
Oja’s Algorithm for Graph Clustering and Markov Spectral
Decomposition

V. Borkar
∗

School of Technology and Computer Science
Tata Institute of Fundamental Research, Homi

Bhabha Road, Mumbai 400005, India.
borkar@tifr.res.in

S.P. Meyn
†

Department of Electrical and Computer Engg.
and the Coordinated Sciences Laboratory
University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA.
meyn@uiuc.edu

ABSTRACT

Given a positive definite matrix M and an integer Nm ≥ 1,
Oja’s subspace algorithm will provide convergent estimates
of the first Nm eigenvalues of M along with the correspond-
ing eigenvectors. It is a common approach to principal
component analysis. This paper introduces a normalized
stochastic-approximation implementation of Oja’s subspace
algorithm, as well as new applications to the spectral decom-
position of a reversible Markov chain. Stability and con-
vergence are established under conditions far milder than
assumed in previous work. Applications to graph cluster-
ing and Markov spectral decomposition are surveyed, along
with numerical results.
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1. INTRODUCTION
Spectral decomposition is a classical approach to model

reduction for systems that are complex due to dimension
or randomness. This technique is known as principal com-
ponent analysis or the Karhunen-Loève decomposition, de-
pending on the context [17, 15, 14]. The same technique
has been developed more recently as an alternative to the
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min-cut max-flow theorem for network decomposition [23,
24, 19].

Given a symmetric N×N matrix w, its spectral decompo-
sition amounts to the computation of its N real eigenvalues
and corresponding eigenvectors. In the Karhunen-Loève de-
composition the matrix w is a covariance matrix, and the
decomposition leads to a representation of a stationary pro-
cess as a moving-average of white noise. In the graph clus-
tering problem the elements of this matrix represent positive
edge weights: wij = wji is the weight of the link connecting
nodes i and j. The first decomposition of a connected graph
is obtained by computation of the eigenvector corresponding
to the second eigenvalue. It can be shown that the eigen-
vector possesses positive and negative entries, and this sign
structure is used to define a generalized network cut in [23,
24, 19].

Oja’s subspace algorithm is one approach to computation
of the leading eigenvalues and eigenvectors of the matrix
w [20, 7]. Fix an integer Nm ≤ N , and let m(t) denote
an N × Nm matrix whose columns are intended to approx-
imate an Nm-dimensional eigenspace corresponding to the
Nm largest of the N eigenvalues of w. A deterministic ver-
sion of Oja’s algorithm is expressed as the polynomial dif-
ferential equation,

d
dt

m(t) = [I − m(t)mT (t)]wm(t) (1)

where m(0) is given as initial condition. If the matrix w is
positive definite then the analysis of [7] establishes conver-
gence of m for almost every initial condition.

This paper introduces a normalized implementation of
Oja’s algorithm, that is also a multi-dimensional general-
ization of the one-dimensional algorithm of Krasulina [16].
Stability and convergence of the normalized algorithm are
established under conditions far milder than assumed in pre-
vious work. Applications to graph clustering are surveyed,
as well as new applications to the spectral decomposition of
a reversible Markov chain.

In the following section we introduce the stochastic ap-
proximation algorithm, and present the main result estab-
lishing convergence of the algorithm. Applications to spec-
tral graph theory are surveyed in Section 3, and Section 4
contains extensions of the algorithm to compute the spec-
trum of a reversible Markov chain. Examples are contained
in Section 5, and conclusions may be found in Section 6
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2. STOCHASTIC APPROXIMATION

AND OJA’S ALGORITHM
Oja’s 1985 paper [21] introduces a stochastic approxima-

tion algorithm based on the o.d.e. (1). Suppose that X

is an R
n-valued stationary process with covariance matrix

w = E[X(t)X(t)T]. We can express Oja’s stochastic approx-
imation algorithm as the matrix recursion,

M(n+1)−M(n) = a(n)
ˆ
I −M(n)MT(n)

˜cW (n)M(n) (2)

where cW (n) = X(n)XT(n). Convergence is established by
applying current stochastic approximation techniques. How-
ever, these techniques require Lipschitz continuity of the
right hand side of the recursion in the variable M(n), which
is violated in this case. This issue is addressed by imposing
additional conditions on X .

