
Simulation of Wireless Multi-* Networks in NS-2

Laurent Paquereau
laurent.paquereau@q2s.ntnu.no

Bjarne E. Helvik
bjarne@q2s.ntnu.no

Centre for Quantifiable Quality of Service in Communication Systems
∗

Norwegian University of Science and Technology, Trondheim, Norway

ABSTRACT

Multi-technology, multi-homed, multi-hop, multi-interface,
multi-channel, multi-route, multi-destination etc. Emerging
wireless networks are multi-* networks. Emerging wireless
networks are also no longer stand-alone and self-contained
networks but connected to external networks. Simulating
such complex systems requires advanced network simula-
tion tools. The network simulator 2 (ns-2) is one of the
most widely used simulators and has constantly been en-
riched to design, test and evaluate new network architec-
tures and protocols. This paper motivates and presents the
design and implementation of a network layer architecture
that extends the functionality of ns-2 to support the afore-
mentioned features. In particular, it provides support for
multiple interfaces, potentially of different types, and mul-
tiple routing and forwarding protocols running on the same
node.

Categories and Subject Descriptors

I.6.5 [Simulation and Modeling]: Model Development;
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms

Design

Keywords

Ns-2, multi-* wireless networks, network layer architecture

1. INTRODUCTION
During the last decade, the foreseen potential of wire-

less multi-hop networks, combined with the rapid develop-

∗“Centre for Quantifiable Quality of Service in Communica-
tion Systems, Centre of Excellence” appointed by The Re-
search Council of Norway, funded by the Research Council,
NTNU, UNINETT and Telenor. http://www.q2s.ntnu.no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WNS2, October 23, 2008, Athens, Greece.
Copyright c© 2008 ICST ISBN # 978-963-9799-31-8.

ment of enabling technologies, have made them an active
research area. In particular, an early focus was on protocols
for standalone wireless mobile ad-hoc networks (MANET).
This research has however been limited by the lack of well-
defined targeted applications other than niche applications,
typically battlefield operations. More recently, more spe-
cific and better defined applications such as wireless sensor
networks (WSN), vehicular ad-hoc networks (VANET) and
wireless mesh networks (WMN) have gained increasing at-
tention. These networks are multi-* networks. They are
multi-hop, -radio, -channel, -destination, etc. Although they
obviously have a lot in common with traditional MANET,
e.g. multi-hop communication and self-configuration prop-
erty, they distinguish themselves notably in that they should
interwork with some external networks. General purpose
protocols proposed for wireless ad-hoc networks are often
not suited for any of these applications. They need to be
adapted, or new protocols designed, taking into account the
characteristics and requirements of these applications. Ex-
ample of such characteristics are scale, node density, typical
number of radio interfaces per node, traffic types and vol-
umes, mobility, available computational capacity on each
node, reliability of each node. Example of requirements in-
clude provisioning QoS guarantees or power-efficiency. A
number of research issues remain open at all layers of the
protocol stack for each of these applications [6, 8, 17], and
tools are needed to enable the design and the comparison
of solutions. Considering the complexity of such systems,
simulation is often used and the network simulator 2 (ns-
2) [3] is one of the most widely applied tools by networking
researchers.

The development of ns-2 started in the 1990’s and, since
then, it has constantly been extended to novel research ar-
eas, networking technologies and scenarios. In the past few
years, several initiatives have aimed at enhancing, extend-
ing or redesigning the wireless network modelling in ns-2 and
improving the simulation accuracy. Most of these efforts ad-
dressed in particular the IEEE 802.11 medium access control
(MAC) and physical (PHY) layers [5], adding extra func-
tionalities at the MAC layer, such as multiple rate support,
rate adaptation support, infrastructure management frames
support, IEEE 802.11e support, and including more realistic
propagation, interferences, capture and packet loss models
at the physical layer. The reader is referred, among others,
to [2, 9, 23, 27]. Some of these extensions have now been
included in the official ns-2 distribution1. At the network
layer, new protocols or modified versions of already imple-

1At the time of writing, the latest version is ns-2.33.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



mented protocols are continuously developed. On the other
hand, the design of the network layer itself has not evolved
and needs to be extended in order to enable the simula-
tion of the emerging classes of networks introduced above.
In particular, support for multiple interfaces, potentially of
different types, support for multiple routing and forwarding
protocols running on one or more interfaces and support for
internetworking between those protocols is required. The
objective of this paper is to motivate and present a network
layer architecture that supports the aforementioned features
and provides a framework for implementing routing and for-
warding protocols.

