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ABSTRACT

Network calculus is a theory dealing with queueing type
problems encountered in computer networks, with particu-
lar focus on quality of service guarantee analysis. Queueing
theory is the mathematical study of queues, proven to be
applicable to a wide area of problems, generally concerning
about the (average) quantities in an equilibrium state. Since
both network calculus and queueing theory are analytical
tools for studying queues, a question arises naturally as is if
and where network calculus and queueing theory meet. In
this paper, we explore queueing principles that underlie net-
work calculus and exemplify their use. Particularly, based
on the network calculus queueing principles, we show that
for GI/GI/1, similar inequalities in the theory of queues can
be derived. In addition, we prove that the end-to-end per-
formance of a tandem network is independent of the order
of servers in the network even under some general settings.
Through these, we present a network calculus perspective
on queues and relate network calculus to queueing theory.

1. INTRODUCTION
Queueing theory is the general mathematical study of

queues. In 1909, Danish mathematician and engineer A. K.
Erlang [2] published “The Theory of Probabilities and Tele-
phone Conversations” that originated the field of queueing
theory. Since then, queueing theory has been developed and
applied in a wide variety of areas including engineering, busi-
ness and public service. The classical queueing theory, or
queueing theory in short, generally concerns about the (av-
erage) quantities in an equilibrium state. It has played a
fundamental role in modeling, analyzing and dimensioning
communication networks. For example, the very first queue-
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ing theory paper proves that the Poisson distribution applies
to random telephone traffic.

With the advance of communication and networking tech-
nologies, it is natural to apply queueing theory also to mod-
ern packet-switched computer networks such as the Internet.
However, unique customer and service characteristics and
requirements in such networks often make the application
difficult. Due to this, there has been a demand for a new
theory to deal with queueing type problems encountered in
computer networks. Since early 1990s, the development of
this new theory has attracted a lot of research attention and
effort, and significant progress has been made. The theory
is now known under the name of network calculus.

Network calculus is a theory dealing with queueing type
problems encountered in modern packet-switched computer
networks. Its focus is on performance guarantees. Cen-
tral to the theory is the use of alternate algebras such as
min-plus algebra and max-plus algebra to transform com-
plex network systems into analytically tractable systems.
To simplify the analysis, another idea is to characterize the
arrival and service processes using some bounds and base
performance analysis on such bounds. Network calculus has
developed along two tracks — deterministic and stochastic.

The idea of using a function to deterministically upper-
bound the cumulative arrival process was initially intro-
duced by Cruz in the seminal work [10]. This idea results in
the arrival curve model in network calculus for arrival mod-
eling. For server modeling, a similar idea was introduced in
[25], which uses a function to deterministically lower-bound
the cumulative service process. This idea has evolved into
the service curve model in network calculus. Also for server
modeling, there is another promising idea, which is to com-
pare the actual departure time with a virtual time function,
and use the difference together with the rate parameter,
which is the basis of the virtual time function, to model
the actual server. This idea was initially used in [30] to
define the Virtual Clock scheduling algorithm. In [12], the
idea was explored to define a server model, called guaran-
teed rate (GR) server. Evolved from these models, a lot of
results have been derived for deterministic network calculus
and excellent books are available [6][19].

The development of stochastic network calculus began
also in early 1990s. Early representative works include [18]
[29] [4] for arrival modeling, and [20] for server modeling. Es-
sentially, the arrival models and server models of stochastic
network calculus can be considered as probabilistic extension
or indeed generalization of their counterparts in determin-
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istic network calculus. However, due to challenges specific
to stochastic networks, it is recently that crucial network
calculus properties have been proved for stochastic network
calculus. Representative works include [3][9][21][13][23][16]
and [11]. A book summarizing the development and results
is available [15].

Since both network calculus and queueing theory are an-
alytical tools for studying queues, it is natural to ask if and
where they meet. Particularly, in order to relate network
calculus to queueing theory, we need to answer the follow-
ing questions. Are there some queueing principles under-
lying network calculus? What are they? Can the network
calculus queueing principles be explored to study classical
queueing problems, and how?

The intention of this paper is to take one step forward to-
wards providing answers / insights to the above questions.
In particular, through reviewing the fundamental concepts
and models of network calculus, we explore queueing prin-
ciples that underlie network calculus. In addition, we exem-
plify their use in tackling some classical queueing problems.
We show that for GI/GI/1, similar inequalities in the the-
ory of queues can be derived based on the network calculus
queueing principles. Also, we prove that the end-to-end per-
formance of a tandem network is independent of the order
of servers in the network even under some general settings.
Through these, we present a network calculus perspective
on queues and relate network calculus to queueing theory.

The rest is organized as follows. After introducing the
system model and Lindley recursion in the next section, we
present fundamental concepts and models of network calcu-
lus in Section 3. In Section 4, we discuss and expose two
network calculus queueing principles, based on which, anal-
ysis on single server queue and tandem network is performed
in Section 5 and Section 6 respectively. Finally, the paper is
summarized in Section 7.

2. PRELIMINARIES

2.1 System Model and Notation
In this paper, we consider single-server queue systems.

Each queue is assumed to be first-in-first-out (FIFO) with
infinite queue space. All queues are empty at time 0. For
such a system, we define notation in the following. A sum-
mary of the notation is provided in Table 1.

We use C(n) to denote the (n + 1)st customer to enter
the system, where n = 0, 1, . . . . Its arrival time to the sys-
tem is a(n) and departure time from the system is d(n).
The service time of C(n) is δ(n). The inter-arrival time be-
tween C(n) and C(n+1) is τ(n). The inter-arrival time be-
tween C(m) and C(n) is denoted by Γ(m, n) =

Pn−1
k=m

τ(k).
The cumulative service time of customers C(m) to C(n) is
∆(m, n) =

Pn

k=m
δ(k). By definition, the delay of C(n),

denoted by D(n), is:

D(n) = d(n) − a(n). (1)

In this paper, we shall also adopt another way to model
the system. We use A(t) to denote the amount of required
service from customers entering the system up to time t,
S(t) the amount of provided service, up to time t, by the
system to the arrivals, and A∗(t) the output in terms of
required service amount from the system up to time t. By
convention, we adopt A(0) = S(0) = A∗(0) = 0. In addition,
we let A(s, t) ≡ A(t) − A(s), S(s, t) ≡ S(t) − S(s), and

Table 1: Notation
C(n) The (n + 1)st customer, n = 0, 1, 2, . . .
a(n) Arrival time of C(n)
A(t) Cumulative arrival up to time t

A(s, t) Cumulative arrival in (s, t]:
A(s, t) = A(t) − A(s)

d(n) Departure time of C(n)
A∗(t) Cumulative departure up to time t
τ(n) Inter-arrival time between C(n) and C(n + 1)

Γ(m, n) Inter-arrival time between C(m) and C(n):

Γ(m, n) =
Pn−1

k=m
τ(k)

δ(n) Service time of C(n)
∆(m, n) Cumulative service time of C(m) to C(n):

∆(m, n) =
Pn

k=m
δ(k)

S(t) Amount of provided service up to time t
S(s, t) Cumulative amount of service in (s, t]:

S(s, t) = S(t) − S(s)
u(n) ≡ δ(n) − τ(n)
D(n) System delay (queue plus service) of C(n)
D(t) Delay at time t:

D(t) = inf{d ≥ 0 : A(t) ≤ A∗(t + d)}
D ≡ limn→∞ D(n): Expected system delay

W (n) Waiting time in queue of C(n)
W ≡ limn→∞ W (n)

B(t) Backlog in the system at time t:
B(t) = A(t) − A∗(t)

A∗(s, t) ≡ A∗(t) − A∗(s). Under this model, the delay at
time t is defined as

D(t) = inf{d ≥ 0 : A(t) ≤ A∗(t + d)} (2)

and the backlog at time t is defined as

B(t) = A(t) − A∗(t). (3)

2.2 Stochastic Ordering
For any two random variables X and Y , if P{X > x} ≤

P{Y > x} for all x, we say X is stochastically smaller than
Y [26], written as:

X ≤st Y.

