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ABSTRACT

We oonsider a dynamic scheduling system where asinge on
troller seleds ‘tasks' to serviceover U ‘servers of fluctuating quel-
ity/speed. The quality/speed of ead server determines the likeli-
hood d successul serviceshoud atask be assgned to that server.
The goal is to maximize the total expeded number of tasks auc-
cesdully served over afixed time horizon (aggregate throughpu)
given only one server can be used in ead time slot. However, the
state of the servers are not known to the scheduler with certainty; at
best, only statisticd distributions (estimates) of the redized server
states are avail able. We ansider how the uncertainty of server state
information compromises the expeded aggregate throughpu com-
pared to a‘clairvoyant’ scheduler which has instantaneous, perfed
information abou the redized server states.

Theisaue of operatingin uncertain environments arisesin anum-
ber of scheduling appli cations of interest from wirelessappli caions
to computing networks to revenue management systems. The re-
sults presented in this paper provide aframework for gauging the
lossdue to urcertainty in such scheduling systems.

First, it is shown that oppatunistic scheduling (on the server of
current expeded best state) is throughpt optimal, under uncertain
(unknawn) server states. Then, the throughpu of the ‘clairvoyant’
scheduler isfoundto be upper-bounded (in general) by U timesthe
throughpu under uncertain server states; thisboundistight. Third,
for bimodal and uriform server qualiti es/speeds better bound are
obtained—dawvn to afador of 2. Of course, adua throughpu loss
due to server state uncertainty depends on the server state distri-
butions which are avail able as partia information to the scheduler.
Finaly, vianumericd experiments we evaluate the throughpu loss
in various operational scenarios for wirelesspadket scheduling ap-
plications.

1. INTRODUCTION

A number of interesting scheduling problems have been studied
uncer the ssaumption o perfed server state information. Utili zing
information o ead server’s gate can significantly improve the per-
formance of many scheduling schemes. For example, if the speed
of one server isvastly faster than that of others, it may make sense
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to use the server with the best speed in order to achieve the high-
est instantaneous rate. We consider ageneral model for scheduling
problems where an infinite badklog o ‘tasks’, which we will aso
referred to as ‘items’, are to be served by a set of U servers. Only
one server can be used in ead time slot and some (limited) in-
formation abou the spead/quality of ead server is available. The
goal isto determine apalicy which dyramicdly seleds a server to
employ in ead time slot in order to maximize the total number of
tasks completed.

Our main motivation is throughpt maximizaion for wireless
padket scheduling. Wireless sheduling is one such applicaion
which has been extensively studied uncer the asumption o per-
fed channel/link state information (e.g. [1, 2, 3, 4]). In wireless
padket scheduling, ‘items’ correspondto padkets and ‘ servers' cor-
respondto the designated communication channels for ead of the
U users. Unfortunately, aaquiring channel state information is a
physicd processthat is susceptible to errors and urcertainty. Bet-
ter estimations of channel quality may be atainable by expending
more energy and/or time. Unfortunately, in many applicaions, it
may be simply too costly (or even physicdly imposshle) to estab-
lish perfed knowledge of channel stateinformation. Therefore, the
best information pradicdly avail ableto a wirelesspacdket scheduler
may be some estimated distribution onthe patential channel states,
as oppased to the exad redized channel state.

A similar applicaionwhich fall sinto this framework isin Inter-
net communicaions where network congestion makes successul
padet transmisson randam. Again, items correspond to pack-
ets and servers correspond to communications links from a sin-
glerouter (where the control is exeauted) to multi ple intermediary
nodes. As congestion onead link varies, padet level routing and
scheduling can improve the network utili zation. Many algorithms
asaume that congestion information is embedded in padets  that
rate-control can be determined based onthisknowledge [5]. A sig-
nificant amourt of effort has been expended to estimate Internet
traffic in order to utili zethisinformation for padket scheduling [6].
This begs the question, how much islost due to unknavn conges-
tion?

Ancther applicaion o interest isrevenue management for product-
line design. In this scenario, a manager must seled which product
to placeon the market given customers' varying demand and will -
ingressto pay. In thiscase, anitem corresponds to asale of aprod-
uct and eat server corresponds to pladng a spedfic product on
themarket. Anitemis succesdully ‘serviced' if the product placel
on the market is purchased by a austomer—a sale is completed and
revenue is acaqued. The likelihood d a product being purchased
depends on multiple fadtors, such as sasondlity, price, avail able
substitutes, etc. The goal of the manager isto placeproductsin or-
der to generate the most sales-which is equivalent to ‘serving the
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most ‘items’. For amorein depth discusson o modelsfor product-
line design, see[7, 8]. While much effort, espedally by marketing
firms, is expended to determine austomer demand and willi ngress
to pay, the estimates are often ndsy as customers themselves have
difficulty assessng their preferences.

In al of these gplications, finding acarate information about
server quality/speed can be very expensive and sometimes even im-
posshle. The lack of perfed knowledge regarding redized server
states can compromise the dficiency of the scheduler and dten
results in lower throughpi when compared to a fictitious ‘clair-
voyant’” scheduler which instantaneously has perfea knowledge of
redized server states.

In this paper, we study the impad of uncertain server stateinfor-
mation onthroughpu. We exemplify theisauein thefollowing gen-
eral scheduling model. A backlog o tasks are to be served by ore
of U servers of randamly fluctuating quelity/speed. In ead time
dlot, the scheduler seleds a server to employ, so as to maximize
the expeded total number of items successully served over afixed
time interval T (i.e. maximize epeded aggregate throughpu).
The redized server states, however, are nat known to the sched-
uler with certainty; only statisticd distributions (estimates) of the
true/redized server states are available to it. This limits the max-
imal throughpua J* achieved by this sheduler, compared to the
maximal throughpu J° adieved by the ‘clairvoyant’” one, which
instantaneously has perfed knowledge of redized server states. At
worst, how much could the throughpu lossbe? We examine this
and aher related isaues below.

