from the first
service. Accordingly, we have the identity for distribution
functions:

Vk(x) =
X

j

pkj(Bk ∗ Vj)(x) + pk0Bk(x) .

Expressed in vector-matrix form, with V (x) = (Vk(x); k ∈
K) (a row vector), we have:

V (x) =
`
V ∗ (P ′B)

´
(x) + e(I − P ′)B(x) ,

and this is a multidimensional renewal equation, of the sort
studied in [1] for instance. By application of Lemma 2.1
in this reference, we obtain the existence and uniqueness of
the solution, and the value V (x) = e(I − P ′)(B ∗ B)(x),
whence (2).

3. THE FLUID APPROXIMATION AND ITS

SOLUTION
3.1 Definition of the Fluid Model
The fluid limit arises from a normalization of the stochas-
tic, discrete queueing process. Quantities of interest are:
the number of arrivals in class k to date t, Ak(t), the num-
ber of departures Dk(t), the current population in class k,
Zk(t) and the measure µk(t) which counts the residual ser-
vice times of all customers of class k in the queue.

Given a sequence of discrete Multiclass Processor Sharing
systems with parameters and descriptors indexed by an in-
teger number r, we obtain a sequence of arrival, departure
and residual service time measures: Ar

k(t), Dr
k(t), µr

k(t) for
each class k. The superscript r denotes the dependence of
the process on this parameter r, through initial populations,
arrivals, service time and routing distributions. The scaled
processes that will give rise to a fluid limit are defined as:

Ār
k(t) =

Ar
k(rt)

r
, D̄r

k(t) =
Dr

k(rt)

r
,

Z̄r
k(t) =

Zr
k(rt)

r
, µ̄r

k(t) =
µr

k(rt)

r
.

The fluid model shares the following parameters with the
discrete model: the non-negative vector α = (α1, ..., αK),
the vector of Borel probability measures ν = (ν1, ..., νK)
and the non-negative routing matrix P .

Define the vector λ = Qα. The global arrival rate to the
class k is then λk, and the load factor of the queue is ρ =P

k∈K
λkEvk. The adjectives subcritical, critical and super-

critical will be used to refer to data (α, ν, P ) that satisfy
ρ < 1, ρ = 1, ρ > 1 respectively.

Let Mc,K = {ξ ∈ MK : ξk({x}) = 0 for all x ∈ R+ and
k ∈ K} be a set of finite, non-negative Borel measures on R+

that have no atoms, and let Mc,p,K = {ξ ∈ Mc,K : ξ 6= 0}
be the set of positive measures of Mc,K .

Definition 1 (Fluid Solution Model). Let (α, ν, P )
be some data and ξ ∈ Mc,K be an initial state. A fluid

solution is a triple (A(t), D(t), µ(t)) of two real-, and one
measure-valued vectors of continuous functions: A, D : R+ →
R

K
+ , and µ = (µ1, ..., µK) : R+ → MK such that µ(0) = ξ,

and for all t < tρ(ξ) defined below,

i) A and D are increasing componentwise,

ii) The triple satisfies the relations

A(t) = αt+ P ′D(t) (4)

〈1, µk(t)〉 = 〈1, ξk〉 +Ak(t) −Dk(t) (5)

〈1[x,∞[, µk(t)〉 = 〈1[x,∞[(.− S(0, t)), ξk〉 (6)

+

Z t

0

〈1[x,∞[(.− (S(s, t)), νk〉dAk(s)

for every k ∈ K, x ∈ R+ and:

S(s, t) =

Z t

s

ϕ(〈1, e.µ(u)〉)du , (7)

where ϕ(x) = 1/x for x ∈ (0,∞), and ϕ(0) = 0.

For t ≥ tρ(ξ), A(t) = D(t) = λt, µ(t) = 0. The number
tρ(ξ) is the time range of the solution, and is defined as:

8
<
:

tρ(ξ) = inf{t : e.µ(t) = 0} if ξ 6= 0
tρ(0) = 0 if ρ ≤ 1
tρ(0) = ∞ if ρ > 1 .