The same notation applies when X and Y are random vec-
tors, and the following result holds (e.g. see (1.10.5) in [26]).

Lemma 1. Let X = {X1, . . . , XN} and Y = {Y1, . . . , YN}
be N -vectors of random variables. If X1, . . . , XN are mutu-
ally independent and so are Y1, . . . , YN , then X ≤st Y , or
in other words {X1, . . . , XN} ≤st {Y1, . . . , YN}, if and only
if Xi ≤st Yi, (i = 1, . . . , N).

Consider a function or mapping as follows:

Y = Φ(X1, . . . , XN ) (4)

where X1, . . . , XN are random variables, Φ is the function or
mapping and Y is the resulting random variable. For such a
mapping, the following result holds (e.g. see Theorem 2.2.4
in [26]).

Lemma 2. Let Y = f(X1, . . . , Xn, Xn+1, . . . , XN) and Y ′ =
Φ(X1, . . . , Xn, X ′

n+1, . . . , X
′
N). Suppose the random vari-

ables {Xn+1, . . . , XN} and {X ′
n+1, . . . , X

′
N} are independent

of {X1, . . . , Xn}. When Φ is nondecreasing in {xn+1, . . . , xN},



then, {Xn+1, . . . , XN} ≤st {X ′
n+1, . . . , X

′
N} implies Y ≤st

Y ′.

Lemma 1 and Lemma 2 will be used heavily in proving
Theorem 3 and Theorem 4 later in this paper.

2.3 Lindley Recursion
In the literature, Lindley recursion is (perhaps the most)

widely used queueing principle in analyzing single server
queue systems, which is:

W (n) = [W (n − 1) + u(n − 1)]+ (5)

where u(n−1) = δ(n−1)− τ(n−1). Note that equation (5)
holds without any requirement on the arrival process or the
service process, and is a principle of queueing. In this paper,
we shall call recursion (5) the “Lindley recursion queueing
principle”.

Based on the Lindley recursion queueing principle, King-
man proved the following inequality for GI/GI/1 [17]:

P{W ≥ x} ≤ e−θ0x (6)

where θ0 is found from

θ0 = sup{θ > 0 : Mδ(0)−τ(0)(θ) < 1}

and MX(θ) denotes the moment generating function of X :

MX(θ) ≡ E[eθX].

In this paper, we shall show that similar inequalities can
be proved based on network calculus queueing principles.

3. NETWORK CALCULUS BASICS
An essential idea of network calculus is to use min-plus

algebra and max-plus algebra to transform non-linear queue-
ing systems into linear systems that are analytically tractable.

In min-plus algebra, the algebra structure of interest is
(R ∪ {+∞},∧, +). Here, the “addition” operation is ∧ and
the “multiplication” operation is +, where ∧ denotes the
infimum or, when it exists, the minimum. Similarly, in
max-plus algebra, the algebra structure of interest is (R ∪
{+∞},∨, +). Here, the “addition” operation is ∨ and the
“multiplication” operation is +, where ∨ denotes the supre-
mum or, when it exists, the maximum. It can be verified that
both (R∪ {+∞},∧, +) and (R∪ {+∞},∨, +) have similar
properties as the conventional algebra such as the closure
property, associativity, commutativity, and distributivity.

As in the conventional algebra, min-plus algebra and max-
plus algebra also have their respective convolution operation.
The min-plus convolution, denoted by ⊗, and the max-plus
convolution, denoted by ⊗̄, are respectively defined as:

F ⊗ G(t) = inf
0≤τ≤t

{F (τ) + G(t − τ)}, (7)

and

a⊗̄b(n) = sup
0≤k≤n

{a(k) + b(n − k)}. (8)

It can be verified that (F ,∧,⊗) forms a complete dioid,
where F denotes the set of nonnegative nondecreasing single
variate functions. Similarly, it can be verified that (F ,∨, ⊗̄)
also forms a complete dioid.

To help exposition, we specifically list the associativity of
min-plus and max-plus convolutions, which is:

• (Associativity of min-plus convolution) ∀F, G, H ∈ F

(F ⊗ G) ⊗ H = F ⊗ (G ⊗ H)

• (Associativity of max-plus convolution) ∀a, b, c ∈ F

(a⊗̄b)⊗̄c = a⊗̄(b⊗̄c)

In addition, the commutativity property of convolution is:

• (Commutativity of min-plus convolution) ∀F, G ∈ F

F ⊗ G(t) = G ⊗ F (t)

• (Commutativity of max-plus convolution) ∀a, b ∈ F

a⊗̄b(n) = b⊗̄a(n).

3.1 Deterministic Network Calculus
Arrival curve and service curve are the most fundamen-

tal concepts and models for deterministic network calculus.
While an arrival curve defines a bound on the arrival, a ser-
vice curve defines a bound on the service. There are two
basic ways to define such a bound. One is to bound the
total amount of required service of the arrivals or the to-
tal amount of provided service in a time period; another is
to bound the inter-arrival or inter-service time. We shall
call the former space domain modeling, and the latter time
domain modeling.

Under space domain modeling, an input is said to have an
arrival curve α(t) ∈ F , if the following inequality holds for
all t ≥ 0:

A(t) ≤ A ⊗ α(t). (9)

A server is said to provide a service curve β(t) ∈ F , if there
holds for all t ≥ 0:

A∗(t) ≥ A ⊗ β(t). (10)

Essentially, the above arrive curve and service curve mod-
els are defined based on cumulative arrivals and cumulative
service. We shall call them in the rest of the paper the
min-plus arrival curve and the min-plus service curve mod-
els respectively. Based on the min-plus arrival curve and
service curve models, a lot of results have been derived and
excellent books summarizing them are available [19][6].

Among the others, one important result of network calcu-
lus, which is called the concatenation property, is that, for a
network of H tandem servers, if each server h provides to its
input a service curve βh(t), then the whole network provides
to the input a (network) service curve β as:

β(t) = β1 ⊗ · · · ⊗ βH(t). (11)

Under time domain modeling, there is a similar pair of
arrival and service curve models, which we shall call the
max-plus arrival curve and the max-plus service curve re-
spectively. They are defined as follows.

An input is said to have a max-plus arrival curve γ(n) ∈
F , if the following inequality holds for all n ≥ 0:

a(n) ≥ a⊗̄γ(n). (12)

A server is said to provide a max-plus service curve η(n) ∈
F , if there holds for all n ≥ 0:

d(n) ≤ a⊗̄η(n). (13)



Based on the time-domain max-plus arrival curve and ser-
vice curve models, similar results for network service guar-
antee analysis have been derived (e.g. see [12][7]). For the
network of tandem servers, if each server h provides to its in-
put a max-plus service curve ηh(n), then the whole network
provides to the input a (network) max-plus service curve η
as:

η(n) = η1⊗̄ · · · ⊗̄ηH(n). (14)

We notice that the space domain min-plus arrival curve
and service curve models and results based on them are
probably more widely known [6][19] than the time-domain
models and results. Nevertheless, we would like to stress
that they compliment each other. For example, the max-
plus service curve has special properties that have been ex-
plored in service guarantee analysis and provisioning. An
in-depth discussion is out of the scope of this paper and
readers may refer to [14] for some discussion.