In wireless applicaions, a substantial body d reseach has in-
vestigated the df ea of noisy channel estimation onthe caadty of
wirelesscommunications (e.g. see[9, 10] and references therein).
These works gudy the problem of imperfea channel state infor-
mation within an information-theoretic framework. In contrast, we
quantify the lossin throughpu due to the uncertain server state in-
formation wsing a dedsion-theoretic (dynamic-programming-like)

framework, whilemuch of previous work uses an information-theoretic

context. Inded, in the context of wireless £heduling, rather than
viewing a wireless channel as having a time-varying ht-rate, we
consider lossy padket communicaionwith padket transmisgon suc-
cess probahility depending onthe redized channel quality state.
This captures diverse networking scenarios, where data is parti-
tioned into padkets of (nealy) equal size andthe keyissleis packe
scheduling on communication channels. Furthermore, the schedul -
ing model we examine here encompasses <heduling scenarios be-
yond the wireless tting to which these information-theoretic re-
sults are nat diredly transferable.

In this paper we focus on understanding throughpu lossdue to
server state uncertainty. This could naturally later lead to design+
ing protocols to all ocate limited ‘ probing resources to improve ac
quired/estimated server stateinformation as considered in[11]. We
do na investigate the latter here though In [11], the authors con-
sider how to balance tannel probing to enable better channel es-
timates with padket transmissons. Our work differs from this pre-
vious work as we quantify the dfeds of poa estimates rather than
consider how to improve them.

A similar (dual-like) problem to ousisthe cae where the task
sizes are unknown, but the server state is known. In these scenar-
ios, scheduling dedsions must be made withou full knowledge of
the job sizes. A number of adversarial approximation algorithms
have been propaosed for diff erent scheduling oljedivesin this con-
text. See[12] for an overview of competitive analysis for online
scheduling o varying job processng times.

The rest of this paper is gructured as follows. In Sedion 2 we
formally define the scheduling under uncertainty scenario, the ex-
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peded aggregate throughpu, etc. In Sedion 3 we find the max-
imum expeded aggregate throughpa J* under any server state
uncertainty, and the aorrespondng throughpua J° of the fictitious
‘clairvoyant’ schedule with perfed server state knowvledge, satisfy
thetight bound§—2 < U (where U isthe number of servers/channels/
customer classs). This provides a tight charaderizaion o the
throughpu loss Under a number of spedfic server state distri-
butions, this boundis grengthened in subsequent sedions. For ex-
ample, for i.i.d unform server qualitiesit is shown that % < 2.
Simul ation experiments for appli cations in wirelesspadket schedul-
ing provided in Sedion 6 cemonstrate the impad of channel uncer-
tainty on throughpu, which is consistent with the theoreticd re-
sults. Finaly, Sedion 7 gresents some aonclusions.

2. SCHEDULING UNDER UNCERTAINTY

We start by defining the general scheduling model. Timeis dot-
ted and indexed byt € 7 = {1,2,...,T}. There ae U servers,
indexed byu € U = {1,2,...,U}. Only one server can be used
in ead time-dot. If aserver u € U is utilized, it will ‘deplete’ (or
remove) an item from the queue with some probability. Such tasks
are never exhausted and are redily available & the controller’s
queue.

Let ¢, be the state & time ¢ of server w and let C,, be the set of
all statesthis server can attain over its evolution. It is assumed that
eat ¢!, isarandom variable that, given distribution g, = P[c!, €
Al, is datisticdly independent of the history {cf:, t'" < t} of the
same server u, as well as of the past and current states {c,tu'/, t' <
t} of al other servers ' € U — . Note that while ¢!, may be
dependent over time, ¢!, is asufficient statistic which allows oneto
ignare the past given g?,.

Inead timedlot ¢, the cntroll er deddesto assgnatask to server
u € U. If server u isused at time ¢t when its dateis ¢ = ¢!, then
theitem is succesgully removed with probability

st(c) = P[succesdul removal by server u | ¢l, = c]. (1)

Alternatively, with probability 1 — s (c) the item is not success
fully removed. In wireless and Internet communicaion systems
this occurs when a padket is excessvely corrupted (e.g. by inter-
ference) and canna be succesSully deaded and receaved, hence,
it is dropped. In product-line design, the austomers may dedde
not to purchase the product or to buy from a diff erent vendar and,
hence, the sale (item) is not completed and revenue isnat receved.
In particular, let X! be a1/0 random variable which is 1 if server
u succesdully serves an item at time ¢ and is O atherwise. Then,
PIX!, =1|c,, =] = st (c)and P[X. = 0|c,, =] = 1 — 5%, (c).
It is assumed that, given g%, for ead v € I/ and¢ € T therandam
variable X depends only on ¢, and is independent of all others.
That is, given sufficient statistic ¢/, successul/fail ed service events
are statisticaly independent acosstime slots t € 7 and servers
u € U, except for the state of the server in the aurrent time slot.

Given the probability g%, (A) = P[cl, € A] of the server state ¢,
beingin the (measurable) subset A of the server state spaceC,,, we
can ohtain the probability

Fy(x)=P[s, <z] =P[c€Cu:sy(c)€0,2]]; (2

that is, the statisticd distribution o the service successprobability
by server u at time t. Equivaently, we cax oktain the densities

(@)
F(x) = / " (') da ®

viewe in ageneralized sense (with delta-spikes) if the distribution



has discontinuiti es.

