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ABSTRACT
We consider a dynamic scheduling system where a single con-
troller selects ‘ tasks’ to serviceover U ‘ servers’ of fluctuating qual-
ity/speed. The quality/speed of each server determines the likeli -
hood of successful serviceshould a task be assigned to that server.
The goal is to maximize the total expected number of tasks suc-
cessfully served over a fixed time horizon (aggregate throughput)
given only one server can be used in each time slot. However, the
stateof theserversarenot known to thescheduler with certainty; at
best, only statistical distributions (estimates) of the realized server
statesare available. We consider how theuncertainty of server state
information compromises the expected aggregate throughput com-
pared to a ‘clairvoyant’ scheduler which has instantaneous, perfect
information about the realized server states.

Theissueof operating in uncertain environmentsarisesin anum-
ber of schedulingapplicationsof interest from wirelessapplications
to computing networks to revenue management systems. The re-
sults presented in this paper provide aframework for gauging the
lossdue to uncertainty in such scheduling systems.

First, it i s shown that opportunistic scheduling (on the server of
current expected best state) is throughput optimal, under uncertain
(unknown) server states. Then, the throughput of the ‘clairvoyant’
scheduler isfoundto beupper-bounded (in general) by U timesthe
throughput under uncertain server states; thisboundis tight. Third,
for bimodal and uniform server qualiti es/speeds better bounds are
obtained–down to a factor of 2. Of course, actual throughput loss
due to server state uncertainty depends on the server state distri-
butions which are available as partial information to the scheduler.
Finally, via numerical experiments we evaluate the throughput loss
in various operational scenarios for wirelesspacket scheduling ap-
plications.

1. INTRODUCTION
A number of interesting scheduling problems have been studied

under the assumption of perfect server state information. Utili zing
information of each server’s state can significantly improvetheper-
formanceof many scheduling schemes. For example, if the speed
of one server is vastly faster than that of others, it may make sense
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to use the server with the best speed in order to achieve the high-
est instantaneous rate. We consider a general model for scheduling
problems where an infinite backlog of ‘ tasks’ , which we will also
referred to as ‘ items’ , are to be served by a set of U servers. Only
one server can be used in each time slot and some (limited) in-
formation about the speed/quality of each server is available. The
goal is to determine apolicy which dynamically selects a server to
employ in each time slot in order to maximizethe total number of
tasks completed.

Our main motivation is throughput maximization for wireless
packet scheduling. Wireless scheduling is one such application
which has been extensively studied under the assumption of per-
fect channel/li nk state information (e.g. [1, 2, 3, 4]). In wireless
packet scheduling, ‘ items’ correspondto packets and ‘servers’ cor-
respondto the designated communication channels for each of the
U users. Unfortunately, acquiring channel state information is a
physical processthat is susceptible to errors and uncertainty. Bet-
ter estimations of channel quality may be attainable by expending
more energy and/or time. Unfortunately, in many applications, it
may be simply too costly (or even physically impossible) to estab-
lish perfect knowledge of channel state information. Therefore, the
best information practically availableto a wirelesspacket scheduler
may besome estimated distribution onthepotential channel states,
as opposed to the exact realized channel state.

A similar application which falls into this framework is in Inter-
net communications where network congestion makes successful
packet transmission random. Again, items correspond to pack-
ets and servers correspond to communications links from a sin-
gle router (where the control is executed) to multiple intermediary
nodes. As congestion oneach link varies, packet level routing and
scheduling can improve the network utili zation. Many algorithms
assume that congestion information isembedded in packets so that
rate-control can bedetermined based onthisknowledge [5]. A sig-
nificant amount of effort has been expended to estimate Internet
traffic in order to utili zethis information for packet scheduling [6].
This begs the question, how much is lost due to unknown conges-
tion?

Another application of interest isrevenuemanagement for product-
line design. In this scenario, a manager must select which product
to placeon the market given customers’ varying demand and will -
ingnessto pay. In thiscase, an item corresponds to asaleof aprod-
uct and each server corresponds to placing a specific product on
themarket. An item is successfully ‘serviced’ if theproduct placed
on the market is purchased by a customer–a sale is completed and
revenue is accrued. The likelihood of a product being purchased
depends on multiple factors, such as seasonality, price, available
substitutes, etc. The goal of the manager is to placeproducts in or-
der to generate the most sales–which is equivalent to ‘serving’ the
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most ‘ items’ . For amorein depth discussion of modelsfor product-
line design, see[7, 8]. While much effort, especially by marketing
firms, is expended to determine customer demand and willi ngness
to pay, the estimates are often noisy as customers themselves have
difficulty assessing their preferences.

In all of these applications, finding accurate information about
server quality/speed can bevery expensive andsometimeseven im-
possible. The lack of perfect knowledge regarding realized server
states can compromise the efficiency of the scheduler and often
results in lower throughput when compared to a fictitious ‘clair-
voyant’ scheduler which instantaneously has perfect knowledge of
realized server states.

In thispaper, westudy the impact of uncertain server state infor-
mation onthroughput. We exempli fy theissuein thefollowing gen-
eral scheduling model. A backlog of tasks are to be served by one
of U servers of randomly fluctuating quality/speed. In each time
slot, the scheduler selects a server to employ, so as to maximize
the expected total number of items successfully served over a fixed
time interval T (i.e. maximize expected aggregate throughput).
The realized server states, however, are not known to the sched-
uler with certainty; only statistical distributions (estimates) of the
true/realized server states are available to it. This limits the max-
imal throughput J∗ achieved by this scheduler, compared to the
maximal throughput Jo achieved by the ‘clairvoyant’ one, which
instantaneously has perfect knowledge of realized server states. At
worst, how much could the throughput lossbe? We examine this
and other related issues below.