Owing to the associativity and commutativity of min-plus
convolution and max-plus convolution, the network service
curve under both min-plus network calculus and max-plus
calculus for the tandem network case does not change no
matter how servers in the network are ordered. Since the
end-to-end performance guarantee for such a network is de-
cided by the network service curve and the input arrival
curve, we can conclude that changing the order of servers
in the tandem does not affect the end-to-end performance
guarantee analysis results.

3.2 Stochastic Network Calculus
Stochastic network calculus is the probabilistic extension

or indeed generalization of deterministic network calculus. It
provides a more natural link to queueing theory, since deter-
ministic network calculus has its basis on worst-case analysis
avoiding the stochastic nature of queueing processes.

For simplicity, we shall only introduce the direct gener-
alization of the deterministic arrival and server models re-
viewed in the previous subsection. Readers may refer to
[15][28] for various variations of these models.

Denote by F̄ the set of nonnegative nonincreasing func-
tions. The min-plus arrival curve and service curve models
can be generalized as:

An input is said to have a min-plus stochastic arrival curve
α(t) ∈ F with bounding function f ∈ F̄ , if for any x ≥ 0,
the following holds for all t ≥ 0:

P{A(t) − A ⊗ α(t) > x} ≤ f(x). (15)

A server is said to provide a (min-plus) stochastic service
curve β(t) ∈ F with bounding function g ∈ F̄ , if there holds
for all t ≥ 0:

P{A ⊗ β(t)− A∗(t) > x} ≤ g(x). (16)

For the stochastic case, the concatenation property has
also been proved. Particularly, for a network of H tandem
servers, if each server h provides to its input a stochastic
service curve βh(t) with bounding function gh ∈ F̄ , then the
whole network provides to the input a (network) stochastic
service curve β as [15]:

β(t) = β1 ⊗ β−θ
2 · · · ⊗ β

−(H−1)θ
H (t) (17)

with bounding function g as

g(x) = gθ1

1 ⊗ gθ2

2 · · · ⊗ g
θH

H (x) (18)

for any θ, θ1, . . . , θH > 0 where β
(h−1)θ
h (t) = [βh(t) − (h −

1)θt]+ and g
θh

h (x) = gh(x) + 1
θh

R ∞

x
gh(y)dy, h = 1, . . . , H .

Similarly, the max-plus arrival curve and service curve
models can be generalized as [28]:

An input is said to have a max-plus stochastic arrival
curve γ(n) ∈ F , with bounding function f ∈ F̄ , if for any
x ≥ 0, the following holds for all n ≥ 0:

P{a⊗̄γ(n) − a(n) > x} ≤ f(x). (19)

A server is said to provide a max-plus stochastic service
curve η(n) ∈ F , with bounding function g ∈ F̄ , if for any
δ ≥ 0, the following holds for all n ≥ 0:

P{d(n) − a⊗̄η(n) > x} ≤ g(x). (20)

For the stochastic case, similar concatenation property can
be proved. Particularly, for a network of H tandem servers,
if each server h provides to its input a stochastic service
curve η(n) with bounding function gh ∈ F̄ , then the whole
network provides to the input a (network) stochastic service
curve η as

η(n) = η1⊗̄ηθ
2 · · · ⊗ η

(H−1)θ
H (n) (21)

with bounding function g as

g(x) = gθ1

1 ⊗ gθ2

2 · · · ⊗ g
θH

H (x) (22)

for any θ, θ1, . . . , θH > 0 where η
(h−1)θ
h (n) = ηh(n) + (h −

1)θn and g
θh

h (x) = gh(x) + 1
θh

R ∞

x
gh(y)dy, h = 1, . . . , H .

Similar to the deterministic case, also owing to the as-
sociativity and commutativity of min-plus convolution and
max-plus convolution, and the arbitrariness of θ, θ1, . . . , θH

in (17) to (22), changing the order of servers in the tandem
typically does not affect the end-to-end stochastic service
curve1 or its bounding function, nor does the end-to-end
stochastic service guarantee analysis results.

4. NETWORK CALCULUS QUEUEING PRIN-

CIPLES
Having introduced the fundamental models of network

calculus, we expose in this section two basic queueing prin-
ciples that underlie these models.

4.1 Min-Plus Convolution Queueing Principle
Under discrete time, the Lindley recursion has another

form that is:

B(t) = [B(t − 1) + A(t − 1, t) − S(t − 1, t)]+ (23)

which, when applied iteratively, results in

B(t) = sup
0≤s≤t

[A(s, t) − S(s, t)] . (24)

Since there holds A∗(t) = A(t) − B(t) by definition, we
then have

A∗(t) = inf
0≤s≤t

[A(s) + S(s, t)] . (25)

With a bit abuse of notation, we define min-plus convolu-
tion of two bivariate functions F and G as:

F ⊗ G(s, t) = inf
s≤τ≤t

{F (s, τ) + G(τ, t)}. (26)

1Strictly speaking, there can be some effect on the resultant
network service curve after changing the order of servers.



Then, equation (25) can be re-written as:

A∗(0, t) = A ⊗ S(0, t). (27)

Equations (27) and (10) resemble each other. Compar-
ing (27) and (10), it is clear that if for any 0 ≤ s ≤ t, the
service S(s, t) in this period, which is random in nature, is
lower-bounded by a function β(t− s), then the system has a
service curve β. In other words, equation (27) can be con-
sidered as the queueing basis of the various min-plus service
curve models and consequently the space-domain min-plus
network calculus.

It is worth highlighting that equation (25) and equiva-
lently (27) hold in general as the Lindley recursion queueing
principle does. We shall hence call equation (25) and (27)
the“min-plus convolution queueing principle”. It can be ver-
ified that (25) is linear under min-plus algebra [15].

4.2 Max-Plus Convolution Queueing Principle
Like the Lindley recursion queueing principle and the min-

plus convolution queueing principle, there is another recur-
sion that holds in general in queueing systems, which corre-
sponds to the time-domain service curve models.

Consider the departure time of customer C(n). If this
customer arrives to the system after the previous customer
C(n−1) having finished the service, then the departure time
of C(n) is simply a(n) + δ(n). However, if customer C(n)
arrives seeing customer C(n − 1) still in the system, then
its departure time will be d(n − 1) + δ(n). Combining both
cases, we have the following:

d(n) = max{a(n), d(n − 1)} + δ(n). (28)

Applying (28) iteratively to its right hand side results in:

d(n) = max
0≤m≤n

{a(m) + ∆(m, n)} (29)

Again with a bit abuse of notation, we define max-plus
convolution of two bivariate functions a and b as

a⊗̄b(m, n) = sup
m≤k≤n

{a(m, k) + b(k, n)}. (30)

Then, equation (28) can be written as

d(n) = a⊗̄∆(0, n), (31)

where we adopt a(0, k) ≡ a(k).
Equations (31) and (13) also resemble each other. Com-

paring them, it is clear that if for the cumulative service
time ∆(m, n), which is random in nature, is upper-bounded
by a function η(n−m), then the system has a max-plus ser-
vice curve η. Implicitly, equation (31) provides the queue-
ing basis and lays the foundation for max-plus service curve
models and consequently the time domain max-plus network
calculus.

As it is clear in the discussion, (28) holds in general. We
shall hence call recursion (28) and equation (31) the “max-
plus convolution queueing principle”.

It is noticed that the queueing theory literature has a lot
of results based on the Lindley queueing principle and so
has the network calculus literature based on the min-plus
convolution principle. However, there are relatively fewer
results based on the max-plus convolution principle in the
literature. Nevertheless, the max-plus convolution principle
provides another perspective on viewing queueing problems.
In this paper, we shall also explore this new perspective and
elaborate its use.