The server state information avail able to the scheduler at time
t € T isthe service success densities {f{(z),z € [0,1],u €
U}. These can be viewed as (implicit) estimates of the server
states, provided to the scheduler and refleding urcertainty about
the true/redized server states; the more ‘spread-out’ the distribu-
tions the higher the uncertainty. The mapping o ¢, to f. makes
f asufficient statistic of the server success probabiliti es.

A scheduling pdicy 7 chooses at ead time slot t € 7 a server
u' = w(f',t) € U to employ, given the available server state
information

ft = {f(i(‘r)7m € [07 1]7“ € U}v 4

that is, the aurrent densiti es (estimates) of the servicesuccessprob-
abiliti es of ead server. Let IT be the set of al possble schedul-
ing pdicies, utilizing information f* (equivalently F*) to seled
the server to use & timet € 7.

The scheduler's objedive isto maximizethe expeded aggregate
throughpu of the system, that is, the expeded total number of tasks
that are succesSully served over the time horizon T'. Define are-
ward function R(f*, w(f*,t)) = X! whichis 1if anitemis suc-
cessully removed by server u' = 7(f*,t) chosen by pdicy = at
time ¢, or is O otherwise. The expeded aggregate throughpu of
the system operating undr scheduling pdicy 7 over the interval
{t,t+1,..,T}is

J(f)=E {Z R(ftlvﬁ(ft/,t’))] ; ®)

t/=t
starting at ¢ with server state information f*. Let
T 1) = max J7(f', 1) ©)

and define 7 € TI to be ascheduling pdicy which adhieves this
maximum.

As shown below, an optimal schedule isthe greedy (oppatunis-
tic) pdicy m9 € II, which schedules the server whose the aurrent
expedation d asuccesgul serviceis maximized. Spedficdly,

©(f'1) = argmax E[R(f', u)]
= argmax Fyls,]. @)

Note that the expedation o successul service by server v at ¢
(hence, rewad 1) is E[R(f', u)] = E[X.] = E[E[X!|c]] =
ElsL(c)] = jol sft(s)ds = Ey[sh]. In general, we denote
below by E;[-] expedations with resped to the densities f* =
{fi(z),u € U,t € T} (or equivaently the distributions F'* =
{F(x),u € U,t € T}) of the server successprobabiliti es, which
isthe only information reveded to the scheduler about the servers.

2.1 Opportunistic Scheduling on Perfectly
Known Servers

There has been a substantial body d reseach on hav to lever-
age perfed server state knowledge to develop throughpua optimal
schedules. The main premisein these dgorithmsisthat therediza-
tions of the server states ¢!, are perfedly known in ead time slot
t and can be used to determine which task to schedule. The set of
admisshble schedulesisthen expanded from IT to I1°, including fic-
titious ‘ clairvoyant’ schedules that instantaneously know the adual
server state ¢!, redized. We cal this st I1° to dencte its‘ orade’ or
"omniscience ahiliti es. Note that unli ke standard competitive-type
analysis and arade pdicies asin [13, 14], the schedulesin I1° are
only awae of the redized ¢!, (hence, s',), but not X, so that the
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adua serviceresult (succesdfailure) isnot known apriori.

Simple oppatunistic palicies utili zing perfed server state infor-
mation are known to be throughpi maximizing [1, 2, 3, 4]. Inthe
context of our problem, we simply reiterate this result below and
refer the reader to the previous literature for the detail s and proof.

THEOREM 1. (Optimal Scheduling onKnown Servers) The op-
portunistic scheduling pdicy

or t _ t, t
m°(c’,t) = arg max s, (cu) ()
or equivalently
or t _ t
m(s",t) = arg max s, 9)

achieves maximal expedted throughpu J°(c*, t) = J°(s*, t) across
{t,t+1, ..., T} within the dassof schedues I1°. The latter sched-
ules perfedly know the server states ¢’ = {c!,, u € U}, hence, the
servicesuccessprobatiliti es s’ = {s!,,u € U} (but not the service
outcomes).

In this paper, we ae primarily concerned with comparing

1. themaximum expeded aggregate throughpu J* (f*, t) achieved
in{t,t+1,...,T} by scheduesinII with partial (uncertain)
knowledge of the server state provided by f* = {f!(z),x €
[0,1]} to

2. themaximum expeded aggregate throughpu J° () achieved
by schedulesin T1° with perfed knowledge of the server state
¢! = {cl,,u € U}, hence, of the servicesuccessprobabiliti es
st = {s!,,ueU}.

Define asimilar rewad function R°(c!, 7°(c*,t)) = X% when
the ‘clairvoyant’ optimal oppatunistic schedue v’ = 7°(c*,t) is
used.

We note again that in the mntext of wirelesspadet scheduling,
aline of information-theoretic research has examined the dfed of
channel estimation errors on cgpadty [9, 10, 15, 16]. Recdl that
channel estimation errors corresponds to server state estimation er-
rorsin ou formulation. This prior research, however, focuses on
channel cgpadty and coding rather than on padket scheduling, as
we doin this paper. In[16], the authors propose abadk-off mecha
nism to generate aror free @debooks when the channel stateinfor-
mationis noisy. In order to achieve the cgadty limits establi shed
in these works, long transmisson sessons may be necessary. Al-
ternatively, one can view wirelesschannels as having time-varying
probabiliti es of successul transmisgon rather than time-varying
bitrates. It is this padetized view that our model encompasses.
Moreover, as discussed in Sedion 1, this model i ncludes many ap-
pli cations beyond wireless £heduling.

3. THROUGHPUT LOSSDUE TO UNCER-
TAINTY

In this edion, we compare the maximum throughpa J* ( f, t)
under server uncertainty to the throughpu J°(¢) of the ‘clairvoy-
ant’ schedule 7°. The server uncertainty induces athroughpt loss
however, we show that J°(¢)/J*(f:,t) < U under any f* and
the boundis adually tight. We start by determining the maximum
throughpu schedule under server uncertainty.