The lack of Lipschitz continuity presents problems even
in deterministic approximations of (1) in discrete time. One
such algorithm is introduced in [25] through sampling the
o.d.e. to obtain,

m(n + 1) − m(n) = a(n)
ˆ
I − m(n)mT (n)

˜
wm(n) (3)

While convergence is established for the deterministic algo-
rithm, the proof is complex. Complexity is due in large part
to the cubic nonlinearity seen here just as in the stochastic
approximation algorithm.

To enforce the Lipschitz continuity assumption and thereby
place the algorithm within the framework of [3, 2, 1] we in-
troduce a normalization. The normalized o.d.e. is given by

d
dt

m(t) = a(t)
ˆ
I − m(t)mT (t)

˜
wm(t)

a(t) = (1 + trace (m(t)m(t)T))−1.
(4)

The right hand side of the differential equation is Lipschitz
in the variable m(t). Solutions to this differential equation
are simply time-scaled versions of the solutions to (1). In
particular, from each initial condition the set of limit points
are identical.

The stochastic approximation algorithm considered in this
paper is again of the form (2) in which the gain sequence is
modified through the choice of a non-negative gain sequence
{b(n) : n ≥ 0}:

a(n) = b(n)(1 + trace (m(n)m(n)T))−1. (5)

It is assumed throughout that the following assumptions
hold for the gain sequence b: It is non-negative, with

∞X

n=0

b(n) = ∞,
∞X

n=0

b(n)2 < ∞, sup
n≥0

 P
k≥n b(k)2

b(n)

!
< ∞

(6)
An example is b(n) = (1 + n)−1, n ≥ 0.

Under these conditions the algorithm is stable. To guar-
antee consistency we modify the algorithm slightly through
the introduction of white noise,

M(n+1)−M(n) = a(n)
`ˆ

I−M(n)MT(n)
˜cW (n)M(n)+ξ(n+1)

´

(7)
where ξ is an i.i.d. N(0, I) sequence. Proposition 2.1 states
that this recursion shares the best possible convergence prop-
erties observed in the o.d.e. (1). While the deterministic al-
gorithm can become trapped in an arbitrary eigenspace of
w, the stochastic algorithm (7) is strongly consistent from
each initial condition.

Proposition 2.1. Consider the algorithms (2) or (7),
where a is given in (5), and with b satisfying the conditions
in (6). Suppose that the process X is i.i.d., with covari-
ance w > 0, and that it is independent of the i.i.d. N(0, I)
sequence ξ.

Then, the following conclusions hold for each initial M(0):

(i) Stability: For either of the algorithms (2) or
(7),

lim sup
n→∞

‖M(n)‖ < ∞ a.s.

(ii) Convergence: For the algorithm (7), with prob-
ability one, any limit point M(∞) of the sequence
of matrices {M(n)} has columns that lie in the
eigenspace spanned by the first m eigenvalues of
w.

Proof. First we establish that the solutions to either
stochastic approximation recursion are bounded a.s. by ap-
plying Theorem 7 of [2, Ch. 3] (see also [3]). This result
constructs an “o.d.e. at infinity” that approximates the be-
havior of the recursion for large initial conditions. Based on
the recursion (2) or (7) we obtain the o.d.e.,

d
dt

m∞(t) = −
h m∞(t)m∞T (t)

trace (m∞(t)m∞(t)T)

i
wm∞(t) (8)

where m∞(0) ∈ R
N×Nm is given as initial condition. Define

the real valued function V : R
N×Nm → R+ as the quadratic,

V (m) := trace (mTwm), m ∈ R
N×Nm .

Under the positivity assumption on w this function vanishes
only when m is identically zero. This property combined
with the following drift condition implies that V serves as a
Lyapunov function,

d
dt

V (m∞(t)) = −2
h trace ([m∞T (t)wm∞(t)]2)

trace (m∞(t)m∞(t)T)

i
< 0, m∞(t) 
= 0.

It follows that the origin is the unique asymptotically stable
equilibrium for (8). Theorem 7 of [2, Ch. 3] completes the
proof of (i).

We now restrict to the algorithm (7). From the analy-
sis of [7] it follows that the eigenspace spanned by the first
m eigenvectors of w is a locally stable invariant set for (4),
whereas the remaining eigenvectors are unstable invariant
sets. The introduction of the i.i.d. process ξ combined with
the assumptions on the gain sequence ensure that the re-
sults of section 4.3 of [2] apply, and the iterates avoid these
unstable invariant sets with probability one. In turn, The-
orem 19 of [2, Ch. 4] then ensures the desired convergence
with probability one.