4.3 Discussion
While the three discussed queueing principles do not re-

semble each other in expression, they are indeed closely re-
lated.

In the introduction to the min-plus convolution queueing
principle, we have applied the Lindley recursion principle. In
addition, the following discussion shows that the max-plus
convolution queueing principle is also related to the Lindley
recursion principle.

It is trivial that the system delay of customer C(n) is
D(n) = d(n)− a(n), applying which to the max-plus convo-
lution principle or equation (29) results in:

D(n) = max
1≤m≤n

{∆(m, n) − Γ(m, n)}

= max
0≤m≤n

"

n
X

k=m

δ(k) −

n−1
X

k=m

τ(k)

#

. (32)

Since the waiting time in queue of C(n) is W (n) = D(n) −
δ(n), we then have

W (n) = max
0≤m≤n

"

n−1
X

k=m

δ(k) −

n−1
X

k=m

τ(k)

#

. (33)

It can be verified that iteratively applying (5) to its right
hand side results in the same expression as the right hand
side of (33). In other words, the Lindley principle can be
derived from the max-plus queueing convolution principle
and vice versa, which further provides the link between the
two network calculus queueing principles.

Nevertheless, we stress that the two network calculus queue-
ing principles have special properties that may not be found
from the Lindley principle. Particularly, for the network
case, it is difficult to find an extension of the Lindley re-
cursion. On the other hand, as to be introduced in Sec. 6,
both the min-plus convolution queueing principle and the
max-plus convolution queueing principle can be easily ex-
tended to the network case, which can be explored to study
queueing problems that could otherwise be difficult with the
Lindley principle.

5. SINGLE SERVER QUEUES
In this section, we demonstrate how to make use of the

min-plus and max-plus queueing principles to analyze single
server queues. The focus is on establishing bounds on the
tail of delay distribution in GI/GI/1.

In GI/GI/1, the arrivals are independent and identically
distributed (i.i.d.), so are the service times. Then, the Lind-
ley recursion implies that the waiting times of customers
form a Markov chain. In addition, there holds [26]:

W (n) ≤st W (n + 1). (34)

This monotonicity property tells that the equilibrium wait-
ing time distribution is an upper bound.

5.1 Min-Plus Queueing Principle Approach
For ease of exposition in this subsection, we assume dis-

crete time with unit discretization step 2.
The delay definition implies (e.g. see [15]): for any x ≥ 0,

{D(t) > x} ⊂ {A(t) > A∗(t + x)}.

2The continuous time case is approximated when the time
length of the unit approaches 0.



Based on the min-plus queueing principle, we get

A(t) − A∗(t + x) = sup
0≤s≤t+x

{A(t) − A(s) − S(s, t + x)},

and then

P{A(t) > A∗(t + x)}

= P{ sup
0≤s≤t−1

{A(s, t) − S(s, t + x)} > 0}

= P{ sup
0≤s≤t−1

eA(s,t)−S(s,t+x) > 1}. (35)

Note that the assumption of i.i.d. arrivals and i.i.d. ser-
vice times implies A(t) has independent and stationary in-
crements and so has S(t). In addition, we assume there
exists some θ > 0 making MA(1)−S(1)(θ) < 1. Let θ0 =
sup{θ : MA(1)−S(1)(θ) < 1}. Based on these, in the follow-
ing, we present two bounds on delay, which have the same
form as (6).

Applying first Boole’s inequality to the right hand side of
(35) and then the Chernoff bound, we obtain:

P{ sup
0≤s≤t−1

eA(s,t)−S(s,t+x) > 1}

≤

t−1
X

s=0

P{eA(s,t)−S(s,t+x) > 1}

≤ e−θ

t−1
X

s=0

E[eθ(A(s,t)−S(s,t+x))]

≤
MA(1)−S(1)(θ)

1 − MA(1)−S(1)(θ)
e−θ

ˆ

MS(1)(−θ)
˜x

(36)

where and in the rest of the paper, we adopt MX(−θ) ≡
E[e−θx] for random variable X . So, we have the following
bound on delay:

P{D(t) > x}

≤ inf
0<θ≤θ0



MA(1)−S(1)(θ)

1 − MA(1)−S(1)(θ)
e−θ

ˆ

MS(1)(−θ)
˜x

ff

.(37)

For the other bound, it is based on the property of mar-
tingale. Note that the right hand side of (35) can be written
as

P{ sup
0≤s≤t−1

eA(s,t)−S(s,t+x) > 1}

= P{ sup
1≤u≤t

eA(t−u,t)−S(t−u,t+x) > 1}. (38)

Fixing t, consider the random process as

V (u) ≡ eθ[A(t−u,t)−S(t−u,t+x)]

with 1 ≤ u ≤ t and θ > 0, which is associated with σ−algebra
Mu. Note that A(t − u − 1, t − u) − S(t − u − 1, t − u) is
independent of A(t − v, t) − S(t − v, t + x), v = 1, . . . , u. If
MA(1)−S(1)(θ) ≤ 1, we then have

E[V (u + 1)|Mu]

= E[V (u)eθ[A(t−u−1,t−u)−S(t−u−1,t−u)] |Mu]

= V (u)E[eθ[A(t−u−1,t−u)−S(t−u−1,t−u)] ]

= V (u)E[eθ[A(1)−S(1)]] ≤ V (u) (39)

which indicates that V (u), (u = 1, · · · , t) is a supermartin-
gale. Then, based on Doob’s inequality for martingale, we

obtain the following delay bound:

P{D(t) > x}

≤ P{A(t) > A∗(t + x)} = P{ sup
1≤u≤t

V (u) > 1}

≤ E[V (1)] = E[eθ[A(t−1,t)−S(t−1,t+x)]]

= MA(1)−S(1)(θ)
ˆ

MS(1)(−θ)
˜x

. (40)

So far, we have proved two bounds for D(t). Both have
similar form as the Kingman’s bound. The bound based
on supermartingale is generally tighter than the Chernoff
bound, since θ is normally small. In addition, for any t, there
is a(n − 1) ≤ t < a(n) where n = inf{m : A(a(m)) > A(t)},
based on which, the following relationship can be verified:

[d(n − 1) − a(n)]+ < D(t) ≤ d(n − 1) − a(n − 1). (41)

Note that the first term in above is indeed the waiting time
of C(n), i.e. [d(n − 1) − a(n)]+ = W (n). We have hence
derived bounds for waiting time in queue and proved the
following theorem.

Theorem 1. Consider a GI/GI/1 queue. We assume
MA(1)−S(1)(θ) exists for small θ > 0. Let θ0 = sup{θ :
MA(1)−S(1)(θ) ≤ 1}. Then, we have the following bound for
waiting time in queue:

P{W > x} ≤ inf
0<θ≤θ0

˘

MA(1)−S(1)(θ)
ˆ

MS(1)(−θ)
˜x¯

. (42)

Remark: For the GI/GI/1 queue, we shall interpret A(t)
as the number of customers that have arrived up to time t.
In other words, the unit of required service is the customer.
Note that A(t) may be interpreted differently when the unit
of required service is different. Particularly, in network cal-
culus for communication networks, the unit is typically bit
and A(t) denotes the total number of bits in the arrived
packets up to time t 3.

5.2 Max-Plus Queueing Principle Approach
The focus of this subsection is also on deriving bounds on

waiting time in queue, but based on the max-plus queueing
principle. Since in GI/GI/1, the service time of a customer
is independent of its waiting time in queue, with the bounds
on queueing delay, we can further derives the corresponding
bounds on system delay.