In wirelessapplications, a substantial body of research has in-
vestigated the effect of noisy channel estimation onthe capacity of
wirelesscommunications (e.g. see[9, 10] and references therein).
These works study the problem of imperfect channel state infor-
mation within an information-theoretic framework. In contrast, we
quantify the lossin throughput due to the uncertain server state in-
formation using a decision-theoretic (dynamic-programming-like)
framework, whilemuch of previouswork usesan information-theoretic
context. Indeed, in the context of wireless scheduling, rather than
viewing a wirelesschannel as having a time-varying bit-rate, we
consider lossy packet communicationwith packet transmissionsuc-
cess probabilit y depending on the realized channel quality state.
This captures diverse networking scenarios, where data is parti-
tioned into packetsof (nearly) equal size and thekeyissueispacket
scheduling oncommunication channels. Furthermore, the schedul-
ing model we examine here encompasses scheduling scenarios be-
yond the wireless setting to which these information-theoretic re-
sults are not directly transferable.

In this paper we focus on understanding throughput lossdue to
server state uncertainty. This could naturally later lead to design-
ing protocols to allocate limited ‘probing’ resources to improve ac-
quired/estimated server stateinformationasconsidered in [11]. We
do not investigate the latter here though. In [11], the authors con-
sider how to balance channel probing to enable better channel es-
timates with packet transmissions. Our work differs from this pre-
vious work as we quantify the effects of poor estimates rather than
consider how to improve them.

A similar (dual-li ke) problem to ours is the case where the task
sizes are unknown, but the server state is known. In these scenar-
ios, scheduling decisions must be made without full knowledge of
the job sizes. A number of adversarial approximation algorithms
have been proposed for different scheduling objectives in this con-
text. See[12] for an overview of competitive analysis for online
scheduling of varying job processing times.

The rest of this paper is structured as follows. In Section 2, we
formally define the scheduling under uncertainty scenario, the ex-

pected aggregate throughput, etc. In Section 3, we find the max-
imum expected aggregate throughput J∗ under any server state
uncertainty, and the corresponding throughput Jo of the fictitious
‘clairvoyant’ schedule with perfect server state knowledge, satisfy
the tight boundJ∗

Jo ≤ U (whereU isthenumber of servers/channels/
customer classes). This provides a tight characterization of the
throughput loss. Under a number of specific server state distri-
butions, this boundis strengthened in subsequent sections. For ex-
ample, for i.i.d uniform server qualiti es it i s shown that J∗

Jo ≤ 2.
Simulationexperimentsfor applicationsinwirelesspacket schedul-
ing provided in Section 6 demonstrate the impact of channel uncer-
tainty on throughput, which is consistent with the theoretical re-
sults. Finally, Section 7 presents some conclusions.

2. SCHEDULING UNDER UNCERTAINTY
Westart by defining the general scheduling model. Time is slot-

ted and indexed by t ∈ T = {1, 2, ..., T}. There are U servers,
indexed by u ∈ U = {1, 2, ..., U}. Only one server can be used
in each time-slot. If a server u ∈ U is utili zed, it will ‘deplete’ (or
remove) an item from the queue with some probabilit y. Such tasks
are never exhausted and are readily available at the controller’s
queue.

Let ct
u be the state at time t of server u and let Cu be the set of

all states this server can attain over its evolution. It is assumed that
each ct

u is a random variable that, given distribution gt
u = P [ct

u ∈

A], is statistically independent of the history {ct′

u , t′ < t} of the
same server u, as well as of the past and current states {ct′

u′ , t′ ≤
t} of all other servers u′ ∈ U − u. Note that while ct

u may be
dependent over time, gt

u isasufficient statistic which allowsone to
ignore the past given gt

u.
Ineach timeslot t, the controller decidestoassignatask toserver

u ∈ U . If server u is used at time t when its state is c = ct
u then

the item is successfully removed with probabilit y

st
u(c) = P [ successful removal by server u | ct

u = c ]. (1)

Alternatively, with probabilit y 1 − st
u(c) the item is not success-

fully removed. In wireless and Internet communication systems
this occurs when a packet is excessively corrupted (e.g. by inter-
ference) and cannot be successfully decoded and received, hence,
it i s dropped. In product-line design, the customers may decide
not to purchase the product or to buy from a different vendor and,
hence, thesale (item) isnot completed and revenue isnot received.
In particular, let Xt

u be a1/0 random variable which is 1 if server
u successfully serves an item at time t and is 0 otherwise. Then,
P [Xt

u = 1|ct
u = c] = st

u(c) andP [Xt
u = 0|ct

u = c] = 1− st
u(c).

It is assumed that, given gt
u, for each u ∈ U and t ∈ T the random

variable Xt
u depends only on ct

u and is independent of all others.
That is, given sufficient statisticgt

u, successful/failed service events
are statistically independent across time slots t ∈ T and servers
u ∈ U , except for the state of the server in the current time slot.

Given theprobabilit y gt
u(A) = P [ct

u ∈ A] of theserver statect
u

being in the (measurable) subset A of theserver statespaceCu, we
can obtain the probabilit y

F t
u(x) = P

[

st
u ≤ x

]

= P
[

c ∈ Cu : st
u(c) ∈ [0, x]

]

; (2)

that is, the statistical distribution of the servicesuccessprobabilit y
by server u at time t. Equivalently, we can obtain the densities
f t

u(x)

F t
u(x) =

∫ x

0

f t
u(x′)dx′ (3)

viewed in ageneralized sense (with delta-spikes) if the distribution
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has discontinuities.
The server state information available to the scheduler at time

t ∈ T is the service success densities {f t
u(x), x ∈ [0, 1], u ∈

U}. These can be viewed as (implicit) estimates of the server
states, provided to the scheduler and reflecting uncertainty about
the true/realized server states; the more ‘spread-out’ the distribu-
tions the higher the uncertainty. The mapping of gt

u to f t
u makes

f t
u a sufficient statistic of the server successprobabiliti es.
A scheduling policy π chooses at each time slot t ∈ T a server

ut = π(f t, t) ∈ U to employ, given the available server state
information

f t = {f t
u(x), x ∈ [0, 1], u ∈ U}, (4)

that is, the current densities (estimates) of theservicesuccessprob-
abiliti es of each server. Let Π be the set of all possible schedul-
ing policies, utili zing information f t (equivalently F t) to select
the server to use at time t ∈ T .