3. SPECTRAL GRAPH CLUSTERING
We now show how these methods can be adapted to spec-

tral graph clustering, following [23, 24, 19]. The algorithms
described here are variants of stochastic approximation based
on the construction of a Markov chain evolving on the nodes
of the graph.

Suppose that w is a symmetric matrix with non-negative
entries that defines weights in a graph with adjacency matrix
Aij = Aji = 1{wij > 0}. Throughout this section we
impose the following assumptions on the matrix w:
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(i) Symmetry: w = wT

(ii) Probabilistic normalization:
P

i,j wij = 1.

(iii) Irreducibility:
P∞

k=1 wk
ij > 0 for each i, j, where

wk denotes the k-fold matrix product.

The normalization can be assumed without loss of generality
by scaling, and irreducibility is equivalent to connectedness
of the graph.

Oja’s technique is not directly applicable because w is
not necessarily positive definite. One approach to enforce
positivity is to add a scaled identity matrix to obtain w(r) :=
w + rI . This matrix is positive definite for r ≥ 0 sufficiently
large. The relationship between the spectrum of w and w(r)

is obvious, and the eigenvectors coincide. We henceforth
assume that this scaling has been performed so that the
matrix w is positive definite.

A stochastic approximation algorithm is obtained by con-
structing a Markov chain on the state space X :={1, . . . , N}.
Under the normalization assumption, the matrix w can be
interpreted as a probability measure on the product space
X × X. Its common marginal distribution is denoted π(i) =P

j
wij , and a transition matrix is defined as the ratio,

P (i, j) =
wij

π(i)
.

The detailed balance equations hold, π(i)P (i, j) = π(j)P (j, i),
1 ≤ i, j ≤ N , so that π is invariant for P . The transition ma-
trix is irreducible since the graph is connected, which implies
that the invariant measure π is unique. Denote the Markov
chain with this transition matrix by X = {X(n) : n ≥ 0}.

In the applications considered in this section we redefine

the matrix cW by,

cWij(n) = r1{i = j}+1{X(n) = i, X(n+1) = j}, 1 ≤ i, j ≤ N,
(9)

so that we obtain E[cW (n)] = w(r) for each n. A stochastic
approximation algorithm is obtained by applying (2) using
this matrix sequence.

If the second eigenvalue of P is close to unity then the
mixing rate of the Markov chain X will be slow, and this
may adversely affect the convergence rate of (2) (see [9], [18,
Ch. 20], and the discussion in Section 4.) In this case the
following variant can be used, known as split sampling [1].
Let X1 denote an i.i.d. sequence with marginal π. Construct
a second stochastic process as follows: For each n = 1, 2, . . .
the random variable X2(n) is chosen in two stages. First, the
value j = X1(n − 1) is observed. Next, the value of X2(n)
is chosen according to the distribution P (j, · ), independent
of {X1(r),X2(k) : r ∈ Z+, k ≤ n − 1}. Based on this pair
of stochastic processes, the algorithm is then defined by (2)
using

cWij(n) = r1{i = j}+1{X1(n) = i, X2(n+1) = j}, 1 ≤ i, j ≤ N .
(10)

Analogs of Proposition 2.1 can be formulated for each of
these algorithms. Once again we can establish global con-
sistency only for a perturbed algorithm, as in (7).

4. SPECTRAL DECOMPOSITION

OF A MARKOV CHAIN
It is known that the rate of convergence to equilibrium

for a finite state-space Markov chain is determined by the

second largest eigenvalue of its transition matrix. Based
on this observation, there is a large and growing literature
on rates of convergence of Markov chains based on spectral
theory and related methods.

For a reversible chain with finite state-space each of the
eigenvalues is real. Diaconis and Stroock in [9] obtain bounds
on the second largest eigenvalue in this setting. A striking
conclusion is the following explicit bound on the rate of con-
vergence, as defined by the total-variation norm distance:

‖P n(x, · ) − π‖ ≤
q

1−π(x)
π(x)

λn
∗ (11)

where λ∗ is the magnitude of the second largest eigenvalue,
λ2
∗ = max{λ2 : λ 
= 1}, and ‖ · ‖ denotes the total-variation

norm. Bounds on the rate of convergence for chains that are
not necessarily reversible are obtained in [11], again in the
finite state-space case. The bounds are based on spectral

theory, but the spectrum of the symmetrized kernel P eP is

considered, where eP is the transition kernel for the time-
reversed chain.