The rest of this paper is organized as follows. Throughout
the paper, we take the example of wireless mesh networks.
In Section 2, we first present some open research issues at
the network layer and we derive a set of required features in
order to be able to simulate such networks. In Section 3, we
give a brief description of the current design of the network
layer and the implementation of routing and forwarding pro-
tocols in ns-2 and discuss the extensions needed with regard
to the required features listed in Section 2. We then present
our architecture in Section 5 and illustrate the functional-
ity provided with a simple simulation scenario in Section 6.
We review related work, in particular the ns2-MIRACLE
framework [7], in Section 7, and, finally, we give a summary
in Section 8. In the following, the reader is assumed to be
familiar with the ns-2 internals and is referred to [25] for
additional details.

2. REQUIRED FEATURES
In this section, we briefly describe wireless mesh networks

and outline some of the key challenges and open research
issues at the network layer for this type of networks. The
reader may refer to [11] and [17] and the references therein
for a more comprehensive description. Finally, we derive a
list of features required in order to be able to simulate such
networks.

Wireless mesh networks consist of stationary and grid-
powered wireless mesh routers, which self-organize to build
a wireless backbone and provide global connectivity through
a limited number of routers connected to one or more ex-
ternal networks, e.g. fixed networks. See Figure 1 for an
illustration. Such networks are expected to provide flexible
wireless backhauls with high performance and dependability
and to be able to accommodate high traffic volumes. One
of the major difference between mobile ad-hoc networks and
wireless mesh networks is the traffic pattern. Most of the
traffic is expected to be concentrated toward and from the
gateway routers, but at the same time if multiple gateways
are available any of them may be used to provide global
connectivity.

Key challenges include maximizing the capacity of sta-
tionary multi-hop wireless networks, providing support for
provisioning of QoS guarantees and QoS differentiation, and
exploiting multiple paths for resilience and load balancing.
A promising approach to providing high capacity and high
redundancy is to equip mesh routers with multiple radio
interfaces on non-interfering channels. However, this new
degree of freedom also raises some issues. At the network
level, open research issues include how to assign channels,
how to exploit channel diversity and whether channel assign-
ment should be considered jointly with routing for instance.
At the node level, a destination may be reachable via more

Internet

Internet

MR

MR

MR

MR

MR

MR: Mesh Router
IGW: Internet Gateway

IGW

IGW

MR

Figure 1: Example of a multi-hop, multi-interface,
multi-channel, multi-destination, multi-routes wire-
less mesh network

than one interface, possibly using different technologies, and
some criteria are then needed to differentiate routes and to
decide which route to use. One approach is to make use of
cross-layer information, e.g. some quality measures reported
by lower layers [29].

Studying and understanding such complex multi-* wire-
less systems and designing and comparing protocols requires
advanced simulation tools. In particular, at the network
layer, the simulator needs to support multiple interfaces
on different channels used by a single routing and forward-
ing protocol as well as multiple interfaces on different net-
works, managed by different routing and forwarding pro-
tocols. Supporting multiple routes to the same destination
and algorithms to decide which route to use is also a required
feature.

3. CURRENT DESIGN
We now review the current design and implementation of

routing and forwarding protocols in ns-2 with emphasis on
the support for multiple interfaces, multiple routes, and sce-
narios combining wired and wireless networks. In particular,
we stress the fact that, not only depending on the type of
protocol, but also on the type of interface, the implementa-
tion details and the node models differ significantly.