The scheduler’s objective is to maximizethe expected aggregate
throughput of thesystem, that is, the expected total number of tasks
that are successfully served over the time horizon T . Define are-
ward function R(f t, π(f t, t)) = Xt

u which is 1 if an item is suc-
cessfully removed by server ut = π(f t, t) chosen by policy π at
time t, or is 0 otherwise. The expected aggregate throughput of
the system operating under scheduling policy π over the interval
{t, t + 1, ..., T} is

Jπ(f t, t) = E

[

T
∑

t′=t

R(f t′ , π(f t′ , t′))

]

, (5)

startingat t with server state information f t. Let

J∗(f t, t) = max
π∈Π

Jπ(f t, t) (6)

and define π∗ ∈ Π to be ascheduling policy which achieves this
maximum.

As shown below, an optimal schedule is the greedy (opportunis-
tic) policy πg ∈ Π, which schedules the server whose the current
expectation of a successful serviceis maximized. Specifically,

πg(f t, t) = arg max
u∈U

E[R(f t, u)]

= arg max
u∈U

Ef [st
u]. (7)

Note that the expectation of successful service by server u at t
(hence, reward 1) is E[R(f t, u)] = E[Xt

u] = E[E[Xt
u|c

t
u]] =

E[st
u(ct

u)] =
∫ 1

0
sf t

u(s)ds = Ef [st
u]. In general, we denote

below by Ef [·] expectations with respect to the densities f t =
{f t

u(x), u ∈ U , t ∈ T } (or equivalently the distributions F t =
{F t

u(x), u ∈ U , t ∈ T }) of the server successprobabiliti es, which
is the only information revealed to the scheduler about the servers.

2.1 Opportunistic Scheduling on Perfectly
Known Servers

There has been a substantial body of research on how to lever-
age perfect server state knowledge to develop throughput optimal
schedules. Themain premise in these algorithms isthat therealiza-
tions of the server states ct

u are perfectly known in each time slot
t and can be used to determine which task to schedule. The set of
admissibleschedules is then expanded from Π to Πo, includingfic-
titious ‘clairvoyant’ schedules that instantaneously know the actual
server statect

u realized. We call this set Πo to denote its ‘oracle’ or
’omniscience’ abiliti es. Note that unlike standard competitive-type
analysis and oracle policies as in [13, 14], the schedules in Πo are
only aware of the realized ct

u (hence, st
u), but not Xt

u, so that the

actual serviceresult (success/failure) isnot known apriori.
Simple opportunistic policies utili zing perfect server state infor-

mation are known to be throughput maximizing [1, 2, 3, 4]. In the
context of our problem, we simply reiterate this result below and
refer the reader to the previous literature for the details and proof.

THEOREM 1. (Optimal Scheduling onKnown Servers) Theop-
portunistic scheduling policy

πo(ct, t) = arg max
u∈U

st
u(ct

u) (8)

or equivalently

πo(st, t) = arg max
u∈U

st
u (9)

achievesmaximal expected throughput Jo(ct, t) = Jo(st, t) across
{t, t+1, ..., T} within the classof schedulesΠo. The latter sched-
ules perfectly know the server states ct = {ct

u, u ∈ U}, hence, the
servicesuccessprobabiliti esst = {st

u, u ∈ U} (but not theservice
outcomes).

In thispaper, we areprimarily concerned with comparing

1. themaximum expected aggregatethroughput J∗(f t, t) achieved
in {t, t+1, ..., T} by schedules in Π with partial (uncertain)
knowledge of theserver stateprovided byf t = {f t

u(x), x ∈
[0, 1]} to

2. themaximum expected aggregatethroughput Jo(t) achieved
by schedules inΠo with perfect knowledgeof theserver state
ct = {ct

u, u ∈ U}, hence, of theservicesuccessprobabiliti es
st = {st

u, u ∈ U}.

Define a similar reward function Ro(ct, πo(ct, t)) = Xt
u when

the ‘clairvoyant’ optimal opportunistic schedule ut = πo(ct, t) is
used.

We note again that in the context of wirelesspacket scheduling,
a line of information-theoretic research has examined the effect of
channel estimation errors on capacity [9, 10, 15, 16]. Recall that
channel estimationerrorscorresponds to server state estimationer-
rors in our formulation. This prior research, however, focuses on
channel capacity and coding rather than on packet scheduling, as
we do in thispaper. In [16], the authors propose aback-off mecha-
nism to generate error free codebooks when the channel stateinfor-
mation is noisy. In order to achieve the capacity limits established
in these works, long transmission sessions may be necessary. Al-
ternatively, one can view wirelesschannels as having time-varying
probabiliti es of successful transmission rather than time-varying
bitrates. It is this packetized view that our model encompasses.
Moreover, as discussed in Section 1, this model includes many ap-
plications beyondwireless scheduling.

3. THROUGHPUT LOSS DUE TO UNCER-
TAINTY

In this section, we compare the maximum throughput J∗(ft, t)
under server uncertainty to the throughput Jo(t) of the ‘clairvoy-
ant’ scheduleπo. Theserver uncertainty inducesathroughput loss;
however, we show that Jo(t)/J∗(ft, t) ≤ U under any f t and
the boundis actually tight. We start by determining the maximum
throughput schedule under server uncertainty.

THEOREM 2. (Optimal Scheduling onUncertain Servers) Given
densities f t = {f t

u(x), x ∈ [0, 1], u ∈ U} of the service success
probabiliti es as available server state information, the greedy (op-
portunistic) schedule

π∗(f t, t) = πg(f t, t) = arg max
u∈U

Ef [st
u] (10)
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isoptimal, maximizingthe expected throughput of thesystem, hence,
J∗(f t, t) = Jg(f t, t).

