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ABSTRACT

It has recently been shown [3, 5] that in the heavy traf-
fic limit, the stationary distributions of the scaled queue
length process of Generalized Jackson Networks converges
to the stationary distribution of its corresponding Reflected
Brownian Motion limit. In this paper we show that such an
“interchange of limits” is valid for the workload process of
Stochastic Fluid Networks with Lévy inputs. Our technique
is of independent interest because we do not require the use
of any Lyapunov techniques, a method that was used in the
previous two papers.
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1. INTRODUCTION

It is often the case in the performance analysis of stochas-
tic networks that the calculation of the stationary distri-
bution (if it exists) of the workload process is of great im-
portance. Unfortunately, besides the case where the system
can be modeled as a Jackson or BCMP network, not many
closed form solutions exist.

On the other hand heavy traffic analysis often leads to
Reflected Brownian Motion (more precisely Semi-martingale
Reflected Brownian Motion (SRBM)) for which under suit-
able hypothesis the stationary distributions can be explicitly
computed. Thus diffusion approximations to the workload
process, especially Reflected Brownian Motion, have been
the focus of much recent research.

The issue of the stability of networks has been a preoccu-
pation of the stochastic network and queueing community
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for quite some time and except for successes in the Marko-
vian setting or for i.i.d. inputs, there are not many results
available for the general case. The recent monograph of
Bramson [2] aptly summarizes the state of the art but es-
sentially restricts itself to the i.i.d or generalized Jackson
case.

Yet it can be seen that there are a plethora of papers
that take for granted that the intuitive condition that the
average load at a queue being less than the server capacity
under any work conserving discipline implies the existence
of a stationary distribution. This remains an open question
in general.

This raises the related question. Does the existence of a
stationary or invariant distribution for a diffusion limit mean
that the original network also is stable? In Chen & Yao [4,
14] they point out the fact that the stationary distribution
of Reflected Brownian Motion is often used as an approxi-
mation to the scaled stationary distribution of the workload
process for Generalized Jackson networks.

In this paper we justify this interchange of limits for Stochas-
tic Fluid Networks with Lévy inputs. This conjecture was
rigorously justified by Gamarnik & Zeevi [5] for Generalized
Jackson networks using Lyapunov function techniques as-
suming that all moments for the input sequences exist and
later extended by Budhiraja & Lee [3] who showed that only
second order assumptions are sufficient also using Lyapunov
techniques. In this paper we show the corresponding results
for networks with Lévy inputs using different arguments, but
still only requiring second order assumptions.

Stochastic fluid networks are natural models for studying
systems where the inputs can not be enumerated and good
approximations for queueing systems such as high speed
communication networks. In this paper, we will consider
an open single class, single server stochastic fluid network
with independent Lévy inputs, which is a generalization of
an open network of M/G/· input queues. This model has
been extensively studied in a series of papers by Kella [9],
Kella & Whitt [12, 11] and in [13].

Diffusion, or heavy traffic approximations have been the
focus of vigorous research for a long time. Reflected Brow-
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nian motion (RBM) was introduced by Harrison & Reiman
[6], Harrison & Williams [7]. The convergence of networks
in the heavy traffic limit to SRBM is by now well known.
See also the survey in [16]. The monograph of Whitt is a
comprehensive reference [15].

2. ASSUMPTIONS AND NOTATION

Fix an integer N ≥ 0 and let (Ω,F , (Ft)t≥0, P ) be a
stochastic basis. All processes will be assumed to be (Ft)-
adapted and in D[0,∞) (the space of N -dimensional, real-
valued, càdlàg processes). The space D[0,∞) will be as-
sumed to be endowed with the Skorokhod J1 topology, un-
less explicitly stated otherwise.

Vectors and matrices are assumed to be real-valued, with
vectors being column vectors. The expression fn ∼ gn

means limn→∞
fn

gn
= K < ∞ for some constant K, and

L(X) will denote the law of the random quantity X.