(8)

It turns out that under quite general assumptions, the se-
quence of normalized processes Ār, D̄r and µ̄r converge
when r → ∞ to a fluid solution model according to Defi-
nition 1. The precise assumptions, the sense in which con-
vergence of these stochastic processes occurs, and the proofs
are given in [3]. Basically, arrival, service and routing distri-
butions should converge simply, whereas initial populations
should be asymptotically proportional to r.

The proof techniques are adapted from [6, 10] with two
main differences. First, the per-class processes are coupled
through Eq.(6), which prevents to reduce the problem to in-
dependent one-dimensional problems. The analysis is truly
multidimensional, with in particular the use of multidimen-
sional renewal equations. The second and main difference is
that arrivals to class k are the superposition of exogenous
arrival, which are easy to characterize, and endogenous ones,
the nature of which is more difficult to assess. Most of the
difficulty lies in the proof that the customer feedback pro-
cesses are “as tame” as external renewal processes.

Total populations and the initial measure. The defini-
tion above involves the detailed residual service time mea-
sure µk(t), but a less detailed description is also possible.
The total population of class k, Zk(t), is related to µk by:

Zk(t) = 〈1, µk(t)〉 .
On the other hand, the measure ξk appearing in (6) repre-
sents the distribution of the workload among the customers
of class k initially present in the queue. Since ξk is a finite
measure for each k ∈ K, there exists a probability measure
ν0

k such that ξk = Zk(0)ν0
k . We shall denote with v0

k the
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generic random variable with distribution ν0
k , and we shall

assume that β0
k := Ev0

k < +∞.

As a particular case of (6), we have the law of evolution for
Zk:

Zk(t) = Zk(0)P(v0
k > S(0, t)) +

Z t

0

P(vk > S(s, t))dAk(s)

(9)
since 〈1[x,∞[, µk(0)〉 = Zk(0)P(v0

k > x) for all x ≥ 0.

Attained service and response time. The function S(s, t),
defined in Equation (7) and appearing in (6) or (9), repre-
sents the service accumulated by any customer in the queue
which would be present during the time interval [s, t]. In-
deed, the derivative of this function is 1/

P
k∈K

Zk(t) (when
the queue is not empty), in accordance with the rules of
the egalitarian Processor Sharing discipline. Consider a cus-
tomer arriving at time s and requiring a service of σ units.
The time t at which the customer leaves the queue is such
that the attained service at time t is σ. Therefore, σ =
S(s, t). Introduce the abbreviated form S(t) = S(0, t) and
the function T (u) = S−1(u). Since S(s, t) = S(t) − S(s),
we can express the departure time as t = T (S(s) + σ) and
the response time as R = T (S(s) + σ) − s. In particular,
for customers present initially, the response time is simply
R = T (σ).

3.2 Results

3.2.1 Time range of the solution
The first result concerns the interval over which the fluid
queue is not empty. The time range of the solution, tρ(ξ),
has been defined above in (8).

Lemma 2. Assume that ξ 6= 0. The the value of tρ(ξ) is

8
<
:

tρ(ξ) = + ∞ if ρ ≥ 1

tρ(ξ) =
e(β0 + βQP ′)Z(0)

1 − ρ
if ρ < 1 .

In this result, the term e(β0 + βQP ′)Z(0) has the follow-
ing interpretation. It is the “virtual workload” of customers
which are initially present. Indeed, each customer of class k
brings its initial workload β0

k, but will also bring work to the
queue when it re-enters as a customer of class l (which hap-
pens with probability, or fluid proportion, pkl). According
to Lemma 1, this quantity is given by (eβQ)l.

3.2.2 Existence and Construction
The next result provides existence, uniqueness of the solu-
tion, and provides the explicit formulas for constructing it.
The result holds whether the queue is subcritical, critical or
supercritical.

Theorem 3. Given data (α, ν, P ) and ξ ∈ Mc,K , there
exists a unique fluid solution (A(t), D(t), µ(t)) of the model
such that µ(0) = ξ. For every t ≤ tρ(ξ), the elements

(A(t), D(t), Z(t)) of this solution are given by

A(t) = λt+QP ′(Z(0) − Z(t))

D(t) = λt+Q(Z(0) − Z(t))

Z(t) = eZ(T−1(t))

eZ(s) = Q−1(B ∗ C)(s)Z(0) +Q−1(B ∗ (I −B) ∗ (TI))(s)λ

T (s) = (H ∗ Ue)(s)

Ue(u) =
X

n≥0

ρn(Ve)
∗n(u)

H(x) =

Z x

0

e.Q−1(B ∗ C)(y)Z(0)dy

C(t) = (I −B0(t)) + (I −B(t))QP ′

where B is defined in (1), and Ve is the excess lifetime dis-
tribution associated to the random variable V .