3.1 Routing and forwarding protocols
If we refer to the ns-2 documentation [25], every rout-

ing implementation should consist of three building blocks,
namely a routing agent, a route logic and a classifier. Their
purpose is respectively to generate and receive routing pack-
ets, to use the information gathered by agents to perform the
actual route computation, and to forward packets according
to the computed routes. In addition, routing modules should

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



LinkLink

address

Node
entry

A
d
d
r
e
s
s

Agent

P
o
r
t

C
l
a
s
s
i
f
i
e
r

C
l
a
s
s
i
f
i
e
r

Figure 2: Schematic representation of a unicast Node

be used to manage these functions and to interface between
the node and the classifiers. This is the general framework.
In the following, we discuss the actual implementation of
routing and forwarding protocols. Before going any further,
it is worth mentioning that ns-2 uses the term routing to
refer both to the routing functionality itself, i.e. finding
routes, but also to the forwarding functionality, i.e. using
routes to forward packets.

Ns-2 distinguishes between two types of protocols:

• Centralized routing protocols refers to the computa-
tion of routes at the simulator level. In other words,
the simulator has full knowledge of the network topol-
ogy and run a user-defined algorithm on this topology
to compute routes. Those routes are then pushed in-
stantaneously to all the nodes in the simulation that
start using them to forward packets. Such a protocol
is suited when routes are needed but the routing pro-
tocol itself is not the purpose of the study and does
not affect the results.

• Detailed dynamic routing protocols refers to routing
protocols running on each node, sending and receiving
routing packets and computing routes in a distributed
fashion based on the information gathered. Such a
protocol is suited when the routing protocol itself or
the effect of the protocol dynamics is the purpose of
the simulation study.

In addition, manual routing refers to the possibility for
the user to set routes instead of computing routes.

Since the implementations of protocols for wired and wire-
less networks differ significantly, we address them separately.
For the sake of simplicity, we present only unicast protocols.
For reference, the simplest structure of a unicast Node in ns-
2 is recalled in Figure 2. Arrows represent the path followed
by packets. The routing logic and routing modules are not
shown. Table 1 summarizes the description given below.

3.1.1 Routing protocols for wired networks

Ns-2 includes centralized and detailed dynamic routing
protocols and supports manual routing for wired networks.

Examples of centralized routing protocols are Static, the
default route computation strategy in ns-2, and Session.
Both routing protocols use the Dijkstra’s all-pairs SPF al-
gorithm [10]. The only difference is that routes are recom-
puted after a topology change, e.g. a link failure, when
Session is used, while routes are only computed prior to
the start of the simulation when Static is chosen. Con-
cretely, the route computation is implemented in C++ in

a RouteLogic object. No routing packets are simulated,
thus no routing agent is attached to each node. To this
regard, the fact that the Static and Session protocols are
implemented as routing agents (Agent/rtproto/Static and
Agent/rtproto/Session, respectively) can be misleading.
This is only to provide a common way of specifying which
routing protocol is used as described below. Those two
classes are purely static and no such agent is instantiated.

Examples of detailed dynamic routing protocols in ns-2
are DV (Distance Vector) and LS (Link State). Concretely,
routing packet generation and route computation are imple-
mented in a routing agent (Agent/rtproto) in C++ and in
OTcl, respectively. More than one such protocol can be run-
ning on a single node and hence more than one such agent
can be attached to a node. An rtObject, written in OTcl
only, is also associated to each node. Its purpose is to main-
tain the forwarding table of the node and to decide which
routes to install in the classifiers. Multiple routes to the
same destination may be found when more than one rout-
ing protocol is running on a node. In this case, routes are
assigned preferences and the most preferred route is chosen.
If two routes have the same preference value, the route with
the lowest cost is chosen. In case of a tie, a random route is
installed.

Manual routing is implemented as a routing module which
provides the user commands to enter routes. A routing agent
is also implemented (Agent/rtproto/Manual), but, as for
Static and Session, this is only to provide a common way
of defining which routing protocol is used.