3. THE STOCHASTIC FLUID NETWORK

The Stochastic fluid networks in this paper are assumed to
be open networks, that possess N single server queues that
are served by constant rate servers. Stochastic fluid net-
works are characterized by the 4-tuple {J, r, P, W (0)} where
{J(t); t ≥ 0} is the cumulative input process, r ∈ R

N
+ is the

server rate, P ∈ R
N
+ × R

N
+ the routing matrix, and W (0) is

the initial workload. It is assumed that the queues are work
conserving.

The routing matrix P is a substochastic matrix such that
P n → 0 as n → ∞. Denote Q = (I − P ′)−1 = I + P ′ +

P ′2 + . . ., P ′ is the transpose of P . ri represents the rate at
which server i processes fluid (if there is any).

The processes {Ji(t); t ≥ 0}, i ∈ 1 . . . N are independent
subordinators (non-decreasing càdlàg Lévy processes) with
J(0) = 0, with finite first and second moments (on bounded
time intervals). The process Ji(t) represents the cumulative
input to server i at time t. We can assume wlog that J is
a pure jump process, since any drift term can be subtracted
away from the service rate. Also, we assume E[W (0)] < ∞
and that W (0) is independent of {J(t); t ≥ 0}.

Let {X(t); t ≥ 0} be the net input, ie. X(t) = W (0) +
J(t) − (I − P ′)rt. The Skorokhod Oblique Reflection Prob-
lem states that given the process X(t) and the matrix I-P’,
there exists a.s. unique processes {W (t); t ≥ 0} (known as
the reflected process) and {Z(t); t ≥ 0} (known as the regu-
lator) such that:

1. W (t) = X(t) + (I − P ′)Z(t) ≥ 0

2. Z(0) = 0 and dZ(t) ≥ 0

3. Wi(t)dZi(t) = 0

Furthermore there exists a unique, continuous pair of func-
tions Φ, Ψ : D[0,∞) → D[0,∞) such that Φ(X(·)) = W (·)

and Ψ(X(·)) = Z(·). See Chapter 14 of Whitt [15] or Chap-
ter 7 of Chen & Yao [14] for further details. The workload
process will be represented by {W (t); t ≥ 0}.

Let λ = E[J(1)], where λi represents the average rate of
work arriving at server i per unit of time, σ2 = V ar(J(1))
and let Γ = diag(σ2) denote the covariance matrix of J .

We will assume the stability conditions r > Qλ and E[W (0)] <

∞. From Kella [10], these conditions are necessary and
sufficient for the existence of a unique stationary distribu-
tion for {W (t); t ≥ 0}, with W (∞) being a random vector
with the stationary distribution as its law. Note that if

W (0)
D
= W (∞), then {W (t); t ≥ 0} is in steady state.

4. HEAVY TRAFFIC APPROXIMATION

The main assumption to be made is that for the sequence
of stochastic fluid networks {Jn, rn, P, Wn(0)} (which satisfy
the previous assumptions ∀n),

√
n(λn − (I − P

′)rn) → η

.
Note that we have η < 0, since rn > Qλn for all n.

We also assume that Wn(0)√
n

converges in distribution to

some random vector W0. Additionally, we require that the
sequence {J2

n(1)} is uniformly integrable.

The heavy traffic limit will be shown to be Reflected Brow-
nian Motion, denoted by RBMX(b, Γ, R) where X is the ini-
tial distribution, b is the drift, Γ is the covariance matrix,
and R is the reflection matrix.

We require the following result from Harrison & Williams
[7]: The RBMX(b, Γ, R) possesses a unique stationary dis-
tribution if R−1b < 0.

5. THE MAIN RESULT

The outline of the approach to show the result is straight-
forward. We will show that, independent of (reasonable) ini-

tial conditions, the heavy traffic limit of Wn(nt)√
n

is Reflected

Brownian Motion. Then we will show that the scaled se-
quence of stationary distributions is tight. Finally we will
prove the interchange result.