The measure µ(t) can also be computed in closed form. We
omit this expression which we shall not use in this paper. For
computational purposes, most of these functions are better
described by their Laplace-Stieltjes transforms. Using the

generic notation bF (θ) =
R
e−xθdF (x), we have:

bB = (I − bBP ′)−1

beZ = Q−1 bB
“

bCZ(0) + (I − bB) bTλ
”

bT (θ) =
bH(θ)

1 − ψ(θ)

bH(θ) = θ−1 e
“
I −Q−1(I − bB(θ)P ′)−1 bB0(θ)

”
Z(0)

ψ(θ) = θ−1eQ−1(I − bB(θ)P ′)−1(I − bB(θ))λ .

The use of these equations is illustrated in Section 4.1.

For supercritical systems which are initially empty, we have
a more direct construction. This particular solution appears
also in the asymptotics. The construction is based on the
global growth rate of the population, given in the following
Lemma.

Lemma 4. Let (α, ν, P ) be a supercritical data. Then there
exists a unique positive real number θ0 solution to the equa-
tion:

θ0 = e (I − bB(θ0))(I − P ′ bB(θ0))
−1 α . (10)

Define the vector m = (m1, . . . ,mK)′ as:

m = (I − bB(θ0))(I − P ′ bB(θ0))
−1 α . (11)

Given a supercritical data (α, ν, P ), define pk : R+ −→ R+,
for each k ∈ K by

pk(x) =
mk

1 − bBk(θ0)

Z ∞

x

θ0e
−θ0(y−x)dBk(y) , (12)

and let sk ∈ M denote the measure that is absolutely con-
tinuous with respect to Lebesgue measure and which Radon-
Nikodym derivative is pk(.):

sk(x) = pk(x) dx for all x ∈ R+. (13)
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Note that
R ∞

0
pk(x)dx = mk and 〈1, sk〉 = mk. Finally, let

s := (s1, . . . , sK)′.

Theorem 5. Assume that (α, ν, P ) is a supercritical data,
and let θ0 and s be given respectively by (10) and (11)– (13).
Then the triple

(A,D, µ) (t) (14)

= t×
“
(I − bB(θ0))

−1m, (I − bB(θ0))
−1 bB(θ0)m, s

”

is the unique fluid solution of the model starting from the
origin, that is, with µ(0) ≡ 0. As a consequence, Z(t) = mt.

3.2.3 Asymptotic results

Asymptotics for the response time. The following asymp-
totic results concern the scalar function T (·). Since we know
that this function is the same as in the single-class model,
the results of [10] or [11] apply. Translated to the multiclass
notation, we have:

Theorem 6. Given a data (α, ν, P ) and ξ ∈ Mc,p,K , we
have:

(i) If ρ < 1 then lim
t→+∞

T (t) =
e(β0 + βQP ′)Z(0)

1 − ρ
;

(ii) If ρ = 1 and β
(2)
k < +∞ for all k ∈ K, then Ṫ (t) ∼ c1

and T (t) ∼ c1t as t→ +∞, where:

c1 =
e(β0 + βQP ′)Z(0)

e( 1
2
β(2) + βP ′Qβ)λ

. (15)

(iii) If ρ > 1 then T (t) ∼ c2 exp(θ0t) as t→ +∞, where

c2 = −
bH(θ0)

ρθ0 ḃVe(θ0)
. (16)

These results predict that the response time of a customer
requesting σ units of service grows: linearly with σ in case
(ii), and exponentially with σ in case (iii).

Asymptotics for the trajectories. We now state the asymp-
totic results concerning the trajectories of the fluid limit
when t→ ∞.