THEOREM 2. (Optimal Scheduling onUncertain Servers) Given
densties f* = {fi(x),x € [0,1],u € U} of the service success
probahiliti es as avail able server state information, the greedy (op-
portunistic) schedule

©(f5 1) = 70(f',1) = arg max Ey[s.] (10



isoptimal, maximizing the expeded throughpt of the system hence,
JE(f't) = J(f". ).

PrROOF. We ague by contradiction. Assume there exists some
time 7 < T, such that the optima pdicy and the greedy pdicy
do nd coincide. Define the set of grealy servers at time 7 as
U; = {argmax, E;[s;]}. So, by assumption ©*(f7,7) & U;.
Let's consider a pdicy 7 which coincides with = for al ¢ # T;
intimedot 7, 7 € U} schedules a grealy server. Since there
are an infinite number of itemsto be depleted and the server states
are independent of the past given f., intime slots ¢t # 7 the e-
peded rewad eaned by the 7 pdicy, R(f*, 7(f*,t)) isidentical
to the expeded rewad eaned by the 7* pdlicy, R(f*, 7*(f*,t)).
By definition o the greedy set: Ey[s7. ;- ] < El[sir ]
Therefore,

It = B[R, 1)]
E[R(f7, 7" (1) + > R(f* #(f" 1))
t/#T
E[R(f7,7() + Y R(f" 7 (" ,1))]

t'#T

E[Y" R & ()] = T

t/'=t

A

This contradicts the optimality of J*. Therefore, there exists an
optimal palicy which, in ead time slot, schedules the server with
the highest expeded probability of successul service |

By Theorem 1 and 2 we seethe optimal schedules are oppa-
tunistic bath in case 1) of perfed server information gven by ¢
(or s*) andin case 2) of partial server information gven by the f?
densiti es of the service success probabiliti es. However, in case 1)
where the server state is known items are scheduled onthe server
with the best state, but in case 2) to the one with the best expeded
state. Note that at the limit where the server state uncertainty is
squeeza ou (the densities become single delta-spikes) the sched-
ule of case 2) adually degenerates to that of case 1). Throughpu
lossdue to server state uncertainty isinduced by scheduling based
on expeded rather than true state redizions.

3.1 Tight Upper-Bound on Je(t)/J*(f:,t)

We begin with a boundregarding the maximizaion o the ran-
dom service successprobabiliti es s!, onthe servers.

LEMMA 1. For the successprobadhiliti es (1),

t < t
Erlmaxs,] < Umax E[s,] (11)

Recdl that U isthe number of servers.

Sketch of Proof: We prove heretheresult inthe (spedal) case where
the distributions F (x) of successprobabiliti es are smoath, hence,
fi(z) = dF}(z)/dz fordl w € U andt € T. For notational
simplicity, we suppressthe dependence ontime. Let usdefine s, =
maxycy Su, S0 that

U U
Fy(x) = P(mf}xsu <z)= H P(sy <z) = H Fu(x).

u=1

Then fy(x) = & Fy(x) = S0 ful@) [Tz, Fi(x). Wecan
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now define the expedation o s,,.

Ef[sy] = Ejlmaxs]
= /zfy(z)dz
0
% 1
= Z/o :cfu(m)HFk(x)dm

k#u

u 1

Z/o z fu(z)dz
I

= ) Eylsd]

< Umax Ey[sy]

IN

wherethefirstinequality isbecause F, () < 1 forall x andu. The
seoond inequality comes from the definition o the maximization
function. This proves our bound |

ThisLemma dl owsderivation o atight bound orthe throughpu
lossdue to server state information urcertainty.

THEOREM 3. (Tight Bound onThroughpu Los9 For any dis-
tribution o server state, we have
J°(t)
— <
7 U (12
where U isthe number of users. The boundistight, as Example 1
below denonstrates.
Hence the throughpu gain of ‘clairvoyant’ schedule 7° over
n* = w9 isupper-bounced by U. Correspondngly, this refleds a
throughpu lossof schedule 7* compared to 7°.

PrROOF. Thisisadired consequence of Lemma 1. In the cae
of unknavn server state, the expeded rewad eaned in ead time
dot is taken over the distribution for the server state. Recdl by
Theorem 2, under unknawn server state, E[R(f", =" (f' ,t'))] =
max, Fy [sﬂ]. In the case of known server state, the expeded re-
ward earned in ead time slot is taken over the probability of suc-
cesdul service of eat item. Recdl by Theorem 1, under known
server state, E[R° (", w°(c”,t'))] = Es[max., s, ]. Then,

3 R(ft’,ﬂft’,t’))]

t'=t

UJ"(f,1)

UE

I
]~

[U max Ey [sgﬂ

’

o+

t

’

Bymax s, ]

]~

’

o~

t

= E {Z Ro(c" 7o (" 1))

t/'=t

=J°(¢t) M

The precading boundis a worse case bound but it istight, asthe
foll owing example shows.

EXAMPLE 1. Lettheservers beidentically distributed (besides
being independent). Assumethe scheduling haizonis 1. The dis-
tribution for each server is auch that with probablity e > 0 itisin
a goodstate, so that s,, = 1 andwith probahlity 1 — e itisinthe
bad state, so that s, = 0. Because the servers arei.i.d. the pdicy
ove unknavn server state picks one server at randam, achieving



reward J*(f',1) = E;[sL] = e. The policy over known server
state picks any of the servers in the good state and ficks a server
randamly if theyare all i n the bad state. We can determine the ex
peded reward by finding the expeded value of the maximum s,.
The distribution o s, isgiven by:

L[ (=&Y, if x =0;
P(Sy_‘/”)_{ 1-(1—eY, ifz=1
Therefore, Ef[sy] = Jo(l) = 1 — (1 — E)U and J’;](Of(ll)l) —
1-0-97 | ettinge — 0 and wing L' Hopital’s rule gives:
gy 1-(1-eY
gy - i ¢
= lir%U(l—e)U’l
= U

Therefore, the boundin Theorem3 istight.