Just as eigenvectors are used for clustering in graph mod-
els, the use of eigenvectors or eigenfunctions (in general state
space models) can be used to decompose a Markov model.
This is a component of the classical Wentzell–Freidlin the-
ory for model reduction. Much of this work concerns Markov
processes that are reversible [22, 8, 4, 12, 5, 6]. Extensions
to non-reversible processes appeared for the first time in
[13]. The foundation of this paper is the theory of quasi-
stationarity, building on the work of [10].

In this section we restrict to the simpler reversible setting.
Our goal is to obtain a variant of the stochastic approxima-
tion algorithm that will provide estimates of the spectrum
of P rather than a symmetric matrix w.

Our starting point is a finite state space Markov chain X

on the state space {1, . . . , N} with transition matrix P , and
invariant measure π. It is assumed that X is irreducible and
reversible. We write Π = diag (π) and w := ΠP . Recall that
reversibility implies that w is symmetric:

w = ΠP = PTΠ = wT (12)

Consider the matrix defined by the transformation,

w◦ = Π− 1

2 wΠ− 1

2 = Π
1

2 PΠ− 1

2 (13)

This matrix remains symmetric. Suppose that v◦ is an eigen-
vector,

w◦v◦ = λv◦.

Then by definition the vector v = Π− 1

2 v◦ is an eigenvector
of P .

The Oja o.d.e. to compute the spectrum of w◦ is given by,

d

dt
m(t) = Π

1

2 PΠ− 1

2 m(t) − m(t)mT (t)Π
1

2 PΠ− 1

2 m(t),

This is not attractive from the point of view of stochastic

approximation. Letting g = Π− 1

2 m we eliminate the square-
root in the o.d.e.,

d

dt
g(t) = [I − g(t)gT (t)Π]Pg(t) (14)

This is very similar to the original Oja o.d.e. using the matrix
P . The point of all this is that this construction implies that
g(t) converges to the maximal eigenspace of P even though
P is not symmetric.

To ensure convergence of the o.d.e. (1) or its stochastic
approximation counterparts we must also assume that w◦ is
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positive definite. In this setting we are interested in calcu-
lating the eigenvalues that are maximal in modulus, so that
adding the matrix rI will not solve the problem of interest.
Instead, we work with the two-step transition matrix P 2.
Its eigenvalues are the square of those of P , so that they are
non-negative. We can then replace P with the the transition
matrix Pε :=εI+(1−ε)P 2 where ε ∈ (0, 1) is arbitrary. This
matrix has strictly positive eigenvalues, which implies that
w◦ is positive definite. To simplify notation we assume that
P has been transformed in this way so that it is positive.

A discrete-time implementation of (14) is given by,

G(n + 1) = G(n) + a(n)[I − G(n)G(n)TΠ]PG(n) (15)

where a is redefined by,

a(n) = b(n)(1 + trace (G(n)G(n)T))−1. (16)

A stochastic approximation algorithm is obtained once more
by mimicking the deterministic recursion. One algorithm is
expressed in matrix form by,

G(n+1)−G(n) = a(n)
ˆ
I−G(n)G(n)TΠ̂(n)

˜ bP (n)G(n) (17)

based on the following definitions: π̂(n) is the empirical

distribution of X based on the first n samples, Π̂(n) =

diag (π̂(n)), and [ bP (n)]ij = [cW (n)]ij/[π̂(n)]i, with [cW (n)]ij =
1(X(n) = i, X(n + 1) = j).

To obtain a version of the split sampling algorithm we
recall the notation introduced in Section 2: X1 is i.i.d. with
marginal π, and X2 is constructed based on the transition
matrix P . We then apply the recursion (17) in which the

random quantities are redefined by [cW (n)]ij = 1(X1(n) =
i, X2(n + 1) = j), and π̂(n) is the true marginal π. There is
no need to estimate the marginal since it is required in the
construction of X1.