To configure the routing protocol to run, the rtproto com-
mand is used with the name of an Agent/rtproto as a pa-
rameter. In the case of a centralized routing protocol, only
one protocol can be used for all the nodes. When a detailed
dynamic routing is used, multiple routing protocols can be
used, and the nodes hosting a protocol can be specified as
parameters. If no nodes are given, the routing protocol will
be running on all nodes, that is a routing agent will be cre-
ated and attached to every node in the simulator. Routing
agents and rtObjects are created at the beginning of the
simulation, after all nodes have been created. Routing mod-
ules are enabled/disabled using the node-config command
and a module-specific option. Enabled modules are created
and attached to the node at its creation.

3.1.2 Routing protocols for wireless networks

All the routing protocols for wireless networks included
in the official ns-2 distribution are detailed dynamic routing
protocols2. Examples include AODV (Ad-hoc On-demand
Distance Vector routing [21]) and DSR (Dynamic Source
Routing [16]). Their implementation does not follow the
general framework described in the introduction to this sec-
tion and differs significantly from the implementation of
detailed dynamic routing protocols for wired networks de-
scribed above.

All the functionalities - routing packet generation, route
computation and packet forwarding - are implemented in
a single routing agent object. Although the same term is
used to refer to both constructs, routing agents for wireless
routing protocols inherit directly from Agent and not from
Agent/rtproto as routing agents used for routing protocols

2Except the old and outdated implementation of diffusion
which uses the general operations director (God) as a cen-
tralized routing protocol.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



Table 1: Implementation of routing and forwarding functionalities in ns-2

Baseline ns-2 Proposed architecture

Network type Wired Wireless Any

Protocol type Centralized Detailed Manual Any Any

Routing packet generation N/A Agent/rtproto
[1 per Node]

N/A
Agent

[1 per MobileNode]

RoutingPacketGenerator
[0+ per NetworkLayerUnit]

Route computation
RouteLogic

[1 per Simulator]

Agent/rtproto
[1 per Node]

RoutingUnit
[0/1 per NetworkLayerUnit]

Forwarding table
rtObject
[1 per Node]

FIB
[1 per Node]

Data packet forwarding
Classifier

[1+ per RtModule]
Classifier

[1+ per RtModule]
Classifier

[1+ per RtModule]
ForwardingUnit

[1 per NetworkLayerUnit]

Cursive typesetting is used for classes/features implemented mostly or fully in OTcl.
1 means exactly one, 0/1 means none or one, 0+ means none or more, and 1+ one or more.

Node
entry

A
d
d
r
e
s
s

Agent

P
o
r
t

C
l
a
s
s
i
f
i
e
r

C
l
a
s
s
i
f
i
e
r

defaulttarget

address

LL

Routing
Agent

Mac

Phy

Channel

ARPTable

Queue

Figure 3: Schematic representation of a MobileNode

for wired networks. There is no routing module, no classifier
and no route logic object. In addition, routing agents for
wireless networks are to be attached to MobileNode objects.
A MobileNode is a specialized version of a Node built around
the routing agent where the routing agent interfaces between
the standard node model and a stack of low layers (link
layer (LL), and MAC and PHY layers). See Figure 3 for an
illustration.

The adhocRouting option of the node-config command
is used to specify which routing protocol to run on a node.
This option takes the name of a routing protocol as a pa-
rameter, e.g. AODV. The routing agent is then created at
the creation of the node. This option is also what decides
whether the created node is a Node or a MobileNode (or any
type of node derived from MobileNode).

For the sake of completeness, it must also be mentioned
that extensions to the main code have been developed to
enable centralized routing protocol and manual routing for
wireless networks, e.g. Adhoc Static Routing (ASR) [24]
and No Ad-Hoc routing agent (NOAH) [26], respectively.