PROOF. We argue by contradiction. Assume there exists some
time τ ≤ T , such that the optimal policy and the greedy policy
do not coincide. Define the set of greedy servers at time τ as
U∗

τ = {arg maxu Ef [sτ
u]}. So, by assumption π∗(fτ , τ ) 6∈ U∗

τ .
Let’s consider a policy π̃ which coincides with π∗ for all t 6= τ ;
in time slot τ , π̃ ∈ U∗

τ schedules a greedy server. Since there
are an infinite number of items to be depleted and the server states
are independent of the past given f t

u, in time slots t 6= τ the ex-
pected reward earned by the π̃ policy, R(f t, π̃(f t, t)) is identical
to the expected reward earned by the π∗ policy, R(f t, π∗(f t, t)).
By definition of the greedy set: Ef [sτ

π∗(fτ ,τ)] < Ef [sτ
π̃(fτ ,τ)].

Therefore,

J∗(f t, t) = E
[

T
∑

t′=t

R(f t′ , π∗(f t′ , t′))
]

= E
[

R(fτ , π∗(τ )) +
∑

t′ 6=τ

R(f t′ , π̃(f t′ , t′))
]

< E
[

R(fτ , π̃(τ )) +
∑

t′ 6=τ

R(f t′ , π̃(f t′ , t′))
]

= E
[

T
∑

t′=t

R(f t′ , π̃(f t′ , t′))
]

= J π̃(f t, t)

This contradicts the optimality of J∗. Therefore, there exists an
optimal policy which, in each time slot, schedules the server with
the highest expected probabilit y of successful service. �

By Theorem 1 and 2, we seethe optimal schedules are oppor-
tunistic both in case 1) of perfect server information given by ct

(or st) and in case 2) of partial server information given by the f t

densities of the servicesuccessprobabiliti es. However, in case 1)
where the server state is known items are scheduled on the server
with the best state, but in case 2) to the one with the best expected
state. Note that at the limit where the server state uncertainty is
squeezed out (the densities become single delta-spikes) the sched-
ule of case 2) actually degenerates to that of case 1). Throughput
lossdue to server state uncertainty is induced by scheduling based
on expected rather than true state realizations.

3.1 Tight Upper-Bound on Jo(t)/J∗(ft, t)

We begin with a boundregarding the maximization of the ran-
dom servicesuccessprobabiliti esst

u on the servers.

LEMM A 1. For the successprobabiliti es (1),

Ef [max
u∈U

st
u] ≤ U max

u∈U
Ef [st

u] (11)

Recall that U is the number of servers.
Sketch of Proof: Weproveheretheresult in the(special) case where
the distributionsF t

u(x) of successprobabiliti es are smooth, hence,
f t

u(x) = dF t
u(x)/dx for all u ∈ U and t ∈ T . For notational

simplicity, wesuppressthedependenceontime. Let usdefinesy =
maxu∈U su, so that

Fy(x) = P (max
u

su ≤ x) =

U
∏

u=1

P (su ≤ x) =

U
∏

u=1

Fu(x).

Then fy(x) = d
dx

Fy(x) =
∑U

u=1 fu(x)
∏

k 6=u
Fk(x). We can

now define the expectation of sy.

Ef [sy] = Ef [max
u∈U

su]

=

∫ 1

0

xfy(x)dx

=
U

∑

u=1

∫ 1

0

xfu(x)
∏

k 6=u

Fk(x)dx

≤
U

∑

u=1

∫ 1

0

xfu(x)dx

=

U
∑

u=1

Ef [su]

≤ U max
u

Ef [su]

wherethefirst inequality isbecauseFu(x) ≤ 1 for all x andu. The
second inequality comes from the definition of the maximization
function. This proves our bound. �

ThisLemma allowsderivation of atight bound onthethroughput
lossdue to server state information uncertainty.

THEOREM 3. (Tight Bound onThroughput Loss) For any dis-
tribution of server state, we have

Jo(t)

J∗(f t, t)
≤ U, (12)

where U is the number of users. The boundis tight, as Example 1
below demonstrates.

Hence, the throughput gain of ‘clairvoyant’ schedule πo over
π∗ = πg is upper-bounded by U . Correspondingly, this reflects a
throughput lossof schedule π∗ compared to πo.

PROOF. This is a direct consequence of Lemma 1. In the case
of unknown server state, the expected reward earned in each time
slot is taken over the distribution for the server state. Recall by
Theorem 2, under unknown server state, E[R(f t′ , π∗(f t′ , t′))] =

maxu Ef [st′

u ]. In the case of known server state, the expected re-
ward earned in each time slot is taken over the probabilit y of suc-
cessful service of each item. Recall by Theorem 1, under known
server state, E[Ro(ct′ , πo(ct′ , t′))] = Ef [maxu st′

u ]. Then,

UJ∗(f t, t) = UE

[

T
∑

t′=t

R(f t′ , π∗(f t′ , t′))

]

=
T

∑

t′=t

[

U max
u

Ef [st′

u ]
]

≥
T

∑

t′=t

Ef [max
u

st′

u ]

= E

[

T
∑

t′=t

Ro(ct′ , πo(ct′ , t′))

]

= Jo(t) �

Thepreceding boundisa worse case bound, but it i s tight, as the
followingexample shows.

EXA MPLE 1. Let theservers be identically distributed (besides
being independent). Assumethe scheduling horizon is 1. The dis-
tribution for each server is such that with probabilit y ε > 0 it i s in
a goodstate, so that su = 1 andwith probabilit y 1 − ε it i s in the
badstate, so that su = 0. Because the servers are i.i.d. the policy
over unknown server state picks one server at random, achieving
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reward J∗(f1, 1) = Ef [s1
u] = ε. The policy over known server

state picks any of the servers in the goodstate and picks a server
randomly if theyare all i n the badstate. We can determine the ex-
pected reward by finding the expected value of the maximum sy.
The distribution of sy isgiven by:

P (sy = x) =

{

(1 − ε)U , if x = 0;
1 − (1 − ε)U , if x = 1.