Recall the following from (33):

W (n) = max
0≤m≤n

"

n−1
X

k=m

δ(k) −

n−1
X

k=m

τ(k)

#

(43)

where by convention,
Pn

k=m
x(k) = 0 if m > n.

Following a similar approach and based on Chernoff bound,
we obtain for any x ≥ 0 the following inequality for waiting

3A packet is said to have arrived when and only when its
last bit has arrived.



time in queue:

P{W (n) > x}

= P{ max
0≤m≤n−1

n−1
X

k=m

[δ(k) − τ(k)] > x}

≤ e−θx

n−1
X

m=0

E[eθ
Pn−1

k=m
[δ(k)−τ(k)]]

= e−θx

n−1
X

m=0

E[eθ(δ(0)−τ(0))]n−m

and then

P{W > x} ≤
Mδ(0)−τ(0)(θ)

1 − Mδ(0)−τ(0)(θ)
e−θx (44)

for any θ > 0, under the condition Mδ(0)−τ(0)(θ) < 1.
Also similarly, a refined bound based on martingale can

be derived. Particularly, fixing n, we define a stochastic

process V (l) = eθ
Pn−1

k=n−1−l
[δ(k)−τ(k)] with θ > 0 and 0 ≤ l <

n−1. Note that eθ[δ(n−1−(l+1))−τ(n−1−(l+1))] is independent
of all eθ[δ(n−1−v)−τ(n−1−v)] for all v = 0, 1, . . . , l. Let Ml

denote the σ-algebra generated from {V (l)}. We then have

if E[eθ(δ(0)−τ(0))] ≤ 1:

E[V (l + 1)|Ml] = V (l)E[eθ[δ(n−1−(l+1))−τ(n−1−(l+1))] ]

= V (l)E[eθ(δ(0)−τ(0))]

≤ V (l) (45)

This indicates that {V (l)}, l = 0, 1, n− 1, is a supermartin-
gale. In this way, with Doob’s inequality for martingale, we
get from (43):

P{W (n) > x}

= P{eθ max0≤m≤n

Pn−1

k=m
[s(k)−τ(k+1)] > eθx}

= P{ max
0≤l<n−1

v(l) > eθx}

≤ E[eθv(0)]e−θx = E[eθ(δ(0)−τ(0))]e−θx. (46)

Again, both bounds (44) and (46) have similar form as the
Kingman’s bound. The bound in (46) is obviously tighter
than that of (44), meaning the supermartingale approach
outperforms the Chernoff bound. The following theorem
follows directly from (46):

Theorem 2. Consider a GI/GI/1 queue. Assume that
Mδ(0)−τ(0)(θ) exists for small θ > 0. Let θ0 = sup{θ :
Mδ(0)−τ(0)(θ) ≤ 1}. Then, we have the following bound for
waiting time in queue:

P{W > x} ≤ inf
0<θ≤θ0

Mδ(0)−τ(0)(θ)e
−θx. (47)

5.3 Discussion
The martingale bounds are generally better than their cor-

responding Chernoff bounds. However, a direct comparison
of the two martingale bounds seems to be difficult. In the
following, we shall use M/M/1 as an example, for which
both martingale bounds are found and compared.

Consider an M/M/1 queue with arrival rate parameter λ
and service rate parameter µ, and λ < µ. It is known that
both A(1) and S(1) have Poisson distribution respectively
with parameters λ and µ. Then, the right hand side of (40)

becomes eλ(eθ−1)e(x+1)µ(e−θ−1) that, letting θ = ln µ

λ
, re-

sults in P{W > x} ≤ e−(µ−λ)x. In addition, for the M/M/1
queue, both τ(0) and δ(0) are exponentially distributed re-
spectively with rates λ and µ. Then, the right hand side of
(46) becomes µ

µ−θ
λ

λ+θ
e−θx where, by letting θ = µ − λ, we

also get P{W > x} ≤ e−(µ−λ)x.
The M/M/1 example shows that the martingale bound

obtained from the min-plus convolution queueing principle
is as tight as the martingale bound from the max-plus con-
volution queueing principle. It is worth highlighting that
e−(µ−λ)x is also the exact distribution of P{D > x}, im-
plying that there is only one customer service time differ-
ence between the martingale bounds and the exact solution.
Indeed, for M/M/1, P{W > x} = ρe−(µ−λ)x, comparing
which with the bound above, one can see that when the
utilization approaches 1, the bound approaches the exact
result.

Interestingly, the right hand side of (42) may be treated
as a bound on the system delay, i.e.

P{D > x} ≤ inf
0<θ≤θ0

˘

MA(1)−S(1)(θ)
ˆ

MS(1)(−θ)
˜x¯

. (48)

This is due to that (40) holds for any time t. Since the
discrete time system approximates the continuous time sys-
tem by letting the time length of discretization unit ap-
proach 0, we can take t = a(n) for any C(n) and have
D(t) = d(n) − a(n) = D(n). Then, (40) becomes a bound
on D(n) and hence the bound on P{D > x} is obtained.
For the M/M/1 example above, the bound equals the ex-
act result. Due to the similarity in deriving (40) and (46),
one might conjecture that the right hand side of (47) could
also be an upper bound on P{D > x}, but an insightful
explanation for this is open to be found.

5.4 Related Work
In [24], an attempt was made to link network calculus

with queueing theory. Particularly, the authors studied the
M/M/1 case with a deterministic shaper enforced on the
input and a deterministic service curve element enforced on
the service. The study was performed through simulation
and the queue length distribution was compared with the
original M/M/1 case. Analytical study of the system was
not touched. Essentially, the system studied in [24] can be
considered as a special case of the systems studied in [22]
where some analytical bounds can be found. However, the
analysis in [22] and in a considerable part of the network
calculus literature mainly relies on various arrival curve and
service curve models, with little consideration or use of the
underlying queueing principles.

Chernoff bound has been widely applied in (stochastic)
network calculus (e.g. see [6] [1] [11] [15]). Expressing net-
work calculus properties in the form of moment generat-
ing function was initially made in [11] where a Chernoff de-
lay bound for the single node case is implied. In addition,
the analysis in Section 5.1 resembles much the single node
case analysis in [8], even though the final expression of the
bounds and the condition for them have small difference in
[11]. Nevertheless, there is a conceptual difference in de-
riving these bounds. In [8], the approach heavily relies on
concepts and results of stochastic network calculus, while in
Section 5.1, equipped with the min-plus convolution queue-
ing principle, we have adopted a classical approach that has
long been used in queueing theory (as early as [17]).



Due to the conceptual difference, when it comes to the
application and calculation of the obtained bounds, the idea
in [8] is to use a compound process to represent the arrival,
allowing to represent the server using a fluid view with con-
stant service rate. Specifically, the compound arrival process

is A(t) =
PN(t)

n=0 δ(n) where C(N(t)) is the last customer
that has arrived by time t. For the M/M/1 case, δ(n) is
exponentially distributed while N(t) has a Poisson distribu-
tion. However, the analysis in Section 5.1 is directly on the
arrival process and the service process. As is clear in the
M/M/1 example, A(t) in this paper is interpreted as the
number of arrivals by time t. Later in the tandem network
case, an advantage of such way of interpreting A(t) will be
discussed.

Using martingale approach to obtain improved bounds for
queues can be traced back to [17]. The martingale delay
bound in Theorem 2 is similar to the one in [27]. However,
in [17] [27] and other related queueing theory literature, the
obtained martingale bounds are typically based on the Lind-
ley queueing principle, while our analysis has the root on the
two network calculus queueing principles. In [5], the martin-
gale approach has also been used to analyze linear systems
under max-plus algebra, but the expression is in a matrix
form.