In the subcritical case, the trajectories have a non-trivial
evolution until t = tρ(ξ) (the value of which is given in
Lemma 2); for t > tρ(ξ), the queue is empty: µ(t) = 0,
Z(t) = 0. Consequently, A(t) = D(t) = λt + QP ′Z(0),
according to Equation (4).

For the critical and supercritical cases, we have the following
results.

Theorem 7. Given a critical data (α, ν, P ) and ξ ∈ Mc,p,K

and assuming that β0
k <∞ and βk <∞ for all k ∈ K, then,

as t→ ∞,

µk(t)(.) =⇒ e(β0 + βQP ′)Z(0)

e( 1
2
β(2) + βP ′Qβ)λ

βkλkν
e
k(·) .

If β
(2)
j = +∞ for some j ∈ K, the limit is 0.

Theorem 8. Given a supercritical data (α, ν, P ) and ξ ∈
Mc,K , there holds:

µk(t)

t
(.) =⇒ sk(.) .

As a consequence,

lim
t→∞

A(t)

t
= λ−QP ′m lim

t→∞

D(t)

t
= λ−Qm

and

lim
t→∞

Z(t)

t
= m .

This theorem predicts that populations in the queue grow
asymptotically linearly. In the case where the queue is ini-
tially empty, the growth is actually exactly linear, according
to Theorem 5. The growth rate of the population of class k is
mk, given in (11). From this equation, it is readily seen that
αk > 0 if and only if mk > 0. Therefore, all classes which
have some external arrival will see their population grow to
infinity as t → ∞. Contrary to some service disciplines,
for instance priority-based ones, it is not possible that some
subset of classes behave in a stable manner whereas other
classes are unstable.

3.2.4 The Discriminatory Processor Sharing queue
A natural generalization of multiclass processor sharing (egal-
itarian), commonly encountered in the literature, is the“dis-
criminatory” processor sharing (DPS), where all customers
present in the system are served simultaneously with rates
controlled by a vector of weights {gk > 0, k ∈ K}. Under the
DPS discipline, any individual customer of class k is served
at a speed which is proportional to gk. The service delivered
to some customer of class k grows therefore as

gkP
k∈K

gkZk(t)
=

gk

g.Z(t)
.

Since Zk(t) = 〈1, µk(t)〉, it is clear that the cumulative of
service per customer of class k can be expressed as:

Sk(s, t) =

Z t

s

gkϕ(〈1, g.µ(u)〉)du , (17)

and that the dynamics of the measure µk is:

〈1[x,∞), µk(t)〉 = 〈1[x,∞)(.− Sk(t)), µk(0)〉 (18)

+

Z t

0

〈1[x,∞)(.− (Sk(s, t)), νk〉dAk(s) .

When all the weights are multiplied by some scalar γ, the
dynamics are not changed since 〈1, γg.µ(s)〉 = γ〈1, g.µ(s)〉
which implies γgkϕ(〈1, γg.µ(s)〉) = gkϕ(〈1, g.µ(s)〉). In par-
ticular, when all weights are equal, this coincides with the
equations of the multiclass egalitarian PS system.

This fluid queueing model is described by the data (α, P, ν, g).
Definition 1 naturally extends to this system: we shall call
a DPS Fluid Solution a triple of vector functions and mea-
sures (A(t), D(t), µ(t)) that satisfy Equations (4)–(5) and
(17)–(18). Such a DPS Fluid solution can be constructed
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from an equivalent (egalitarian) PS Fluid solution with the
following transformations.

Let G be the diagonal matrix obtained from g. Define
(αg, P g, νg) by

8
<
:

αg = Gα
P g = GPG−1

νg
k(·) = νk(gk × ·) .

(19)

This transformation actually consists in multiplying, for each
class, the external arrival rate by the weight, while dividing
service times by the same factor. It would be interesting to
see how the same transformation for the discrete, stochastic
DPS queue could be exploited.

Now consider a triple (Ag(t), Dg(t), µg(t)) of vector func-
tions and measures as usual. Define then the transformed
functions A,D and measures µ by:

8
<
:

A(t) = G−1Ag(t)
D(t) = G−1Dg(t)
µk(·)(t) = 1

gk
µg

k( 1
gk

× ·)(t) .
(20)

Remark 1. Observe that the triple (αg, P g, νg) may not
be a valid data for an Egalitarian PS queue, since it may
be that some entries in P are larger than 1. However, it
is always true that P g is a positive matrix with the same
spectral radius as P . We conjecture that the results for the
fluid process do hold even if P is not sub-stochastic, under
the condition ρ(P ) < 1, and although the interpretation of
the entries pij as routing probabilities does not necessarily
hold.