In this example, server are identicdly distributed. The loss of
throughpu growslinealy with the number of serversin the system.
This is because the server-state-knowing schedule 7° can pick the
single server with the best quality (i.e. fastest speed); however the
palicy with unknavn state picks a server at randam. Asthe number
of servers grows, the probability that the =™ pdlicy is able to pick
the best server deaeases. Hencethe lossof throughpt grows.

Note that this example is highly degenerate with the servers be-
ingi.i.d. and the probability of beingin the goodstate going to 0.
Whil ethe boundin Theorem 3istight, in pradice, thelossislikely
to be smaller than U.

3.2 The Case When Some Server States are
Known

We nate that the preceading results hald in the cae where dl U
server states are unknovn. However, it may be the case that some
server states are known, while others are not. Suppcse now that
there ae U = Upwn + Uurn Server, where Uy..,, denotes the num-
ber of server with perfed, known state information and U, de-
notes the number of servers with uncertain state information.

THEOREM 4. (Throughpu Losg For U = Ukwn+Uwkn SEVES,
we have
JO(t)
7 < (Uyrn +1 13
Ty = UtV &

The proof is smilar to that of Theorem 3, hence we omit it.

3.3 Evolution of Throughput Loss over Time

The precaling bound are guaranteed for any distribution for
server states. Let o be the throughpu lossin a singe time slot.
Then under some server state distributions, the throughpu lossmay
be boundd by «. For instance the throughpu loss over T' time
dlotsis also « if al server states are independent and identicdly
distributed aaosstime. Note the servers do nd have to be identi-
cdly distributed to ead other. However, if their distributionis ga
tigticdly static over time, athroughpu lossof « isincurred acoss
multiple time slotsif it isincurred in asinge time slot.

If the server state distributions are nat identicd acosstime, the

throughpu lossmay depend ontime, o, such that E'¢[max,, st (c},)] <

oy max, Ey[st (c,)]. Then the throughpt lossover T' time slots
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iSa+ = max; ay:

Jo(t) = E

= Z Ef[max sfl/]

t'=t

T
< Z [ozt/ mafo[sg]}
t'=t . / /
< aE ZR(ft 7 (ff at/)):|

= arJ(f',1) (14

We have shown the worst case bound onthe lossof throughpu
due to unknavn server state. An asymptoticdly degenerate distri-
butionis given as an example which achieves thisbound However,
in many applications of interest it is undesirable and urikely for
a scheduling sesson to occur when the probability of successul
serviceis given by some small € > 0. Aswill be shown in subse-
quent sedions, for other server state distributions, this boundcan
be improved.

4. 1.1.D. GOOD-BAD SERVER STATES

In Example 1, the server qualiti es were independent and iden-
ticdly distributed. We examine this senario in more depth. We
can asuume that Ey[s,] > 0, otherwise, no services will ever be
succesgul and the throughpt is always 0.

Becauise dl servershavethe samedistribution, the optimal palicy
for unknavn server state isto schedule any server at randam. Let's
definerandom variable Z,, = E;f;u] € [0,00), sothat E[Z,] = 1.
Now, the loss of throughpu over one time slot due to unknavn
server state informationis given by

Eylmaxueuy su]
maxyecy Ey[su] = Ej [ng Zu]

Inwireless applications, a common channel (server) model isthe
ON-OFF channel wherethe channel can either beinthe “ON” state
and padket transmisgons (item services) are succesgul with prob-
ability 1, or it can bein the “OFF’ state and padket transmissons
fail with probability 1. We cnsider asimil ar server model where a
server can either be in a GOODstate or aBAD state.

EXAMPLE 2. (i.i.d. GOOD-BAD Servers) Consider a GOOD-
BAD server suchthat P(sy = pg) =y andP(sy = py) =1—1.
Renormalizing to define Z,,, we have

_ __ bPg .

- 79 = (1*“/)517%/175’ Wp- 7,
u — _ b _
b = (I=7)pp+7pg’ wp. 1 — 7.

Recallthat E[Z,] =1 = zgy+2»(1—7) andso z, < 1 andz, >
1. Assumethat T = 1, we havethen that the lossof throughpa due
to urknown server state for the GOODBAD server is:

Elmax Z.] = 2g(1—(1=7)") + 51 -v)"
I ) (S
! ¥
< zZg

Because z, < 1,asU — oo, thelossin throughpt for the GOOD



BAD server approaches

Pg Py
— <=2,
(I =")po+vpg Do
This can be arbitrarily dose to f)—i asvy — 0.

Zg =

We havejust shown thelossof throughpu dueto unknavn server
state in the cae of i.i.d. GOOD-BAD servers. It is interesting to
note that for afixed suppat for the server quality state, the GOOD
BAD server resultsin the worse lossin throughpu. Before weshow
this result, we begin with a preliminary one.

LEMMA 2. (GOOD-BAD Servers with Fixed Mean) Suppse
the suppatt for each server state is given by a closed interval de-
fined by [a, b] C [0,1], sothat P(s. & [a,b]) = 0. Let Ef[s.] =
u € (a,b). Then the maximum lossin throughpt is given by a
GOODBAD server with P(s, = a) = 2=£ = v and P(s, =
b) =1 —,ie f(z) = voa(z) + (1 — v)d(x) (dy(x) isthe
impulse function that equds 1 when x = y and 0 otherwise). The
lossis:

b A
(I=7)a+~b

where z A y = min{z, y}.