6. TANDEM SERVERS
Having introduced the application of min-plus convolution

and max-plus convolution queueing principles to GI/GI/1
analysis, we demonstrate in this section their application
to network analysis. Particularly, we consider a network of
tandem servers, each with a FIFO queue. In this system,
customers first enter the first queue; after leaving the hth
server, they immediately enter the (h + 1)st server, where
h = 1, 2, . . . , H and H denotes the total number of servers.
We shall still adopt the notation introduced in Table 1 but
with subscript h to represent the hth server, e.g. ah(n)
denotes the arrival time of customer C(n) to server h.

For the tandem system, we consider two general scenarios:
Scenario I and Scenario II. The focus will be on the effect
of changing the order of servers. We start with introducing
queueing principles implied in the network.

6.1 Queueing Principles
For a tandem network, there always holds dh(n) = ah+1(n),

h = 1, 2, . . . , H − 1, by definition. Then, by iteratively ap-
plying (31) to its right hand side, we get

dH(n) = ((a1⊗̄S1)⊗̄ · · · )⊗̄SH (0, n). (49)

One may have noticed the slight difference between the right
hand side of (49) and the right hand side of (14). This is
due to that we have not proved the associativity of ⊗̄ for the
bivariate case. Before the proof, let us define the function
family F̂ :

F̂ = {F̂(·, ·) : F (s, t) ≥ 0, F (s, t) ≤ F (s, τ)},∀0 ≤ s ≤ t ≤ τ.

We now consider bivariate functions F,G, H ∈ F̂ . We
have the following associativity of max-plus convolution of

bivariate functions: For any 0 ≤ m ≤ n

(F ⊗̄G)⊗̄H(m, n)

= sup
m≤l≤n

sup
m≤k≤l

{F (m, k) + G(k, l) + H(l, n)}

= sup
m≤k≤n

sup
k≤l≤n

{F (m, k) + G(k, l) + H(l, n)}

= F ⊗̄(G⊗̄H)(m, n). (50)

Similarly, the following associativity can be verified for min-
plus convolution of bivariate functions: For any 0 ≤ s ≤ t,

(F ⊗ G) ⊗ H(s, t) = F ⊗ (G ⊗ H)(s, t). (51)

With (50), we can re-write (49) as:

dH(n) = a1⊗̄(S1⊗̄ · · · ⊗̄SH )(0, n). (52)

which we call the max-plus convolution queueing principle
for the tandem network.

Also for the tandem network, we can extend (27) and
based on (51), get the min-plus convolution queueing prin-
ciple as

A∗
H(t) = A1 ⊗ (S1 ⊗ · · · ⊗ SH )(0, t). (53)

if for all h = 1, . . . , H −1, the following condition is satisfied

A∗
h(t) = Ah+1(t). (54)

It is worth highlighting that, depending on the definition
of A(t), condition (54) does not necessarily hold in tandem
networks as to be discussed later in Section 6.3.

6.2 Scenario I
Under Scenario I, the amount of service required by a

customer C(n) does not change when the customer traverses
the network. Let us denote by l(n) such service amount.
The service rate of each server h, in terms of the amount
of service the server can provide per unit time, is assumed
to be constant and denoted by rh. Accordingly, we have

δh(n) = l(n)
rh

, i.e. the service time of customer C(n) at

server h. Scenario I is typical in modern packet-switched
communication networks, where C(n) represents a packet
level customer, i.e. a packet, and l(n) is simply the length
(in bits) of the packet, which does not change when the
packet traverses the network.

Pitfall 1. Scenario I can sometimes lead to a pitfall.
According to the setting, each server has a constant service
rate rh. One might then think each server would provide
a service curve βh(t) = rh · t, and the network provide a
network service curve βH(t) = (minh rh)t according to (11).
In the discrete time case, one could instead use βh(t) = rh ·
(t − 1)+ and βH(t) = (minh rh)(t − H + 1)+ by considering
discretization effect and ignoring the packetizer at the last
server. One could further conclude results from (11) and
the single node analysis by treating the whole network as a
single server with service curve βH . One such conclusion
could be that changing the order of servers in the network
would not affect the end-to-end performance owing to the
commutativity of min-plus convolution.

To show the above is indeed a pitfall, let us consider a
simple example. In this example, we consider a network of
two servers. Suppose the first server has service rate r1 = 3
and the second server has service rate r2 = 2. In addition,



there are only two customers arriving to the network back-
to-back. For the first customer C(0), l(0) = 4; and for the
second customer, l(1) = 2. Without loss of generality, we
assume the arrival times of these two customers are a(0) =
a(1) = 0. Under this setting, one can verify that the two
customers leave the network respectively at d2(0) = 10

3 and

d2(1) = 13
3 . However, according to the discussion above, the

network would have a service curve βH(t) = 2(t − 1)+ and
hence a bound 4 on maximum delay of any packet, which
is smaller than 13

3 and hence unfortunately wrong. Now,
let us change the order of the two servers. In the resulting
network, the first server has service rate 2 and the second
server has service rate 3. Similarly we consider two customer
arrivals with the same parameters. Under this setting, it can
be verified that d′

2(0) = 10
3 and d′

2(1) = 4, where the bound
4 coincidentally holds.

The above example implies that either βh(t) = rh · t or
βh(t) = rh · (t− 1)+ is not a service curve. A correct service
curve of a constant rate server is not only determined by
the rate parameter but also dependent on the (maximum)
required service by a customer, e.g. packet length when a
packet-switched network is concerned. Note that the pitfall
also applies when there are crossing customers at servers in
the network.

In addition, changing the order of servers in the tandem
network can cause the end-to-end delay changed as well.
The underlying reason is implied in (53) where the min-
plus convolution of bivariate functions is not commutative

as oppose to the commutativity of min-plus convolution of
single variate functions e.g. in (11).

Nevertheless, are there cases where changing the order of
servers does not change the end-to-end delay? The answer
is positive and in the following, we show two such cases.

One case is that the service time of a customer remains
the same at all servers, i.e., δ1(k) = · · · = δH(k) = δ(k)
for any customer C(k) even though δ(k) may itself be ran-
dom. An example is that the network is packet-switched.
The packet interarrival times are i.i.d., following some gen-
eral distribution. The packet lengths are also i.i.d. and
follow some general distribution. At the first node, it is
GI/GI/1. All nodes have the same constant service rate,
i.e. r1 = · · · = rH . For this case, it is trivial that changing
the order of servers does not change the end-to-end delay,
since these servers behave the same and may be numbered
arbitrarily. Formal proof can also be formulated e.g. by
applying Lemma 1 and Lemma 2.

Another case is that all customers have the same required
service at any server, each server is a constant rate server,
and the service rates of these servers may be different. Again
we can use the packet-switched network as an example. At
the input, the packet interarrival times are i.i.d., following
some general distribution. However, all packets have the
same length l. In addition, all servers are constant rate
servers but their service rates rh, h = 1, · · · , H , may be
different. For this case, the following exciting result holds.
Its proof is included in Appendix.

Theorem 3. Consider a network of tandem FIFO servers.
Customers enter the network from the first server. At the in-
put, customer interarrival times are i.i.d. and all customers
have the same amount of required service. Each server is a
constant rate server. Then, changing the order of servers in
the network does not affect the end-to-end delay and network

backlog performance.