The characteristics of the transformed (Egalitarian) PS queue
are easily derived from that of the original queue. In partic-
ular, we have:

Qg = GQG−1, λg = Gλ

βg = βG−1 = G−1β β(2),g = β(2)G−2 = G−2β(2) .

In particular, the load factor of the queue is ρg = e.βg.λg =
e.β.λ = ρ. The transformation (19) has the property of
multiplying by the weight both the external and the internal
arrival rates to class k. Combined with the division of service
times in class k by the same factor, the load due to class k
remains the same.

Proposition 9. Assume that the triple (αg, P g, νg) is a
valid data. The triple (Ag(t), Dg(t), µg(t)) is a solution of
the egalitarian Fluid model with data (αg, P g, νg) defined in
(19), and an initial state described by the measures µg

k(·)(0) =
(gk)−1µk((gk)−1 ×·)(0), if and only if the triple (A(t), D(t),
µ(t)) defined by (20) is a DPS Fluid solution for the DPS
model, and initial measure µ(0).

This result allows to compute the fluid trajectories for the
DPS queue, by applying the formulas of Theorem 3 with
the matrices obtained with (19). This provides the func-
tions Ag, Dg and µg. The trajectories for the DPS are then
obtained with (20). In particular, the total population of

class k is obtained as Z(t) = 〈1, µk(t)〉 = g−1
k Zg

k(t). These
calculations are illustrated in Section 4.1.

We conclude this section on the DPS with a qualitative ob-
servation. Let Tk(s) = S−1

k (s). We have seen that the func-
tion Tk is related with the computation of response times;
here, there is one specific function for each class. The trans-
formation from the egalitarian to the discriminatory queue
and the identity (17) provide the following comparison re-
sults for response time mappings.

Proposition 10. Let (α, ν, P ) be a given data, let g =
{gk > 0, k ∈ K} be a vector of weights and ξ be a non-zero
initial state. If gk ≥ gl, then for all t ≥ 0: Tk(t) ≤ Tl(t).

This result is to be expected, since it has been proved in
[2] that in the (discrete) M/GI/1/DPS queue (without re-
entries), steady state response times, conditioned on the ser-
vice duration t, are stochastically ordered in the opposite
directions of weights.

4. ILLUSTRATIONS

4.1 Trajectories
We illustrate in this section the effective construction of tra-
jectories, in a case where most computations can be per-
formed in closed form.

Consider a queue with two classes. Customers of class 1 have
no external arrivals (α1 = 0), their service is distributed as
Exp(µ1) and when they complete service, they turn into
customers of class 2: P12 = 1. Customers of class 2 arrive
from the exterior with rate α. Their service is distributed
as Exp(µ2) and when they complete service, they exit the
system: P21 = P22 = 0. The initial situation is that there is
one unit of fluid of class 1, and no fluid of class 2: Z(0) =
(1, 0)′. Service times of customers present initially have the
same distribution as that of regular customers. We shall
consider the Discriminatory PS queue with weights g1 = 1
and g2 = G. The Egalitarian PS queue is obtained with
G = 1.

The first step is to compute the function T (·). The value
of its Laplace Transform is provided below Theorem 3. We
apply these formulas with the matrices resulting from the
transformation (19). The resulting expression is:

bT (θ) =
θ +G(µ1 + µ2)

(θ + µ1)(θ +G(µ2 − α))
, (21)

and the inversion of the Laplace transform gives:

T (t) =
µ1 + µ2

µ1(µ2 − α)
+

(µ1(G− 1) +Gµ2)e
−µ1t

µ1(µ1 +G(α− µ2))

+
(α+ µ1)e

G(α−µ2)t

(α− µ2)(µ1 +G(α− µ2))
.

Observe that bT (0) = T (+∞) = tρ does not depend on G.
This is natural, since the time range of the solution depends
only on the workload of the system, and not on the service
weights.
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The next step is to compute the function S(s) by solving
s = T (t), which cannot always be done in closed form, even
in this simple case. We proceed with specific values.