In experiments it is found that the multidimensional al-
gorithm in which Nm ≥ 2 is slow. To compute the second
eigenvector an alternative algorithm is given as follows: The
N-dimensional vector sequence G is constructed recursively,

G(n+1)−G(n) = a(n)
ˆ
I−G(n)G(n)TΠ̂(n)

˜
( bP (n)−�1⊗π̂(n))G(n)

(18)
where � ∈ (0, 1) is chosen near unity, and we adopt the same
conventions as above in the i.i.d. or Markovian versions. The
associated o.d.e. is given by

d
dt

g(t) = [I − g(t)gT (t)Π](P − �1⊗ π)g(t) (19)

which is a transformation of the o.d.e. (1) using the positive-
definite matrix

w◦ = Π− 1

2 (w − �π ⊗ π)Π− 1

2 = Π
1

2 (P − �1⊗ π)Π− 1

2

Once again, analogs of Proposition 2.1 can be formulated
for each of these algorithms, subject to the same caveats
stated at the end of section 3.

5. EXAMPLES
In most of the applications envisioned we are primarily

interested in the sign structure of eigenvectors rather than
their values. In such cases we judge the value of an estimate
v̂ of an eigenvector v by the error criterion,

E(v̂) = min ‖sign(v) − sign(rv̂)‖1 (20)

where the sign is computed pointwise, ‖ · ‖1 denotes the �1
norm, and the minimum is over r = ±1.

We did not introduce the noise term ξ in any of our ex-
periments. We found that the algorithms were globally con-
vergent without this modification.

In our first set of examples we apply Oja’s subspace algo-
rithm for network decomposition.

5.1 Spectral graph clustering
Figure 1 shows the two graphs used in experiments us-

ing the deterministic algorithm, and its stochastic counter-
part based on i.i.d. observations. The weighting matrix was
chosen to coincide with the adjacency matrix, so that each
weight was either one or zero.
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Figure 1: The two networks considered in experi-
ments.

Figure 2 shows results from several experiments using the
normalized deterministic algorithm (3) and its stochastic ap-
proximation counterpart (2). These plots illustrate the tran-
sient behavior of the algorithm for each of the two graphs.
In each plot, the vertical axis shows the error E(v̂(n)) for
n = 0, 2, . . . , where v̂ is the estimate of the second eigenvec-
tor of w obtained from m(n) defined by (3) (red dashed line),
and M(n) defined in (2) (blue solid). In these experiments
the algorithm was run using Nm = 2. In each case the algo-
rithm was run for 100,000 iterations. For N = 20 the initial
10,000 samples are shown together with the eigenvector ap-
proximation obtained after this many samples. Two sets of
plots are shown for N = 50. These results are based on
the initial 10,000 iterations, and also the final results after
100,000 iterations.
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Figure 2: Computation of the first spectral cut for
the two networks shown in Figure 1.

For either graph, the sign structure of the eigenvector is
identified after approximately 3,000 iterations in the stochas-
tic approximation algorithm. Convergence of the sign struc-
ture for the deterministic algorithm was nearly instanta-
neous.

Note that the slower rate of convergence in the stochastic
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Figure 3: Computation of the first and spectral cut
for the 20 and the 50-node network after 10,000 sam-
ples. The rate of convergence is slowed significantly
when Nm is increased from 2 to 3.

algorithm is misleading since the required computation in
each iteration is much smaller in the stochastic algorithm.

Convergence slowed considerably when Nm was increased.
Figure 3 shows a comparison of the algorithm using Nm = 2
and Nm = 3. The convergence rate might be improved
by first applying the algorithm with Nm = 2 to find the
second eigenvector v2, normalized so that its L2-norm is
unity. Replacing w by w′ = w−λ2v

2v2T

, the algorithm can
be re-run with Np = 2 to compute v3.

The next examples illustrate computation of the spectrum
of a Markov transition matrix.

5.2 Markovian spectral clustering
To compute eigenvectors of the transition matrix we ap-

plied three approaches, each based on the recursion (18):

(i) The deterministic algorithm in which Π̂(n) ≡ Π,
bP (n) ≡ P , and π̂(n) ≡ π

(ii) The Markovian algorithm.

(iii) The i.i.d. algorithm.

In each case the gain sequence was taken of the form (5) in
which b(n) = (1 + n)−1 for n ≥ 0.

In experiments we found that the split sampling approach
converges much more quickly than the Markovian approach.
Note however that the Markovian algorithm can be run us-
ing observations of the queue process X , without knowledge
of the model.