6.3 Scenario II
Under Scenario II, the service times of customers at each

server are i.i.d., and are independent of customer service
times at other servers. For this scenario, it is worth high-
lighting that while the max-plus queueing principle extends
naturally to the network case, special care is needed when
one tries to apply the min-plus queueing principle:

Recall that in network calculus, Ah(t) typically denotes
the traffic amount (in bits) of packets that have arrived to
node h by time t. Suppose the nth packet is the latest packet
arrival to node h by time t. Then, we can write Ah(t) as
follows:

Ah(t) =

n
X

m=1

l(m) (55)

where l(m) denotes the length of the mth packet.

Pitfall 2. For Scenario II, if one were to adopt (55) as
the way of interpreting Ah(t), i.e. Ah(t) =

Pn

m=1 lh(m)
where lh(m) denotes the required service amount by cus-
tomer m at server h, and still rely the analysis on the tan-
dem network min-plus convolution queueing principle, there
would be a problem. This is due to that we now do not have
lh−1(m) = lh(m) nor A∗

h−1(t) = Ah(t), and consequently
will lose the promising concatenation property.

A simple fix to the above problem is to interpret Ah(t) as
the number of arrivals up to time t. Under this new way of
interpreting, A∗

h−1(t) = Ah(t) holds for Scenario II, and so
does the concatenation property.

Scenario II has been widely studied in the context of
queueing theory. For example, when the arrivals follow a
Poisson distribution and the service times at each server are
exponentially distributed, the tandem network becomes an
open Jackson network. For such a network, the queueing
theory literature tells that the network acts as if each node
could be viewed as an independent M/M/1 queue. An im-
mediate implication is that changing the order of servers in
the tandem does not affect the end-to-end network perfor-
mance.

Figure 1 presents simulation results of a network of 3
nodes in tandem. Particularly, it displays the complemen-
tary cumulative distribution function (CCDF) of end-to-end
delay under different arrival and service patterns. The fol-
lowing arrival/service time combinations are studied: (a)
M/M/1: Poisson arrival at the input, and exponentially dis-
tributed service time at each node; (b)M/Uniform/1: Pois-
son arrival at the input and the service time has uniform
distribution respectively with the range in [0.1, 1.9], [0.2, 2],
[0.3, 2.1] for the nodes; (c) Erlang/Uniform/1: At the input,
the customer interarrival time follows Erlang-3 distribution
and the service time is as in (b); (d) Hyper-exponential /Uni-
form /1: At the input, the customer interarrival time fol-
lows hyper-exponential distribution with order 2 and branch
probability {0.3, 0.7} and the mean on each branch {2.5,
0.84}, and the service time distribution is as in (b).

In addition, we consider two cases where the order of nodes
in the network is changed. One is denoted by “incre” on the
figure, where the load of the 3 servers is (0.75, 0.825, 0.9).
Another is denoted by “decre” in which case, the order of
the 3 nodes is reversed and correspondingly the load of the
3 servers becomes (0.9, 0.825, 0.75).
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Figure 1: Tandem network

Figure 1 shows that there is an exact match between “in-
cre” and“decre”under the M/M/1 combination as expected.
Interestingly, under all other combinations, such a match is
also found. This motivated us to study if this phenomenon
exists for the general setting. The answer is positive and the
conclusion is given in the following theorem.

Theorem 4. Consider a network of tandem FIFO servers.
Customers enter the network from the first server. Customer
interarrival times are i.i.d. At each server, the service times
are also i.i.d. and are independent of services times at all
other servers. Then, changing the order of servers in the
network does not affect the end-to-end delay and network
backlog performance.

The following result is critical in proving Theorem 4. The
detailed proof of Theorem 4 is in included in Appendix.

Lemma 3. Consider two consecutive nodes in the tan-
dem. There holds:

∆h⊗̄∆h+1(m, n) =st ∆h+1⊗̄∆h(m, n). (56)

6.4 Discussion
The implication of the investigation in this section is two-

fold. One is that much care is needed when applying network
calculus and some existing results need re-examination. Par-
ticularly, Pitfall 1 has found easy success in both determin-
istic and stochastic network calculus. In stochastic network
calculus, the situation seems to be even worse. For exam-
ple, in Ch. 6.2.6 of [15] co-authored by this author and in
some representative works of stochastic network calculus,
the (stochastic) service curve of a constant rate link is often
simply represented as R · (t− s) where R denotes the rate of
the link. If there is cross traffic, a widely used leftover service
curve in them is [R · (t − s) − Ac(s, t)]

+, where Ac(s, t) de-
notes the amount of cross traffic in (s, t]. In both cases, the
packetization effect on the (stochastic) service curve to the
considered input is not well taken into account. It is worth
highlighting that this does not affect single node analysis re-
sults due to a property of packetizer, i.e. the packetization
effect can be ignored for the last node on the path of the
considered input [6] [19]. However, for network case anal-
ysis, the packetization effect on the considered input must

be taken into account in choosing proper stochastic service
curves.

Another implication is that Theorems 3 and 4 can be made
use of to analyze end-to-end network performance of the cor-
responding network. The following results follow from The-
orems 3. Similar analysis can be made based on Theorem 4
and the idea in its proof, which is left as our future work.

Corollary 1. Consider the same tandem network as The-
orem 3. The end-to-end queueing delay and backlog in queue
performance of the network are the same as of a single server
queue that has the (stochastically) same input and has the
service rate equal to the lowest server service rate in the tan-
dem network.

For the considered network in Theorem 3, it can be verified
that after arranging servers in the increasing service rate
order in the tandem, there is no waiting time or waiting
customer in queue at nodes h′ = 2, . . . , H . In other words,
in the ordered tandem, queueing delay and backlog are only
seen at the first node h′ = 1, and hence Corollary 1 follows.

Further with Corollary 1 and the single server queue anal-
ysis in Section 5, we conclude the following delay bound for
the tandem network, which is based on the max-plus mar-
tingale bound. Similar bound can also be obtained from the
min-plus martingale bound in Section 5.

Corollary 2. Consider the same tandem network as The-
orem 3. Let δ = l

minh rh
, where l denotes the required service

amount of each customer and rh the average service rate of
server h, h = 1, . . . , H. Assume that Mδ−τ(0)(θ) exists for
small θ > 0 and let θ0 = sup{θ : Mδ−τ(0)(θ) ≤ 1}. Then,
the network queueing delay Wnet satisfies:

P{Wnet > x} ≤ inf
0<θ≤θ0

Mδ−τ(0)(θ)e
−θx. (57)

7. SUMMARY
We introduced two fundamental queueing principles that

underlie network calculus, which are the min-plus convolu-
tion queueing principle and the max-plus convolution queue-
ing principle. They compliment the well-known Lindley re-
cursion queueing principle. Based on the two network cal-
culus queueing principles, we derived delay bounds for the
single node case, which are consistent with similar bounds
derived based on the Lindley recursion queueing principle.
In addition, we extended the network calculus queueing prin-
ciples to the tandem network case, and proved that under
some general conditions, changing the server order in a tan-
dem does not affect the end-to-end network performance.
This result is fundamental and may be further explored to
derive performance bounds, e.g. delay bound and backlog
bound, using similar approach as used for the single node
case. It should be stressed that network calculus, partic-
ularly stochastic network calculus, has results that can be
readily explored to find inequalities for classical queueing
problems. However, for this paper, we have intentionally
chosen to focus on deriving results directly from the network
calculus queueing principles. Essentially, we demonstrated
that the network calculus queueing principles allow to study
classical queueing problems and derive results, which might
otherwise be difficult to obtain from only using the Lindley
recursion queueing principle, from a different perspective.
This not only provides new insights on queue analysis but
also link network calculus to queueing theory.
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APPENDIX

A. PROOF OF THEOREM 3
We shall only prove the delay part. The backlog part

follows similarly.
The essential idea is to compare the end-to-end delay per-

formance of two tandem networks. In one network denoted
as NET1, servers are ordered in the sequence as S1, S2, . . . , SH .
In the other network denoted as NET2, the order of servers is
changed and we mark the new order as S′

1, S
′
2, . . . , S

′
H where

the set of servers {S′
1, . . . , S

′
H} are the same as {S1, . . . , SH}.