A stable queue. We consider first the case where µ1 = 1/4
and µ2 = 1, and the arrival rate is α = 1/2. In that case,
the load factor is ρ = 1/2. Referring to Section 3.2.1, the
“virtual workload” due to initial customers is

e(β0 + βQP ′)Z(0) =
`
1 1

´ „
4 0
0 1

« „
1 0
1 1

« „
1
0

«
= 5.

According to Lemma 2, the time range of the solution is
therefore tρ = 5/(1 − 1/2) = 10.

The solution of the fluid model in the Egalitarian PS case
(G = 1) is given by:

T (t) = 10 − 16e−t/4 + 6e−t/2

S(s) = −4 log(
4

3
−

√
4 + 6s

6
)

Z1(s) =
4

3
−

√
4 + 6s

6
Z2(s) = 3 Z1(s) (1 − Z1(s)) .

One checks that tρ = limt→∞ T (t) and lims→tρ S(s) = +∞.

Figure 1 displays one trajectory obtained by simulation with
an initial population of r = 1000 customers and periodic
arrivals (all simulations presented in the paper have these
parameters), together with the properly scaled fluid trajec-
tories. Simulations with a smaller initial population exhibit
significant differences with the fluid trajectory, certainly due
to the fact that the approximation of the initial random
workload by its fluid counterpart has a bad precision then.
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Figure 1: Trajectories in a stable case

In order to assess the precision of the fluid approximation,
we have collected statistics on the maximal distance between
real and fluid trajectories. With the notation of Section 3.1,
we define the random variable:

Mr,T
k = max

0≤t≤T
|rZk(t/r) − Zr

k(t)|

= r max
0≤u≤T/r

|Zk(u) − Z̄r
k(u)| .

We know that Mr,rT0

k /r → 0 for every T0. The question
is: how fast? Figure 2 displays the empirical distribution of

Mr,T
k for class k = 2 in the same situation as in Figure 1.

We have selected T = 1.1 × r × tρ = 11 r (to account for
some“overshooting”of simulated trajectories with respect to
the theoretical tρ) and geometrically increasing values of r.
The data was obtained using 1000 independent replications
of the simulation for each value of r. Figure 3 displays the
mean and standard deviation for the same experiment. It is
clear from that figure that both quantities are proportional
to r1/2: a scaling compatible with some “central limit”-like
result. However, the empirical distribution of Mr,T does
not match a Normal distribution with the same two first
moments (at least for the values of r we have considered) as
can be seen from Figure 2 (the curve labeled “Normal”).
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Figure 2: Distribution of the metric Mr,T
1 for in-
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Figure 3: Mean and standard deviation of the metric
Mr,T

1 for increasing r

A stable DPS queue. Let us assume now that G = 2.
Through numerical inversion, we obtain the values of S(·)
and Zi(t), which are represented in Figure 4, together with
simulated trajectories.

The effect of the increased weight on the population of cus-
tomers of class 2 is clear. Of course, increasing further the
weight will have the effect of protecting external arrivals
from the slowness due to the initial workload.

It is interesting to observe that the fluid model accurately
predicts the actual trajectory, although the data of the prob-
lem is not valid in the sense of Section 3.2.4. Indeed, the
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Figure 4: DPS Trajectories in a stable case

matrix P g = GPG−1 constructed using (19) is here:

P g =

„
0 0
G 0

«
.

It is therefore not a sub-stochastic matrix, but it has a spec-
tral radius less than 1. This numerical observation and other
“common sense” arguments have led us to the conjecture
expressed in Remark 1. The investigation of this issue is
however beyond the scope of the present paper.

An unstable queue. For the same values of µ1 and µ2,
when the arrival rate is α = 5/4, the load factor is ρ = 5/4.
When G = 1, the solution is given by:

T (t) = 12et/4 + 8e−t/4 − 20

Z1(s) =
5

4
+

s

16
−

√
16 + 40s+ s2

16

Z2(s) = 3

„
1

Z1(s)
− Z1(s)

«
.