3.2 Wired-cum-wireless scenarios
Ns-2 provides some support for what is referred to as

“wired-cum-wireless” scenarios, that is scenarios where sev-
eral wireless networks are connected through wired nodes.
The idea is to define different wireless domains and one or
more base-station nodes in each domain through which all
packets to/from destinations outside the domain are sent/
received. In reality, the base station node is nothing but a
MobileNode connected to one or more wired links. The user
specifies which nodes should run the routing protocol for
wired networks by turning on the wiredRouting option of
the node-config command before creating those nodes. The
implementation relies exclusively on hierarchical addresses
and no more than one base station is supported per mobile
node or, in other words, the base station to which a packet is
transmitted does not depend on its destination. This feature
is implemented on a rather ad-hoc and per-protocol man-
ner. Only DSR and DSDV (Highly dynamic Destination-
Sequenced Distance-Vector routing [22]) implementations in
the official distribution support this functionality. Some ex-
ternal implementations of AODV also provide this function-
ality, for instance AODV+ [13] or AODV-UU [18].

4. NEEDED EXTENSIONS
In this section, we point out needed extensions to the cur-

rent design with respect to supporting multiple interfaces,
potentially of different types, and multiple routing and for-
warding protocols at the network layer. Mirroring the de-
scription given in Section 3, we first address needed exten-
sions to the models currently used for wired and for wireless
networks, respectively. We next discuss the interworking
of wired and wireless protocols on a node. Finally, we shed
some light on more general extensions needed when it comes
to supporting multiple interfaces at the network layer.

4.1 Wired model
1) The execution of a routing/forwarding protocol should

not depend on neighboring nodes and it should be possible
to specify on which interface(s) a protocol is running. Cur-
rently, there is no way of specifying on which interface(s) a
detailed dynamic routing protocol should be running. For

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



DV and LS this is decided at the initialization of the rout-
ing agent for each link based on whether the neighboring
node is running the same protocol or not. For this, a static
list of neighbors built up when creating links and attaching
nodes to links is used. This approach cannot be general-
ized. In the case of a wireless interface, several neighbors
may be reached through the same interface and the neigh-
borhood of a node may vary in time. In addition, in a multi-
interface multi-channel context, a neighbor may be reachable
through more than one interface. Therefore, the execution
of a protocol should not depend on neighboring nodes and
it should be possible to specify on which interface(s) a rout-
ing/forwarding protocol is running.

2) An entry in the forwarding table needs to contain in-
formation about both the next hop, the channel and the out-
put interface used to reach this next hop. The rtObject

assumes a 1-1 mapping between output interface and next
hop. This is true in the case of a point-to-point link but
cannot be generalized to any type of interface. For instance,
there is no 1-1 mapping between wireless interface and next
hop. Again, this is because more than one neighbor may be
reached through the same interface and, in a multi-interface
multi-channel context, because a neighbor may be reachable
through more than one interface. Thus, a forwarding entry
needs to contain information about both the next hop and
the output interface used to reach this next hop. In ad-
dition, in a multi-channel context, if interfaces are allowed
to switch channels dynamically, the mapping between inter-
face and channel cannot be assumed either. Hence, an entry
in the forwarding table should also contain the information
about the channel to use.

3) Before deciding what to do with a packet, it should be
possible to update per-route and/or per-interface informa-
tion upon reception of a packet. In many occasions, per-
route and/or per-interface information needs to be updated
upon reception of a packet. This is the case for instance
when protocols maintain soft-states, e.g. route timeouts,
when control information is piggybacked on data packets,
or when forwarding decisions depend on the load on each
link. With the current design, all packets enter the node
via the node entry point and are forwarded inside the node
based on their destination address only. In addition, the in-
formation of the incoming interface or link is generally not
available. Hence, there is no simple way of updating per-
route or per-interface information, in particular if several
routing protocols are running on the same node and several
interfaces of different types are attached to this node.

4) The design should support several routes to the same
destination discovered by one or more routing protocols us-
ing different interfaces or a single interface but different next
hops. With the current implementation, classifiers map each
destination address to a link or to the next classifier in the
chain. If multiple routes to the same destination are dis-
covered, only the most preferred one is installed. Multiple
routes to the same destination may be installed using a Mul-

tiPathForwarder if the multiPath option has been turned
on and only if those routes have been discovered by the same
routing protocol.

4.2 Wireless model
5) To enable interworking with external networks, it should

be possible to run more than one routing protocol on a node.
The MobileNode is built up around a single routing agent.