Byfman 5.] < ( U)Eyls.] = (S AU)Ey 5]

PrROOF. Let us consider the case where % < U, since by Theo-
rem3 Ef[maxucy su] < UEf[s,] forany distribution o s,,. Now
from Example 2, we have seen the GOODBAD server achieves
thislossas U — oco. What remains to be shown is that the GOOD
BAD server is the worst possble throughpu lossfor this suppat
and mean. R

Suppcse there exists ome distribution f(z) # f(x). We will
show that the throughpti lossunder distribution f () can be made
worse. Let g(x) = f() bethep.df. for Z, under the GOOD
BAD distribution gven by f(xz). Similarly, let g(z) = g() #

g(z) bethe p.d.f. for Z, under the f distribution.

Now, becaise g # g, there exists me k € (ﬂ 3) ande > 0

such that

k+e k+e
/ g(x)dxr = a > 0and zg(z)dr = ak.
k—e Jk—e

Define the following pd.fs:

_ ag( ) :c&?[k—e,k:—‘—e],
gilz) = {6, z€[k—ek+e.
. ig(:cL z€[k—ek+e;
92(z) = {0, xdk—ek+e.
(=52 p=2
gS(m) = { 1_4‘7 x_k-
0, otherW|se

Hence g(z) = gi(x) with probability 1 — o and g(z) = g2(z)
with probability «. Define g(x) as a modification o g(x) which
has a GOODBAD server mode defined by gs, i.e.

v ogai(z), wpl-q
g(@) = { g3(z), w.p. .

The lossin throughpu uncer the g distribution is, in fad larger
than the lossin throughpu uncer the g distribution. Let G and G
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denate the adfsfor g and g, respedively.
Ejmax Z,] — EglmaxZ,]

b

/gZ [I—GU(z)]dx—/aﬁ [1—C~¥U(x)]d:r

Il
Q
\
|
Q
@Q
&
QU
)
|
Q
|
Q
S
&
QU
)

Thefirst equality comes from thefad the server statesarei.i.d. The
seoond inequality come from the definition o g and g. The third
equality comes from the definition o gs and g2 (which is 0 for
x < k—e¢). Thefirstinequality comesfromthefad that G2 (z) < 1
for al x. Thelast equality comes from the fad that ¢ € [0, 1].

Therefore, the lossin throughpu due to unknavn server state is
larger for g than for g, which has some GOODBBAD properties.
This contradicts the maximal lossof throughpu of §g. Hence the
GOOD-BAD server has the worst loss of throughpu for a given
suppat and mean server quality/speed. The lossof throughpu in
thiscaseis (y = &£):

K uw] =
shnggg ol

b a
(b= =]+ =" 2) Byl

= (F+a-0" ) Bl

— %Ef[su] (asU — o) [ ]

We have just shown for a fixed suppat and mean for thei.i.d.
server state distribution, the GOODBBAD is the worst it can get.
Thisistrue withou the constraint of afixed mean.

THEOREM 5. (I.1.D GOOD-BAD Servers) Suppae the suppat
for each server stateisgiven by aclosed interval [a, b] C [0, 1], s0
that P(s. ¢ [a,b]) = 0. Then the maximum lossin throughpt is
given by:

Jo(t) b

andis achievel with the foll owing dstribution with v — 0:

{ b, Wp.~;
Sy =
a, Wp.1l—7v

PROOF. Again, consider the case Wnere— < U, since by Theo-
rem 3 Ey[maxucu su] < UFE[[sy] for any ‘distribution of s.,. By
Lemma 2, for fixed mean 1, the GOODBAD server achieves the
worst lossin throughpt given by%. Maximizing this over the sup-
port [a, b] means minimizing x, which can approach a asy — 0
for the given GOOD-BAD distribution.

Thereforethethroughpu lossinasingetimeslot fori.i.d. server
with suppat in [a, b] isgiven by £ A U. By (14), for statisticaly
static server states over time, the lossover 7' timeslotsisalso 2 AU.



Thisyields the desired resullt. [ |

It can be eaily seen that when restricted to GOOD-BAD server
over a given suppat, thei.i.d case results in the worst throughpu
loss

We have dosely examined the case of i.i.d server statesand heve
shown that the GOODBAD distribution corresponds to the largest
throughpu lossdue to unknavn server state. Intuitively, GOOD-
BAD servers are as disparate as possble. Hence, when the 7 pal-
icy mises aserver which isin the GOODstate whil e the dairvoy-
ant pdicy isableto useit, the 7™ padicy may end upscheduling a
server in the BAD state. The quality of this BAD state compared
to the quality of the GOODstate isthe worst it can get. Hence, the
GOOD-BAD server leadsto the worst throughp. For serverswith
“smoocther” distributions, the lossof throughpa shoud improve.

5. 1.1.D. UNIFORM SERVERS STATES

In some instances, the server state may be known to fall within a
fixed range; however, its exad state is unknavn. A uniform distri-
bution ower thisinterval isone way to model such ascenario. If the
probabiliti es of succesgul serviceby ead server were independent
and uriformly distributed, then the boundin Theorem 3 can be sig-
nificantly improved to a constant fadtor, independent of the number
of serversin the system.

Let a,, andb, definetheuniform distribution o the quality/speed
of server u, so that

1
rw={ =

Then, the throughpu lossdue to unknavn server state is bounced
by 2.

. T € [au, bul;
otherwise.