5.1 Convergence to Reflected Brownian Mo-
tion

Lemma 5.1. Let

J̄n(t) =
Jn(nt) − λnnt√

n

Then

Jn(·) ⇒ BM(0, Γ)

Where BM(0, Γ) denotes a 0 drift Brownian motion with
covariance matrix Γ.
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Proof. By the independent and stationary increments
property of Jn(t),

Jn(nt) =
n∑

i=1

J̃ i
n(t)

where J̃ i
n(t) are independent copies of Jn(t).

Thus, by the (triangular array) CLT,

Jn(1) ⇒ N(0, Γ)

By VII Corollary 3.6 of Jacod & Shiryaev [8],

Jn(·) ⇒ BM(0, Γ)

Theorem 5.1. Let

W n(·) =
Wn(n·)√

n

Then

W n(·) ⇒ RBMW0
(η, Γ, I − P

′)

Proof. From Theorem 5.1, we know

Jn(·) ⇒ BM(0, Γ)

From the assumptions,

Wn(0)√
n

⇒ W0

and
√

n(λn − (I − P
′)rn) → η

Since Wn(0) and Jn(t) are independent, and η is determin-
istic, then they converge jointly.

Let Xn(t) = Xn(nt)√
n

Xn(t) =
Wn(0)√

n
+

J(nt)√
n

− (I − P ′)rnnt√
n

=
Wn(0)√

n
+

J(nt) − λnnt√
n

+
√

n(λn − (I − P
′)rn)t

=
Wn(0)√

n
+ Jn(t) +

√
n(λn − (I − P

′)rn)t

Therefore Xn(·) ⇒ W0 + BM(η, Γ)

W n(·) = Φ(Xn(·))
⇒ RBMW0

(η, Γ, I − P
′)

By the continuous mapping theorem, since the mapping Φ
is continuous by assumption.

As well,

W n(·) =
Φ(Xn(n·))√

n

= Φ(
Xn(n·)√

n
)

by uniqueness of the mapping Φ.
Therefore,

W n(·) ⇒ RBMW0
(η, Γ, I − P

′)

5.2 Tightness

Lemma 5.2. There exists λ̃n s.t. λn < λ̃n, Qλ̃n < rn and
λ̃n − λn ∼ 1√

n

Proof. Let εn = mini=1...N (−Q(λn−(I−P ′)rn))i

2N‖Q‖
max

e and set

λ̃n = λn + εn.
Where ‖·‖max is the max norm and e is a column vector

of ones.
By assumption εn > 0, therefore λn < λ̃n.

Qλ̃n = Q(λn +
mini=1...N (−Q(λn − (I − P ′)rn))i

2N ‖Q‖max

e)

= Qλn + Q
mini=1...N (−Q(λn − (I − P ′)rn))i

2N ‖Q‖max

e

≤ Qλn +
mini=1...N (−Q(λn − (I − P ′)rn))i

2
e

≤ Qλn − 1

2
Q(λn − (I − P

′)rn)

=
1

2
Qλn +

1

2
rn

<
1

2
rn +

1

2
rn

= rn

Finally we show the last assertion.

λ̃n − λn

1√
n

=
√

n
mini=1...N (−Q(λn − (I − P ′)rn))i

2N ‖Q‖max

e

=
mini=1...N (−Q

√
n(λn − (I − P ′)rn))i

2N ‖Q‖max

e

→ mini=1...N (−Qη)i

2N ‖Q‖max

e

Note that mini=1...N (−Qη)i

2N‖Q‖
max

> 0 by assumption.

Lemma 5.3.
∑N

j=1 E[Wn,j(∞)] ≤ ∑N

j=1

σ2

n,j

2(λ̃n−λn)j

where λ̃n satisfies the conditions of Lemma 5.2.

Proof. Fix n.
Consider the reflected process

W̃n(·) = Wn(0) + Jn(·) − λ̃n · +Z̃n(·)

Since λn < λ̃n, there a exists a unique stationary distri-
bution for the process {W̃n(t); t ≥ 0}.
Let W̃n(∞) be a random vector with that stationary distri-
bution.