Therefore, Ef [sy ] = Jo(1) = 1 − (1 − ε)U and Jo(1)

J∗(f1,1)
=

1−(1−ε)U

ε
. Lettingε → 0 and usingL’Hopital’s rule gives:

lim
ε→0

Jo(1)

J∗(f1, 1)
= lim

ε→0

1 − (1 − ε)U

ε

= lim
ε→0

U(1 − ε)U−1

= U

Therefore, the boundin Theorem3 is tight.

In this example, server are identically distributed. The lossof
throughput growslinearly with thenumber of serversin thesystem.
This is because the server-state-knowing schedule πo can pick the
single server with the best quality (i.e. fastest speed); however the
policy with unknown statepicksaserver at random. Asthenumber
of servers grows, the probabilit y that the π∗ policy is able to pick
the best server decreases. Hencethe lossof throughput grows.

Note that this example is highly degenerate with the servers be-
ing i.i.d. and the probabilit y of being in the goodstate going to 0.
While theboundin Theorem 3 is tight, in practice, the lossis likely
to be smaller than U .

3.2 The Case When Some Server States are
Known

We note that the preceding results hold in the case where all U
server states are unknown. However, it may be the case that some
server states are known, while others are not. Suppose now that
there areU = Ukwn +Uukn server, whereUkwn denotes thenum-
ber of server with perfect, known state information and Uukn de-
notes the number of servers with uncertain state information.

THEOREM 4. (Throughput Loss) For U = Ukwn+Uukn servers,
we have

Jo(t)

J∗(f t, t)
≤ (Uukn + 1) (13)

The proof is similar to that of Theorem 3, hence, we omit it .

3.3 Evolution of Throughput Loss over Time
The preceding bounds are guaranteed for any distribution for

server states. Let α be the throughput loss in a single time slot.
Then under someserver statedistributions, thethroughput lossmay
be bounded by α. For instance the throughput loss over T time
slots is also α if all server states are independent and identically
distributed acrosstime. Note the servers do not have to be identi-
cally distributed to each other. However, if their distribution is sta-
tistically static over time, a throughput lossof α is incurred across
multiple time slots if it i s incurred in a single timeslot.

If the server state distributions are not identical acrosstime, the
throughput lossmay depend ontime, αt, such that Ef [maxu st

u(ct
u)] ≤

αt maxu Ef [st
u(ct

u)]. Then the throughput lossover T time slots

isαt∗ = maxt αt:

Jo(t) = E

[

T
∑

t′=t

Ro(ct′ , πo(ct′ , t′))

]

=
T

∑

t′=t

Ef [max
u

st′

u ]

≤
T

∑

t′=t

[

αt′ max
u

Ef [st′

u ]
]

≤ αt∗E

[

T
∑

t′=t

R(f t′ , π∗(f t′ , t′))

]

= αt∗J∗(f t, t) (14)

We have shown the worst case bound onthe lossof throughput
due to unknown server state. An asymptotically degenerate distri-
bution isgiven asan example which achieves thisbound. However,
in many applications of interest it i s undesirable and unlikely for
a scheduling session to occur when the probabilit y of successful
service is given by some small ε > 0. As will be shown in subse-
quent sections, for other server state distributions, this boundcan
be improved.

4. I.I.D. GOOD-BAD SERVER STATES
In Example 1, the server qualiti es were independent and iden-

tically distributed. We examine this scenario in more depth. We
can assume that Ef [su] > 0, otherwise, no services will ever be
successful and the throughput is always0.

Because all servershavethesamedistribution, theoptimal policy
for unknown server state is to schedule any server at random. Let’s
definerandom variableZu = su

Ef [su]
∈ [0,∞), so that E[Zu] = 1.

Now, the loss of throughput over one time slot due to unknown
server state information is given by

Ef [maxu∈U su]

maxu∈U Ef [su]
= Ef [max

u∈U
Zu]

In wirelessapplications, a commonchannel (server) model is the
ON-OFFchannel wherethe channel can either be in the “ON” state
and packet transmissions (item services) are successful with prob-
abilit y 1, or it can be in the “OFF” state and packet transmissions
fail with probabilit y 1. We consider asimilar server model where a
server can either be in a GOODstateor a BAD state.

EXA MPLE 2. (i.i.d. GOOD-BAD Servers) Consider a GOOD-
BAD server such that P (su = pg) = γ andP (su = pb) = 1 − γ.
Renormalizing to define Zu, we have:

Zu =

{

zg =
pg

(1−γ)pb+γpg
, w.p. γ;

zb = pb

(1−γ)pb+γpg
, w.p. 1 − γ.

Recall that E[Zu] = 1 = zgγ+zb(1−γ) andso zb < 1 andzg >
1. Assumethat T = 1, wehavethen that the lossof throughput due
to unknown server state for the GOOD-BAD server is:

E[max
u∈U

Zu] = zg(1 − (1 − γ)U ) + zb(1 − γ)U

= zg −
(1 − γ)U (1 − zb)

γ
< zg

Becausezb < 1, asU → ∞, thelossin throughput for the GOOD-
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BAD server approaches

zg =
pg

(1 − γ)pb + γpg

<
pg

pb

.

This can be arbitraril y close to pg

pb
asγ → 0.

Wehavejust shown thelossof throughput dueto unknown server
state in the case of i.i.d. GOOD-BAD servers. It is interesting to
note that for afixed support for theserver quality state, the GOOD-
BAD server resultsin the worselossin throughput. Before weshow
this result, we begin with a preliminary one.

LEMM A 2. (GOOD-BAD Servers with Fixed Mean) Suppose
the support for each server state is given by a closed interval de-
fined by [a, b] ⊆ [0, 1], so that P (su 6∈ [a, b]) = 0. Let Ef [su] =
µ ∈ (a, b). Then the maximum loss in throughput is given by a
GOOD-BAD server with P (su = a) = b−µ

b−a
= γ and P (su =

b) = 1 − γ, i.e. f(x) = γδa(x) + (1 − γ)δb(x) (δy(x) is the
impulse function that equals 1 when x = y and0 otherwise). The
lossis:

Ef [max
u∈U

su] ≤ (
b

(1 − γ)a + γb
∧ U)Ef [su] = (

b

µ
∧ U)Ef [su]

where x ∧ y = min{x, y}.