THEOREM 6. (Throughpt Lossonl.l.D. Uniform Server States)
If in each timedlot the qudity/speed of server w is uniformly dis-
tributed from [a., b ], then the throughpu loss due to urknown
server stateisbounded by a factor of 2, that is,
J°(t)
D <2 (16)
PrRoOOF. Withou lossof generality asaume that the servers are
ordered such that b; < by < --- < by_1 < by. Furthermore, the
exists me sequence {n1,nz,...,ny} such that a,, < an, <
-+ < an,, . Without lossof generality we can assume that a,,, <
bi1. If this were not true, then the probability of succesul service
by server 1 will always be lessthan that to server ny: P(s1 <
sny) = 1 andserver 1 will never be scheduled. Hence thisis the
same scheduling scenario ashavingU’ = U —1 servers. Therefore,
we will asaimethat ar,, < bs.

Based ontheordering o servers, itiseasy to seethat £y [max,, s.] <

bu . Clealy, thisis only achieved with equality if ap = by, which
would then imply that max, F[s.] = bu. Then the dairvoyant
and unknavn server state palicieswill coincide, 7° = n* andthere
will be nolossof throughpt due to unknavn server state. How-
ever, if ay # by, then there may be some loss Now, becaise
ay > 0, max, Ef[s.] > Ey[su] > bTU Hence:

Ef[max s,] < by < 2max Ef[sq].

This is the throughpu lossin ore time slot. By (14), thisimplies
the same lossover ¢ time slots (certainly for ¢ = T') so that:

J(t) < 207 (f*,1) n

This boundistight as shown by the foll owing example.
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EXAMPLE 3. Suppae that 7' = 1 and the serve states are
i.i.d. and unformly distributed on [0, 1]. Then E¢[s.] = 5 and

1
Eflmaxs,] = / [1-— FY(z)]dx
“ 0
1
= 1 —/ 2Ydx
0
1
- 1-
U+1
— 1l(asU — )
Hence
J(1) Ef[maxy su] 2
= =2— 2 .
TN T B TR

This example shows that we can get arbitrarily close to the bound
in Theorem 6 by increasing the number of serversin the system.

The oontrast between the loss of throughpu due to unknavn
server state for GOOD-BAD servers versus uniformly distributed
server statesis driking. In Example 3, the serverswerei.i.d. Inthis
case, even if the pdlicy with unknavn server state, 7, schedules
a different server than the dairvoyant pdicy 7 the success prob-
abiliti es are likely to be similar. The uniform distribution is the
least disparate while the GOODBBAD distributionis the most. We
exped the lossof throughpu for other types of server state distri-
butions to fall in between the bounds given for these distributions
in Theorems 5 and 6.

6. EXPERIMENTAL INVESTIGATIONAND
VERIFICATION: WIRELESS PACKET
SCHEDULING

Thus far, our results have been about general distributions and
classes of distributions for server states. We have discussed the
results in terms of a genera model which a number of schedul-
ing problems of interest can be cat. In this sdion, we cnsider
the goplication o wirelesspadet scheduling and study the lossof
throughpu due to unknavn channel state via anumericd study o
spedfic channel types.

In wireless padket scheduling a single transmitter has a series
of padkets to transmit to U users over channels dedicaed to eah
user. Due to varying peth-loss fading, and interference, the chan-
nel quality is random and varies over time. The goal is to deter-
mine ascheduling pdicy which seleds a user to transmit a packet
to while nsidering the communicaion channel quality and max-
imizing throughpu.

Mapping wirelesspadket scheduling to the general model means
that ‘items’ correspondto padkets, servers corresponds to users's
channels, and successul service mrresponds to successul trans-
misson o padets.

6.1 [.1.D. ON-OFF Channels

In Theorem 3, we proved that the worse case throughpu loss
is given by the number of users with unknavn server state. We
showed that thisboundwastight viaExample 1. In order to achieve
this worse cae bound the server distributions are i.i.d. ON-OFF
channels with probability of being ON, P(s, = 1) = ¢, approach-
ing zero, ¢ — 0. InFig. 1, we examine the lossof throughpu for
unknavn channel state over a single time slot as a function o the
number of users, U, with unknavn channel state. The channels are
i.i.d. ON-OFFwith P(s, = 1) =1 — P(su. = 0) = €. Certainly,
as U increases, the loss of throughpt aso increases. However,
:;—i does not approach U until e < 1073, This shows that in or-



der to approach thisworse cae bound the channels must be highly
degenerate. It is reasonable to asume that most communicaions
will nat occur in this regime and that the lossof throughpt will be
much lower. In fad, for i.i.d. chanrels where P(s, = 1) = .1,
the lossof throughpu is at most afador of 10. Thisis dill avery
degenerate scenario with padket error rates of .9. Communication
isundesirable and urikely to occur in environments with such high
padket error rates.

100

;
——e=10"" &
90f —e—g =1072
B e—10-3
8ol €= 10_4 ‘.(‘u 1
—+—e=10 <

70[-%-g=10" .

0 I I I I
0 20 40 60 80 100

U

Figure 1. Throughput loss for i.i.d. ON-OFF channels as a
function of thenumber of usersU. P(s, = 1) =1 — P(sy =
0) =e.
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Figure 2: Throughput lossfor i.i.d. GOOD-BAD channelsasa
function of theratio of GOOD versus BAD quality, % P(sy =
by=1—P(sy, =a) =~ =105,

6.2 1.1.D. Good-Bad Channels

Here we &amine the cae of GOOD-BAD channels where the
probability of successul transmisson in the GOOD state, b, is
higher than in the BAD state, a, i.e. b > a. From Theorem 5,
the lossof throughpu in the cae of i.i.d. GOOD-BAD channelsis
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given byg and thisisachieved in thelimit as P(s, = b) = v —
0. We mnsider the cese of a single transmisgon time slot where
v =107%,b = .9, and a varies from [.1, .9]. The probability of
beingin the BAD stateis1 —~ =1 —10"° ~ 1. When £ islarge
(a is smadll), this is a highly degenerate scenario. We seein Fig.
2 for reasonable numbers of users U < 103, the throughpu when
channel stateis unknavn isnealy equal to that when channel state
is known. However, for very large numbers of users, the loss of
throughpu approaches the bound gven by Theorem 5. For smaller
v, these losses are likely to be small er, as suggested by Fig. 1.