5.2.1 Queueing model

Following uniformization, the M/M/1/b model is a doubly
reflected random walk,

Q(t + 1) = [Q(t) + ∆(t + 1)]0,b (21)

where [x]0,b = min(max(x, 0), b) is a projection onto the
interval [0, b], and ∆ is an i.i.d. process. Letting α denote the
arrival rate, and µ the service rate, scaled so that α+µ = 1,
the marginal distribution of ∆ is given by,

P{∆(t) = 1} = α, P{∆(t) = −1} = µ

Hence its Markov transition matrix is given by,

P (x, min(x+1, b)) = α, P (x, max(x−1, 0)) = µ, x ∈ X

(22)

To ensure that the matrix (13) is positive semi-definite we
chose the Markov chain to be sampled at even integer values
X(k) = Q(2k), k ≥ 0, in the stochastic approximation al-
gorithm (18) based on Markovian observations. In the split
sampling algorithm, the i.i.d. process X1 was constructed
with geometric marginal distribution on X. For n = 1, 2, . . .
the random variable X2(n) was chosen based on X1(n − 1)
using P 2, with P defined in (22).
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Figure 5: Error trajectories defined by (20) and the
final second eigenvalue estimates using the Marko-
vian and deterministic algorithms. After 500,000
steps the Markovian algorithm provides a good ap-
proximation of the sign structure of the second
eigenvector, but the absolute error remains high.

5.2.2 Statistical mechanics model

A running example in [13] is the Smoluchowski equation,
defined by the Itô equation,

dX(t) = ∇U(X(t)) dt + σdN(t)

where N is standard Brownian motion on R, and the func-
tion U : R → R is the polynomial,

U(x) =
1

200

“
1
2
x6 − 15x4 + 119x2 + 28x + 50

”

Eigenfunctions of this diffusion were used to construct metastable
subsets of R.

Here we consider a related discrete-time Markov chain,
and compute the spectrum of the transition matrix using
the algorithms introduced in Section 4.

The Markov chain is constructed by restricting to a finite
subset of R: x restricted to N equally spaced values between
−5 and 5, denoted X = {−5,−5 + δ,−5 + 2δ, . . . , 5 − δ, 5}
where δ = 10/(N − 1). We fix a scalar Te > 0 called the

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4600 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4600 



-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

Normalized potential function

π,  T = 0.1
π,  T = 0.2
π,  T = 1

Figure 6: Plot of π for N = 41 and Te = 0.1, 0.2 and
1. Also shown is a plot of the normalized potential
function U/10.

temperature, and define a bivariate distribution w on X × X

as follows:

w(x, y) =
1

ζ
exp(−(max(U(x), U(y))/Te))

where ζ is the normalizing factor, ζ:=
P

x′,y′ exp(−(max(U(x′), U(y′))/Te)).
As in the general construction described in Section 2, we de-
fine π(x) =

P
y w(x, y), x ∈ X, and a transition matrix is

defined by P (x, y) = w(x, y)/π(x), x, y ∈ X. The discretized
Smoluchowski equation is then defined as the Markov chain
with transition matrix,

P (x, y) =
1

α(x)
exp(−(max(U(y) − U(x), 0)/Te))

with α(x) :=
P

y′ exp(−(max(U(y′) − U(x), 0)/Te)).
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Figure 7: Results for the discretized Smoluchowski
equation based on the potential (6) using Te = 1.
Shown on the right is a plot of the second eigenvec-
tor for P and the approximation obtained from 5,000
iterations of the deterministic and split sampling al-
gorithms. Shown on the left is the error process
(20).

Shown on the right in Figure 7 is the resulting eigenfunc-
tion approximation after 5,000 iterations using the deter-
ministic and split sampling algorithms. Shown on the left
is the error process (20) using this algorithm. Convergence
of the SA algorithm is slow, but note that a time horizon
of 5,000 steps is very short. In this model, convergence to
within 1% occurred after approximately 100,000 iterations.

6. CONCLUSIONS
We have introduced several stochastic-approximation vari-

ants of OjaÕs subspace algorithm for principal component
analysis, Markov spectral theory, and spectral graph clus-
tering. Convergence of these algorithms has been estab-
lished through recent stochastic approximation techniques
combined with stability theory from [7] that establishes con-
vergence of the associated o.d.e..

Questions in current research include extensions to Markov
chains that are not reversible, and variance reduction tech-
niques for these algorithms.
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