PROOF. Let us consider the case where b
µ

< U , since by Theo-
rem 3Ef [maxu∈U su] ≤ UEf [su] for any distribution of su. Now
from Example 2, we have seen the GOOD-BAD server achieves
this lossasU → ∞. What remains to beshown is that the GOOD-
BAD server is the worst possible throughput lossfor this support
and mean.

Suppose there exists some distribution f̂(x) 6= f(x). We will
show that the throughput lossunder distribution f̂(x) can be made
worse. Let g(x) = f( x

µ
) be the p.d.f. for Zu under the GOOD-

BAD distribution given by f(x). Similarly, let ĝ(x) = g( x
µ
) 6=

g(x) be the p.d.f. for Zu under the f̂ distribution.
Now, because ĝ 6= g, there exists some k ∈ ( a

µ
, b

µ
) and ε > 0

such that
∫ k+ε

k−ε

ĝ(x)dx = α > 0 and
∫ k+ε

k−ε

xĝ(x)dx = αk.

Define the following p.d.fs:

g1(x) =

{

1
1−α

ĝ(x), x 6∈ [k − ε, k + ε];
0, x ∈ [k − ε, k + ε].

g2(x) =

{

1
α

ĝ(x), x ∈ [k − ε, k + ε];
0, x 6∈ [k − ε, k + ε].

g3(x) =







ζ = b−kµ

b−a
, x = a

µ
;

1 − ζ, x = b
µ

;
0, otherwise.

Hence ĝ(x) = g1(x) with probabilit y 1 − α and ĝ(x) = g2(x)
with probabilit y α. Define g̃(x) as a modification of ĝ(x) which
has a GOOD-BAD server mode defined by g3, i.e.

g̃(x) =

{

g1(x), w.p. 1 − α;
g3(x), w.p. α.

The loss in throughput under the g̃ distribution is, in fact larger
than the lossin throughput under the ĝ distribution. Let Ĝ and G̃

denote the cdfs for ĝ and g̃, respectively.

Eĝ[max
u

Zu] − Eg̃[max
u

Zu]

=

∫ b
µ

a
µ

[

1 − ĜU (x)
]

dx −

∫ b
µ

a
µ

[

1 − G̃U (x)
]

dx

= α

∫ b
µ

a
µ

GU
3 (x)dx− α

∫ b
µ

a
µ

GU
2 (x)dx

= αζU
( b − a

µ

)

− α

∫ b
µ

k−ε

GU
2 (x)dx

≤ αζU
( b − a

µ

)

− α(
b

µ
− k + ε)

= α
[( b − kµ

b − a

)U( b − a

µ

)

−
b

µ
+ k − ε

]

< α
[{

ζU−1 − 1
}

(
b

µ
− k)

]

≤ 0

Thefirst equality comesfrom thefact theserver statesarei.i.d. The
second inequality come from the definition of ĝ and g̃. The third
equality comes from the definition of g3 and g2 (which is 0 for
x < k−ε). Thefirst inequality comesfrom thefact that G2(x) ≤ 1
for all x. The last equality comes from the fact that ζ ∈ [0, 1].

Therefore, the lossin throughput due to unknown server state is
larger for g̃ than for ĝ, which has some GOOD-BAD properties.
This contradicts the maximal lossof throughput of ĝ. Hence, the
GOOD-BAD server has the worst lossof throughput for a given
support and mean server quality/speed. The lossof throughput in
this case is (γ = b−µ

b−a
):

Ef [max
u∈U

su] =
(

[

1 − (1 − γ)U
] b

µ
+ (1 − γ)U a

µ

)

Ef [su]

=
( b

µ
+ (1 − γ)U a − b

µ

)

Ef [su]

→
b

µ
Ef [su] (asU → ∞) �

We have just shown for a fixed support and mean for the i.i.d.
server state distribution, the GOOD-BAD is the worst it can get.
This is true without the constraint of a fixed mean.

THEOREM 5. (I.I.D GOOD-BAD Servers) Suppose thesupport
for each server state isgiven by a closed interval [a, b] ⊆ [0, 1], so
that P (su 6∈ [a, b]) = 0. Then the maximum lossin throughput is
given by:

Jo(t)

J∗(f t, t)
≤ (

b

a
∧ U) (15)

andisachieved with the following distributionwith γ → 0:

su =

{

b, w.p. γ;
a, w.p. 1 − γ.

PROOF. Again, consider the case where b
a

< U , sinceby Theo-
rem 3 Ef [maxu∈U su] ≤ UEf [su] for any distribution of su. By
Lemma 2, for fixed mean µ, the GOOD-BAD server achieves the
worst lossin throughput given by b

µ
. Maximizing thisover thesup-

port [a, b] means minimizing µ, which can approach a as γ → 0
for the given GOOD-BAD distribution.

Thereforethethroughput lossin asingletimeslot for i.i.d. server
with support in [a, b] is given by b

a
∧ U . By (14), for statistically

static server statesover time, thelossover T timeslotsisalso b
a
∧U .
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This yields the desired result. �

It can be easily seen that when restricted to GOOD-BAD server
over a given support, the i.i.d case results in the worst throughput
loss.

Wehave closely examined the caseof i.i.d server statesand have
shown that the GOOD-BAD distributioncorresponds to the largest
throughput lossdue to unknown server state. Intuitively, GOOD-
BAD servers are as disparate as possible. Hence, when theπ∗ pol-
icy misses a server which is in the GOODstate while the clairvoy-
ant policy is able to use it, the π∗ policy may end upscheduling a
server in the BAD state. The quality of this BAD state compared
to the quality of the GOODstate is the worst it can get. Hence, the
GOOD-BAD server leadsto the worst throughput. For serverswith
“smoother” distributions, the lossof throughput should improve.

5. I.I.D. UNIFORM SERVERS STATES
In some instances, theserver statemay beknown to fall within a

fixed range; however, its exact state is unknown. A uniform distri-
bution over this interval isone way to model such ascenario. If the
probabiliti esof successful serviceby each server were independent
and uniformly distributed, then theboundin Theorem 3 can besig-
nificantly improved to a constant factor, independent of thenumber
of servers in the system.