This agent is attached to the port demultiplexer on a ded-
icated routing port and the address classifier use a default
target to forward packets internally to the agent, see Fig-
ure 3. Hence, the current design precludes from attaching
more than one routing agent to the same node. Only routing
protocols operating over wired links can run simultaneously
on the same node.

6) It should be possible to run a routing protocol over sev-
eral wireless interfaces on a node. Currently, there is no na-
tive support for routing agents running over more than one
wireless interface. The routing agent is attached to a sin-
gle stack of low layers which types are defined prior to the
creation of the node. The objects constituting the stack are
instantiated before the routing agent is created and attached
to the stack. It is the routing agent that is attached to an
interface (to the first created, if several). Supporting mul-
tiple interfaces and multiple routing protocols requires the
opposite semantics, that is attaching interfaces to a routing
protocol.

7) As for the wired model, it should be possible to update
per-route and/or per-interface information upon reception of
a packet before deciding what to do with a packet. The lay-
out of the MobileNode prevents from piggybacking routing
information to data packets and updating route information
upon reception of a data packet at the destination. Indeed,
at the destination, data packets are not handed to the rout-
ing agent but directly to the end agent. As a result, there is
no simple way of updating per-route or per-interface infor-
mation or reading piggybacked information at the destina-
tion upon reception of a data packet with a base MobileNode.
This is because the address classifier lies before the routing
agent. So far, this particular limitation has been solved in an
ad-hoc and per-protocol manner by designing a node model
tailored for a given protocol, e.g. the SRNode for DSR.

8) Routing and forwarding functionalities should be clearly
separated to make it easier to study and compare protocols
and to enable reusing common functions. Currently, a rout-
ing agent for wireless networks implements both routing and
forwarding functionalities. The routing agent is the source
and the sink of routing packets and performs route compu-
tation and data packet forwarding. There is no clear dis-
tinction between routing and forwarding. However, on this
particular point, protocol designs may be to blame as much
as ns-2 [19].

4.3 Wired-wireless integration
9) Using a common node and a common framework for

implementing routing and forwarding functionalities regard-
less of the type of protocol and of the type of interfaces would
highly facilitate the integration of heterogeneous interfaces
and protocols at the network layer. Currently, routing and
forwarding protocols for wired and wireless networks use
radically different models. See the summary given in Ta-
ble 1. Routing and forwarding protocols for wired and wire-
less networks use different objects, are implemented using
different languages and configured using different APIs. In
addition, node objects differ depending on whether the node
has a wireless interface or not as well as on the routing pro-
tocol running making it tedious to compare protocols and
reuse common building blocks.

10) When several routing protocols are running on the
same node, a common entity needs to know about the proto-
cols and all the discovered routes to decide what to do with

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



a packet. Currently, there is no manager for all the routing
protocols that operate on a node and no common forward-
ing table. A MobileNode can have a wireless interface and
be attached to one or more links. A routing protocol will be
running on the wireless interface and another on the wired
links. However, they will not share any routing information.
Since wireless routing agents are not wrapped in routing
modules, they will not know about routes installed by other
routing protocols, and reciprocally. The rtObject coordi-
nates only routing protocols implemented as Agent/rtproto
operating on Links, and does not know about the wireless
routing agent. There is no common forwarding table. If a
destination is reachable both using a point-to-point link and
a wireless interface, there is no way of specifying which route
should be chosen. In such case, the route used depends on
whether the address classifier, to which links are attached,
lies before or after the routing agent. In the case of the stan-
dard MobileNode, it lies before and therefore the route using
a wired link will always be preferred. Another case where a
common entity is missing is when no route to a destination is
available. Some entity should have global knowledge about
the routing and forwarding protocols running on the node
and decide what to do with the packet; whether it should
be discarded, forwarded on a default route or to a random
neighbor, or buffered and a route discovery procedure trig-
gered if a reactive routing protocol is running on the node.