The trajectories are displayed in Figure 5. The asymptotic
growth rate of the population of class 2 is predicted by The-
orem 8 and Lemma 4. The non-negative value which solves
Equation (10) is θ0 = α− µ2 = 1/4. This value can also be
obtained from the explicit expression for Z2(s): an asymp-
totic expansion gives

Z2(s) =
s

4
+ 5 +O(s−1) .

The accuracy of this asymptotic approximation is rather
poor in this case. This means in practice that using the
asymptotic formula Zk(t) ∼ mkt as an approximation may
not be sufficient for a good prediction, even in relative terms.

The critical case. The critical case ρ = 1 can be solved for
arbitrary µ1 and G. Assume that α = µ2 = 1. In that case,
the inversion of the Laplace transform (21) gives:

T (t) =
1 + µ1

µ1
Gt − G+ µ1(G− 1)

µ2
1

(1 − e−µ1t) .

The function T is asymptotically linear, as predicted by The-
orem 6 in this case. Observe the dependence of the asymp-
totic slope on the factor G. Continuing with G = 1 in order
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Figure 5: Trajectories in an unstable case

to simplify a bit the formulas, the solution of T (t) = s gives:

S(s) =
1

µ1

„
W

„
− e−Y

1 + µ1

«
+ Y

«

where Y := (1+sµ2
1)/(1+µ1) andW (·) is Lambert’s function

defined by: W (z)eW (z) = z. Finally, the populations in each
class are given by:

Z1(s) = −(1 + µ1)W

„
− e−Y

1 + µ1

«

Z2(s) =
1 + µ1

µ1
(1 − Z1(s)) .

In particular, we have as s → ∞, Z1(s) → 0 and Z2(s) →
1 + 1/µ1. It can be verified that this is the value predicted
by Theorem 7 for this situation. Simulated trajectories and
the fluid limit are compared in Figure 6. The empirical
and theoretical curves for class 1 are almost superimposed.
For class 2, the empirical trajectory exhibits random oscilla-
tions which do not seem to vanish, for the time scale used in
the diagram. Gromoll [5] has investigated this sort of phe-
nomenon for the single-class case. The generalization to the
multiclass case is currently under way.
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Figure 6: Trajectories in a critical case

4.2 Slowness as a function of the service time
Consider a single-class, processor sharing with service time
distribution v. Assume that this distribution is discrete,
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with P(v = kδ) = πk,
P∞

k=1 πk = 1, for some parameter
δ > 0. Denote also fk =

P∞

j=k πk = P(v ≥ kδ).

According to the discussion in Section 2, this single-class
queue can be seen as a multiclass queue. Let k denote the
class of customers having their service time equal to kδ in the
single-class queue. In the multiclass queue, such customers
are considered to have a service time equal to δ, and a rout-
ing probability Pk,k+1 = P(v ≥ (k + 1)δ|v ≥ kδ) = fk+1/fk.
If the support of the distribution is not bounded, there is an
infinite number of classes. For the discussion to follow, we
shall informally consider that the results of Section 3 apply
with infinitely many classes. For a rigorous discussion, we
might as well truncate the distribution, then let the trunca-
tion threshold go to infinity.

In the multiclass view of the system, the matrix Q = (I −
P ′)−1 is given by:

Q =

0
BBBB@

1 0 0 . . .
f2/f1 1 0 . . .

f3/f1 f3/f2 1
. . .

...
. . .

1
CCCCA

,

in other words, Qij = fi/fj for i ≥ j, 0 otherwise. Ob-
serve that f1 = 1. The vector of external arrival rates is
(α, 0, 0, . . .)′, and the vector of (theoretical) global arrival
rates is, as expected by construction, λ = Qα = α(1, f2, f3, . . .).

Assuming that the system is supercritical, and following
Lemma 4, Equation (10), we define θ0 as the solution to
the equation:

θ0 = α
`
1 −

X

k≥0

πke
−kδθ0

´
,

and apply (11) to obtain the value of the vector m. We have

simply bB(θ0) = e−δθ0I, and it is easily seen that:

(I − P ′ bB(θ0))
−1α = α(1, f2 bB(θ0), f3 bB(θ0)

2, . . .)

= α(1, f2e
−δθ0 , f3e

−2δθ0 , . . .) .