Let au andbu definetheuniform distribution of thequality/speed
of server u, so that

fu(x) =

{

1
bu−au

, x ∈ [au, bu];
0, otherwise.

Then, the throughput lossdue to unknown server state is bounded
by 2.

THEOREM 6. (Throughput LossonI.I.D. UniformServer States)
If in each timeslot the quality/speed of server u is uniformly dis-
tributed from [au, bu], then the throughput loss due to unknown
server state isbounded by a factor of 2, that is,

Jo(t)

J∗(f t, t)
≤ 2. (16)

PROOF. Without lossof generality assume that the servers are
ordered such that b1 ≤ b2 ≤ · · · ≤ bU−1 ≤ bU . Furthermore, the
exists some sequence {n1, n2, . . . , nU} such that an1

≤ an2
≤

· · · ≤ anU . Without lossof generality we can assume that anU ≤
b1. If this were not true, then the probabilit y of successful service
by server 1 will always be less than that to server nU : P (s1 <
snU ) = 1 and server 1 will never be scheduled. Hence, this is the
sameschedulingscenario ashavingU ′ = U−1 servers. Therefore,
we will assume that anU ≤ b1.

Based ontheordering of servers, it i seasy toseethat Ef [maxu su] ≤
bU . Clearly, this is only achieved with equality if aU = bU , which
would then imply that maxu Ef [su] = bU . Then the clairvoyant
and unknown server statepolicieswill coincide, πo = π∗ andthere
will be no lossof throughput due to unknown server state. How-
ever, if aU 6= bU , then there may be some loss. Now, because
aU ≥ 0, maxu Ef [su] ≥ Ef [sU ] ≥ bU

2
. Hence:

Ef [max
u

su] ≤ bU ≤ 2max
u

Ef [su].

This is the throughput lossin one time slot. By (14), this implies
the same lossover t time slots (certainly for t = T ) so that:

Jo(t) ≤ 2J∗(f t, t) �

This boundis tight as shown by the following example.

EXA MPLE 3. Suppose that T = 1 and the server states are
i.i.d. and uniformly distributed on [0, 1]. Then Ef [su] = 1

2
and

Ef [max
u

su] =

∫ 1

0

[

1 − F U (x)]dx

= 1 −

∫ 1

0

xUdx

= 1 −
1

U + 1

→ 1 (asU → ∞)

Hence,

Jo(1)

J∗(f1, 1)
=

Ef [maxu su]

Ef [su]
= 2 −

2

U + 1
→ 2 (asU → ∞).

This example shows that we can get arbitraril y close to the bound
in Theorem 6 by increasing the number of servers in the system.

The contrast between the loss of throughput due to unknown
server state for GOOD-BAD servers versus uniformly distributed
server states is striking. In Example3, theserverswere i.i.d. In this
case, even if the policy with unknown server state, π∗, schedules
a different server than the clairvoyant policy πo the successprob-
abiliti es are likely to be similar. The uniform distribution is the
least disparate while the GOOD-BAD distribution is the most. We
expect the lossof throughput for other types of server state distri-
butions to fall i n between the bounds given for these distributions
in Theorems 5 and 6.

6. EXPERIMENTAL INVESTIGATION AND
VERIFICATION: WIRELESS PACKET
SCHEDULING

Thus far, our results have been about general distributions and
classes of distributions for server states. We have discussed the
results in terms of a general model which a number of schedul-
ing problems of interest can be cast. In this section, we consider
the application of wirelesspacket scheduling and study the lossof
throughput due to unknown channel state via anumerical study of
specific channel types.

In wireless packet scheduling a single transmitter has a series
of packets to transmit to U users over channels dedicated to each
user. Due to varying path-loss, fading, and interference, the chan-
nel quality is random and varies over time. The goal is to deter-
mine ascheduling policy which selects a user to transmit a packet
to while considering the communication channel quality and max-
imizing throughput.

Mappingwirelesspacket scheduling to thegeneral model means
that ‘ items’ correspond to packets, servers corresponds to users’s
channels, and successful service corresponds to successful trans-
mission of packets.

6.1 I.I.D. ON-OFF Channels
In Theorem 3, we proved that the worse case throughput loss

is given by the number of users with unknown server state. We
showed that thisboundwastight viaExample1. In order to achieve
this worse case bound, the server distributions are i.i.d. ON-OFF
channels with probabilit y of being ON, P (su = 1) = ε, approach-
ing zero, ε → 0. In Fig. 1, we examine the lossof throughput for
unknown channel state over a single time slot as a function of the
number of users, U , with unknown channel state. The channels are
i.i.d. ON-OFF with P (su = 1) = 1 − P (su = 0) = ε. Certainly,
as U increases, the loss of throughput also increases. However,
Jo

J∗ does not approach U until ε < 10−3. This shows that in or-
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der to approach thisworse casebound, the channels must behighly
degenerate. It is reasonable to assume that most communications
will not occur in this regime and that the lossof throughput will be
much lower. In fact, for i.i.d. channels where P (su = 1) = .1,
the lossof throughput is at most a factor of 10. This is still a very
degenerate scenario with packet error rates of .9. Communication
isundesirable and unlikely to occur in environmentswith such high
packet error rates.
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Figure 1: Throughput loss for i.i.d. ON-OFF channels as a
function of the number of users U . P (su = 1) = 1 − P (su =
0) = ε.
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Figure 2: Throughput loss for i.i.d. GOOD-BAD channels as a
function of the ratio of GOOD versus BAD quality, b

a
. P (su =

b) = 1 − P (su = a) = γ = 10−5.