From [12], for each i = 1 . . . N ,

W̃n,i(∞) =
σ2

n,i

2(λ̃n − λn)i
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By Lemma 3.1 of Kella [10],

N∑

j=1

Wn,j(t) ≤
N∑

j=1

W̃n,j(t)

This implies that

E[
N∑

j=1

Wn,j(∞)] ≤ E[
N∑

j=1

W̃n,j(∞)]

The result follows.

Lemma 5.4. There exists a finite constant A s.t.
E[Wn,k(∞)]√

n
≤ A ∀k = 1 . . . N

Proof. Let qmax = ‖Q‖max, σ2
n = maxj(σ

2
n,j)

N∑

j=1

E[Wn,j(∞)] ≥ E[Wn,k(∞)] ∀k = 1 . . . N

by the non-negativity of the summands and

N∑

j=1

σ2
n,j

2(λ̃n − λn)j

≤
N∑

j=1

σ2
n

2(λ̃n − λn)j

By Lemma 5.2, ∀j, (λ̃n − λn)j ∼ 1√
n

∑N

j=1

σ2

n

2(λ̃n−λn)j√
n

=
N∑

j=1

σ2
n

2
√

n(λ̃n − λn)j

→
N∑

j=1

Nqmax
σ2

n

mini=1...N (−Qη)i

= N
2
qmax

σ2
n

mini=1...N (−Qη)i

Let

An =

∑N

j=1

σ2

n

2(λ̃n−λn)j√
n

and

A = sup
n

An

Since ∀n An < ∞ and

lim
n→∞

An = N
2
qmax

σ2
n

mini=1...N (−Qη)i

< ∞

So A < ∞ and

E[Wn,k(∞)]√
n

≤ A ∀k = 1 . . . N

Theorem 5.2. The sequence of stationary distributions

{L(Wn(∞)√
n

)} is tight.

Proof. For any K > 0,

P (
Wn(∞)√

n
> K) = P (Wn(∞) > K

√
n)

By the union bound

≤
N∑

j=1

P (Wn,j(∞) > K
√

n)

By the Markov inequality

≤
N∑

j=1

E[Wn,j(∞)]

K
√

n

≤
N∑

j=1

A

K
by Lemma 5.4

=
NA

K

Tightness follows from the inequality above.

Before proving the main result of the paper, we require the
following facts about tight sequences of measures. Proofs
can be found in Billingsley [1] (pg. 59, Theorem 5.1 and its
Corollary)
Let {πn} be a sequence of tight measures. Then:

• Every subsequence contains a weakly convergent sub-
sequence

• If each convergent subsequence converges to the same
measure π∗, then {πn} ⇒ π∗

We now complete the proof of the main result on the in-
terchange.

Theorem 5.3. The sequence {L(Wn(∞)√
n

)} converges weakly

to πRBM , where πRBM is the unique stationary distribution
of RBMW0

(η, Γ, I − P ′)

Proof. Let {L(
Wnk

(∞)
√

nk
)} be a convergent subsequence

with L(
Wnk

(∞)
√

nk
) ⇒ π, and let Wnk

(0)
D
= Wnk

(∞). To sim-

plify the notation, denote
Wnk

(nk·)
√

nk
by W nk

(·).
By Theorem 5.1, W nk

(·) ⇒ RBMW0
(η, Γ, I − P ′), with

L(W0) = π. Moreover, since for any fixed t ≥ 0, W nk
(t)

D
=

W nk
(0), then RBMW0

(η, Γ, I − P ′)(t)
D
= W0. This implies

that π is a stationary distribution of the RBM. But the
stationary distribution of RBM is unique, so therefore π =
πRBM .

Since this was true for any arbitrary convergent subse-

quence, L(Wn(∞)√
n

) ⇒ πRBM .
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