Accordingly, applying Theorem 8, we obtain for the asymp-
totic growth rate, arrival rate and departure rate of cus-
tomers of class k, respectively:

mk = αfk (1 − e−δθ0) e−(k−1)δθ0 ,

ak = αfk e
−(k−1)δθ0 , dk = αfk e

−kδθ0 .

This shows that the departure rate of customers is decreased
exponentially as a function of their service length. The fac-
tor of this exponential decay is the factor θ0. This is in
accordance with prior findings that the response time of cus-
tomers grows exponentially with their service time. This is
also in accordance with the fact that response times grow
exponentially fast with the service requirement.

4.3 Competition between classes
We illustrate here how the processor sharing discipline “dis-
torts” the throughputs of classes, in the case of overload.
Consider a multiclass queue in which customers of class k
arrive with a rate αk, receive service, then leave the system.
The routing matrix is P ′ = 0.

The reference situation is that the available service capacity
is “fairly” shared among classes, proportionally to their load
factor ρk = αkβk. This situation is that of a stable server
whatever its conservative service discipline, and that of an
overloaded FIFO queue.

In the supercritical case, the “fair” situation is therefore that
the throughput of class k is αk/ρ, and the accumulation rate
of customers in the queue is αk(1 − 1/ρ). The workload ac-
cumulation rate is ρk(1− 1/ρ). In particular, if arrival rates
are equal, customer throughputs and accumulation rates are
equal. If, in the PS queue, one class accumulates faster (or
has a smaller throughput) than some other one, arrival rates
being equal, we say it is unfairly treated.

The following experiments will show that unfairness (in this
sense) arises naturally when several classes with different
service requirements are present. In order to demonstrate
that the situation cannot be reduced to the comparison of
moments/averages, or the comparison of tails of distribu-
tions, we have performed the following experiments. We
study first the case of service distributions of the same“fam-
ily”with short (exponential) tails. Then we study the case of
service distributions with the same mean but different tails.
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Figure 7: Proportion of customers of class 1 in
queue, exponential distributions

The effect of service length. Consider an example with
two classes, in which the distributions have the same“shape”,
the same arrival rate, but not the same average service time.
Figure 7 represents the proportion of customers of class 1 in
queue, as a function of ρ and ξ = µ2/µ1. The range [1, 10]
for ρ has been chosen to illustrate the global behavior of the
functions represented; of course, such values are not sup-
posed to occur in practice.

The effect of the distribution. Consider now an example
with two classes, in which the distributions have the same
arrival and average service time (hence the same individ-
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ual load factor), but not the same “shape”. The service
for the first class has an exponential distribution, whereas
the service for the second class has a Pareto distribution
P(σ > t) = (a/(a+ t))b. Figure 8 represents the proportion
of customers of class 1 & 2 in queue, as a function of ρ, for
different Pareto shape parameters b.

Finally, when customers of class 2 have a constant service
time, the proportions are as shown in Figure 9. The fig-
ures show that customers with an exponentially distributed
service times accumulate faster when confronted with cus-
tomers with a Pareto distribution, but win the competition
against customers with deterministic service times. Fairness
in the sense above would require that proportions be equal.
The diagrams also show that the proportions do not be-
have monotonically as a function of the global load factor ρ,
and the interaction of classes and the residual service times
corresponding to different distributions remains a complex
issue.
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Figure 9: Proportion of customers of class 1 (Expo-
nential distribution) & 2 (Deterministic)

5. CONCLUSION
We have given a tour of results available for the fluid approx-
imation to the multiclass PS queue, both for the egalitar-
ian and the discriminatory versions. The effective construc-
tion of trajectories has been demonstrated. Cases where
explicit formulas can be obtained are quite rare, but nu-

merical solutions have been obtained as well. It remains to
study more complex cases with a larger number of classes
and/or more complex service distributions (in particular,
with heavy tails): the numerical efficiency of Laplace trans-
form-based computations has to be checked more thoroughly.

Other possibilities are offered by the results contained in this
paper. To detail just one: the fact that a single-class queue
can be seen as a multiclass one through the decomposition of
service durations, coupled with the use of the discriminatory
service discipline, may provide a new analysis of scheduling
disciplines based on service durations.
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