6.2 I.I.D. Good-Bad Channels
Here we examine the case of GOOD-BAD channels where the

probabilit y of successful transmission in the GOOD state, b, is
higher than in the BAD state, a, i.e. b > a. From Theorem 5,
the lossof throughput in the case of i.i.d. GOOD-BAD channels is

given by b
a

and this is achieved in the limit as P (su = b) = γ →
0. We consider the case of a single transmission time slot where
γ = 10−5, b = .9, and a varies from [.1, .9]. The probabilit y of
being in the BAD state is1− γ = 1− 10−5 ∼ 1. When b

a
is large

(a is small ), this is a highly degenerate scenario. We see in Fig.
2 for reasonable numbers of users U ≤ 103, the throughput when
channel state isunknown isnearly equal to that when channel state
is known. However, for very large numbers of users, the lossof
throughput approaches thebound given byTheorem 5. For smaller
γ, these losses are likely to be smaller, as suggested byFig. 1.

6.3 I.I.D. Uniform Channels
Wehaveseen that thesebi-modal distributionsfor channels, where

each channel can take on one of two states, can lead to large losses
in throughput. In Theorem 6, wesawthat the lossof throughput for
uniform channels is bounded by a constant factor, 2. In Fig. 3, we
seethe lossof throughput due to unknown channel state as a func-
tion of the number of users, U . Each of the U channels are i.i.d.
uniformly over [0, 1]. As predicted, we can seethat as U → ∞,
J0

J∗
→ 2.
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Figure 3: Throughput loss for i.i.d. uniform [0, 1] channels as a
function of the number of users U .

6.4 Markov Channels
Thus far we have examined the throughput loss over channels

which are statistically static over time. However, wireless chan-
nels are often time-varying. As such a dynamic channel model is
necessary–Markov models for dynamic channels are popular. We
consider the commonly used, 2-state Gilbert-Elli ot channel [17] de-
picted in Fig. 4. Due to the symmetry of the channel, the steady
state distribution isan ON-OFFchannel with γ = .5.

We assume that the scheduler knows the Markov model for the
U = 10 i.i.d. channels. However, it does not know the current
channel statesprior to makingthetransmission decision. Following
the transmission, the channel state information are updated so that
the channel state estimates, {gt

u} (or equivalently, {f t
u}), are given

by the perfectly known channel states in the previous time slot.
This might be the case if channel state information is transmitted
from each user to the base station in each time slot, but due to
transmission delays, it does not arrive in time for the transmission
decision in the current time slot to be based on this information.
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Figure 4: Gilbert-Elliot channel.

However, the transmission decision in the subsequent timeslot can
use this information.

We seethe lossof throughput due to unknown channel state for
Markov channels in Fig. 5 asafunction of thestatetransition prob-
abilit y, ptrans. Our experiments are over a time horizon of T = 100
time slots and averaged over 1000 realizations. When ptrans = .5,
the channels are i.i.d. over time which, by Lemma 2 gives that the
T period loss in throughput is 2. However, for ptrans 6= .5, the
history of the channel, i.e. the channel state in the prior time slot,
provides informationabout the current channel state and henceper-
formanceof theπ∗ policy is improved. Thesymmetry in thefigure
is due to the symmetry in “ information” gained with information
about the channel statein theprevious timeslot. Dueto theMarko-
vian property, this information defines a GOOD-BAD channel in
the current time slot. The GOOD-BAD distribution is given by the
previous channel state as well as the transition probabilit y. Being
in the GOODstate with transition probabilit y, ptrans will result in
the same GOOD-BAD distribution as being in the BAD state with
transition probabilit y, 1 − ptrans.
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Figure 5: throughput loss for ON-OFF Markovian channels as
a function of the probability of channel state transition, ptrans.

6.5 Diverse Channel Classes
Most of our analysis has focused on the case where channels

are i.i.d. We now examine the case of mixed channel types. Our
experiments are over a time horizon of T = 100 time slots and
averaged over 1000 realizations. We assume there are U = 20
users. UON-OFF users are ON-OFF channels with P (su = 1) =
pON and Uunif = U − UON-OFF users are uniform [0, 1] channels.

We know that if all channels are uniform, Uunif = U , then the
throughput loss is bounded by 2. Conversely, if all channels are
ON-OFF, UON-OFF = U , then the throughput loss is bounded by
min{ 1

pON
, U}. For µON-OFF = pON < .5, the expected value of

the ON-OFF channels is lessthan that of the the uniform channels
µunif = .5; hence, the policy with unknown channel state will al-
ways choose to transmit to a user with the uniform distribution.
Fig. 6 shows the loss in throughput when there is a mix of ON-
OFFand uniform channels. We can seethat in this case the lossof
throughput is quite small (∼ 1 − 2). However, when there are no
channels with uniform distribution(UON-OFF = 20), thepolicy with
unknown channel state must pick one of the ON-OFF channels at
random, and the throughput lossapproaches the bound given by
Lemma 2.
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Figure 6: Throughput loss for a mix of ON-OFF channels and
uniform [0, 1] channels. UON-OFF + Uunif = U = 20.

7. CONCLUSION
In many scheduling applications, obtaining perfect server state

information isadifficult estimation problem. It isoften only possi-
ble to obtain an estimate of the quality of server. Certainly imper-
fect knowledge of server state will l ead to a loss in performance.
We have examined the lossof throughput due to unknown server
state in the case of throughput maximization in a general schedul-
ingmodel. Applicationsof wirelessand Internet packet scheduling
aswell asproduct linedesigncan be cast within thisgeneral model.

Thelossin throughput isbounded by thenumber of serverswith
unknown state; this bound is tight. Under certain distributions
of server quality, this boundcan be improved. To achieve these
bounds, highly degenerateserver distributionsarenecessary, which
suggests that thelossof throughput dueto unknown server state are
likely to be much smaller in practice.

Gathering estimates for server states can be an expensive pro-
cess. A natural question is, given limited resources, which servers
should be probed in order to minimize the loss due to unknown
server state. In light of our study, it seems that servers with highly
disparate quality often lead to the largest losses. Avoiding these
types of distributions by investing more resources to gather more
accurate estimations may significantly improve performance. This
question of resource allocation to improveperformance and reduce
the effect of server stateuncertainty isan interestingandcontinuing
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area of research.
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