All servers are constant rate server. We denote by rh and
r′h the service rate of Sh and S′

h respectively. Denote by
ah(n) the arrival time of customer C(n) to the hth server in
the first network, and by a′

h(n) the arrival time of customer
C′(n) to the hth server in the second network . All customers
have the same amount of required service in both networks,
denoted by L. Correspondingly, the customer service times
at any server are constant, and we shall denote by δh and δ′h
the customer service time at Sh and S′

h respectively. The in-
puts to both networks have the same i.i.d. interarrival times
denoted by {τ(0), τ(1), . . . } and {τ ′(0), τ ′(1), . . . }. By as-
sumption, we have τ(n) =st τ ′(n) for all n = 0, 1, 2, . . . .

Consider NET1. The following commutativity holds:

∆h⊗̄∆h+1(m,n)

= sup
m≤l≤n

[(l − m + 1)δh + (n − l + 1)δh+1]

= sup
m≤k≤n

[(k − m + 1)δh+1 + (n − k + 1)δh]

= ∆h+1⊗̄∆h(m,n) (58)

which implies that we can arbitrarily change the order Sh,
h = 1, . . . , H , in the max-plus convolution principle for tan-
dem networks. Let us change the order of servers in NET1
such that the resulting order is the same as the correspond-
ing servers in NET2 and get:

dH(n) = a1⊗̄(∆′
1⊗̄ · · · ⊗̄∆′

H)(0, n), (59)

Let us define the following delay function

Dn(X1, . . . , Xn)

= sup
0≤m≤n

[

n−1
X

k=m

Xk + ∆′
1⊗̄ · · · ⊗̄∆′

H(m,n)]. (60)

It can be easily verified that the function is nondecreasing
in {x1, . . . , xn}.

Then, for end-to-end delay in NET1, we have

D(n) = dH(n) − a1(n)

= sup
0≤m≤n

[a1(m) − a1(n) + ∆′
1⊗̄ · · · ⊗̄∆′

H(m, n)]

= sup
0≤m≤n

[−

n−1
X

k=m

τ(k) + ∆′
1⊗̄ · · · ⊗̄∆′

H(m, n)].

= Dn(−τ(0), . . . ,−τ(n − 1)) (61)

For delay in NET2, we have:

D′(n) = Dn(−τ ′(0), . . . ,−τ ′(n − 1)). (62)

Since both τ(k) and τ ′(k), k = 0, 1, . . . , n, are i.i.d. ran-
dom variables and −τk =st −τ ′

k, we then have from Lemma 1:

{−τ ′(0), . . . ,−τ ′(n − 1)} =st {−τ(0), . . . ,−τ(n − 1)}.

Further from Lemma 2, we can conclude:

D(n) =st D′(n)

which ends the proof.

B. PROOF OF THEOREM 4
We only prove the delay part, since the backlog part fol-

lows similarly.
For the proof, we adopt the same idea as used above,

which is to compare the end-to-end delay performance of
two tandem networks. In one network denoted as NET1,
servers are ordered in the sequence as S1, S2, . . . , SH . In
the other network denoted as NET2, the order of servers is
changed and we mark the new order as S′

1, S
′
2, . . . , S

′
H where

each of these S′
h in NET2 has a counterpart Sh′ in NET1.

S′
h and Sh′ have the same service characteristics in the sense

that both of them have i.i.d. service times δ′h(n) and δh′ (n),
n = 0, 1, 2, . . . . In addition, δ′h(n) =st δh′(n), for all n =
0, 1, 2, . . . . Furthermore, the inputs to both networks have
the same i.i.d. interarrival times denoted by {τ(0), τ(1), . . . }
and {τ ′(0), τ ′(1), . . . }. By assumption, we have τ(n) =st

τ ′(n) for all n = 0, 1, 2, . . . .
Consider NET1. We have the following commutativity in

the stochastic equality sense:

∆h⊗̄∆h+1(m, n)

= sup
m≤l≤n

[

l
X

k=m

δh(k) +

n
X

k=l

δh+1(k)]

=st sup
m≤l≤n

[
n

X

k=n+m−l

δh(k) +

n+m−l
X

k=m

δh+1(k)] (63)

= sup
m≤l′≤n

[
l′

X

k=m

δh+1(k) +
n

X

k=l′

δh(k)] (64)

= ∆h+1⊗̄∆h(m, n), (65)

where step (64) is obtained by letting l′ = n+m−l. Step (63)
is critical. To see how it is obtained, let us define function
F (X1, . . . , Xn, Y1, . . . , Yn) = supm≤l≤n[

Pl

k=m Xk+
Pn

k=l Yk]
that is clearly nondecreasing in {x1, . . . , xn, y1, . . . , yn}. Let-
ting Xi = δh(i) and Yi = δh+1(i), i = 1, . . . , n results in the
form before =st. Letting Xi = δh(n−i) and Yi = δh+1(n−i)
instead, we get the right hand side on =st at step (63).
Since δh(i), i = 0, 1, . . . , n, are i.i.d. and so are δh+1(i), the
stochastic equality follows from Lemma 1 and Lemma 2.

Since all servers are independent of each other, (65) im-
plies that if we could change the order Sh, h = 1, . . . , H in
the max-plus convolution principle for NET1, the resulting
network, which has the same input as NET1, would have the
same performance stochastically as the original NET1. Fol-
lowing this, let us change the order of servers in NET1 such
that the resulting order is the same as the corresponding
servers in NET2 and get:

d′′
H(n) = a1⊗̄(∆′′

1 ⊗̄ · · · ⊗̄∆′′
H)(0, n). (66)

The stochastic commutativity (65) implies that dH(n) =st

d′′
H(n) and hence the end-to-end delay in NET1 satisfies

D(n) =st d′′
H(n) − a1(n) ≡ D′′(n). (67)



Let us now define the following delay function

Dn(X1, . . . , Xn, Y1,1, . . . , Y1,n , . . . , Yn,1, . . . , Yn,n)

= sup
0≤nH≤n

· · · sup
0≤n1≤n2

{

n2−1
X

k1=n1

[Y1,k1
+ Xk1+1] +

· · · +

n−1
X

kH=nH

[YH,kH
+ XkH+1]

+[Y1,n2
+ · · · + YH,n]} (68)

which is nondecreasing in

{x1, . . . , xn, y1,0, . . . , y1,n, . . . , yH,0, . . . , yH,n}.

Then, for end-to-end delay in NET1, we have from (67)

D′′(n) =

Dn(−τ(0), . . . ,−τ(n − 1), . . . , δ′′h(0), . . . , δ′′h(n), . . . , )(69)

For delay in NET2, we have:

D′(n) =

Dn(−τ ′(0), . . . ,−τ ′(n − 1), . . . , δ′h(0), . . . , δ′h(n), . . . )(70)

Note that all τ(k) and τ ′(k), δ′′h(k) and δ′h(k) (h = 1, . . . , H),
k = 1, . . . , n, are i.i.d. random variables and τk =st τ ′

k,
δ′′h(k) =st δ′h(k) for all h = 1, . . . , H and k = 0, 1, . . . , n, we
can then conclude from Lemma 1 and Lemma 2:

D′(n) =st D′′(n) =st D(n) (71)

which ends the proof.
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