6.3 1.1.D. Uniform Channels

We have seen that these bi-modal distributionsfor channels, where
ead channel can take on ore of two states, can lead to large losses
inthroughpu. In Theorem 6, we sawthat the lossof throughpt for
uniform channelsis bounded by a constant fador, 2. In Fig. 3, we
seethe lossof throughpu due to unknavn channel state @ a func-
tion o the number of users, U. Eac of the U channels arei.i.d.
uniformly over [0, 1]. As predicted, we car seethat asU — oo,
JO

181 8

1.7r q

16F ; - . Lo : . 2

10 10

Figure 3: Throughput lossfor i.i.d. uniform [0, 1] channelsasa
function of the number of usersU.

6.4 Markov Channels

Thus far we have examined the throughpu loss over channels
which are statisticdly static over time. However, wireless chan-
nels are often time-varying. As such a dynamic channel model is
necessry—-Markov models for dynamic channels are popuar. We
consider the commonly used, 2-state Gl bert-Elli ot channel [17] de-
picted in Fig. 4. Due to the symmetry of the channel, the steady
state distributionis an ON-OFF channel with = .5.

We asaume that the scheduler knows the Markov model for the
U = 10 i.i.d. channels. However, it does not know the current
channel states prior to making the transmisson dedsion. Following
the transmisgon, the channel state information are updated so that
the channel state estimates, {g%,} (or equivaently, { f}), are given
by the perfedly known channel states in the previous time slot.
This might be the case if channel state information is transmitted
from ead user to the base station in eat time slot, but due to
transmisdon delays, it does not arrive in time for the transmisson
dedsion in the arrent time slot to be based on this information.
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Figure4: Gilbert-Elliot channel.

However, the transmisson dedsionin the subsequent time slot can
use thisinformation.

We seethe lossof throughpu due to unknavn channel state for
Markov channelsin Fig. 5 asafunction d the state transition prob-
ability, prans. Our experiments are over atime horizon o 7' = 100
time slots and averaged over 1000 redizaions. When pirans = .5,
the channels are i.i.d. over time which, by Lemma 2 gives that the
T period lossin throughpu is 2. However, for pyas # .5, the
history of the channdl, i.e. the channel state in the prior time slot,
provides information abou the aurrent channel state and hence per-
formance of the 7™ pdlicy isimproved. The symmetry in the figure
is due to the symmetry in “information” gained with information
abou the channel statein the previoustime slot. Due to the Marko-
vian property, this information defines a GOODBBAD channel in
the aurrent time slot. The GOODBAD distributionis given by the
previous channel state as well as the transition probability. Being
in the GOODstate with transition probability, pians Will result in
the same GOODBAD distribution as being in the BAD state with
transition probability, 1 — pians.
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Figure5: throughput loss for ON-OFF Markovian channelsas
afunction of the probability of channel statetransition, pirans.

6.5 Diverse Channd Classes

Most of our analysis has focused on the cae where channels
arei.i.d. We now examine the case of mixed channel types. Our
experiments are over a time horizon o 7' = 100 time slots and
averaged owver 1000 redizaions. We sssume there ae U = 20
users. Uon-orr Users are ON-OFF channels with P(s, = 1) =
pon and Uuit = U — Uon-orr Users are uniform [0, 1] channels.
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We know that if @l chanrels are uniform, Usit = U, then the
throughpu lossis boundd by 2. Conwersely, if al channels are
ON-OFF, Uon.orr = U, then the throughpt lossis bounded by
min{ >, U}. For ponorr = pon < .5, the expeded value of
the ON-OFF channels is lessthan that of the the uniform channels
punit = .5; hence, the padlicy with unknavn channel state will al-
ways chocse to transmit to a user with the uniform distribution.
Fig. 6 shows the lossin throughpa when there is a mix of ON-
OFF and uriform channels. We can seethat in this case the lossof
throughpu is quite small (~ 1 — 2). However, when there ae no
channels with uriform distribution (Uon-orr = 20), the pdicy with
unknavn channel state must pick one of the ON-OFF channels at
randam, and the throughpu loss approaches the bound dgven by
Lemma 2.

20
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Figure 6: Throughput loss for a mix of ON-OFF channelsand
uniform [0, 1] channels. Uon-oee + Uunit = U = 20.

7. CONCLUSION

In many scheduling applications, obtaining perfed server state
informationisadifficult estimation problem. It is often orly poss-
ble to oktain an estimate of the quality of server. Certainly imper-
fed knowledge of server state will | ead to alossin performance
We have examined the lossof throughpu due to unknavn server
state in the cae of throughpi maximization in a general schedul-
ingmodel. Applicaions of wirelessand Internet padket scheduling
aswell asproduct linedesign can be cast within thisgeneral model.

Thelossin throughpu is bounded by the number of serverswith
unknavn state; this boundis tight. Under certain distributions
of server quality, this boundcan be improved. To achieve these
bounds, highly degenerate server distributions are necessary, which
suggests that the lossof throughpu due to unknavn server state ae
likely to be much smaller in pradice

Gathering estimates for server states can be an expensive pro-
cess A natural questionis, given limited resources, which servers
shoud be probed in order to minimize the loss due to unknavn
server state. In light of our study, it seems that servers with highly
disparate quality often lea to the largest losses. Avoiding these
types of distributions by investing more resources to gather more
acarate estimations may significantly improve performance. This
question d resource dl ocaionto improve performance and reduce
the dfed of server state uncertainty isan interesting and continuing



area of reseach.
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