4.4 Multiple interface support
11) In order to support multiple interfaces, potentially of

different types, on a single node, a generic way of interact-
ing with any kind of network interface is needed. This is
needed for instance for controlling the operation (up/down)
of every interface attached to a node. This requires a general
interface object and a component that knows about all the
interfaces attached to a node. Currently, protocols for wired
networks use Link objects and classifiers which store C++
pointers onto the first object (NsObject) of the link. Rout-
ing agents for the MobileNode use a pointer onto a link layer
object (down-target, NsObject). Satellite nodes use Net-

workInterface and LinkHead objects. There is no general
interface object and no record of all the interfaces attached
to a node. In addition, to enable cross-layer interactions
when low layers are modelled, there should be a generic way
of accessing the layers forming an interface. Similarly, such
a feature does not exist in the current implementation. The
MobileNode keeps a reference onto each object in OTcl, and
for satellite nodes pointers to the different layers are kept in
a SatLinkHead object in C++.

12) It should be possible to uniquely identify every inter-
face attached on a node. Per-interface identifiers are needed
to be able to distinguish between packets coming from the
same node but sent on different interfaces and to address a
particular interface on a node. Currently, addresses are as-
signed to nodes, not to interfaces. Each NetworkInterface

attached to a satellite node is assigned a unique identifier,
but this identifier is only used to tag packets. Protocols
use node addresses or identifiers, but do not use interface
identifiers.

5. PROPOSED ARCHITECTURE
In this section, we present an architecture that incorpo-

rates the extensions described in Section 4 and aims at pro-
viding the features described in Section 2. More precisely,

our contribution is the definition and the implementation
of network interface and network layer objects to provide
a framework for implementing routing and forwarding pro-
tocols. It includes support for multiple interfaces, multiple
destinations, and multiple routing and forwarding protocols
operating on the same node each over one or more interfaces,
potentially of different types. We describe these objects in
more details below. The architecture is summarized and
confronted to the baseline ns-2 implementation in Table 1.
The relations between the open research issues, the required
features, the needed extensions and the proposed objects are
illustrated in Figure 4.

Section 6 demonstrates the features provided by our im-
plementation of this architecture with a simple simulation
scenario. Furthermore, this architecture has been success-
fully used to port the Cross-Entropy Ant System (CEAS)
module developed at Q2S, NTNU, Norway. An early version
of this module is introduced in [28]. In particular, we have
ported the simulator used in [14] which includes stochastic
forwarding of data packets.

5.1 Network interfaces
As underlined in Section 4.4, one of the missing building

blocks in ns-2 when it comes to supporting multiple inter-
faces, potentially of different types, on the same node is a
generic network interface object. Such an object is needed in
order to have a generic way of addressing interfaces, keeping
track of all the interfaces attached to a node and interacting
with these interfaces regardless of their type, e.g. controlling
their operation (up/down).

We propose a generic NetworkInterface23 object. It can
be seen as an aggregate of the LinkHead and NetworkIn-

terface objects. It is both a wrapper and an extra layer.
As a layer, it tags both incoming and outgoing packets with
the interface identifier. As a wrapper, it has a pointer onto
all the components of the network stack (from the link layer
and down). More precisely, since ns-2 includes two differ-
ent models of low layers, we distinguish between interfaces
that abstract low layers (NetworkInterface2) and interfaces
that do model low layers (NetworkInterface2/FullStack).
NetworkInterface2/FullStack includes pointers onto each
of the layers constituting the interface, hence enabling some
form of cross-layer interactions. Examples of implemented
interfaces are NetworkInterface2/PointToPoint and Net-

workInterface2/FullStack/Wireless, which wrap the ns-2
point-to-point Link object and wireless stack objects, re-
spectively. There is no a priori restriction on the number of
interfaces attached to a node.

Interfaces are to be configured using a dedicated command
(interface-config) and are instantiated when added to a
node using the add-interface command of Node. This new
command takes as a parameter the NetworkLayerUnit, see
Section 5.2.2, to which the interface is to be attached.

5.2 Network layer
We propose a two-tier network layer composed of:

• a NetworkLayerManager, and

• one or more NetworkLayerUnits.

In addition, each node has a forwarding information base
(FIB).
3As a convention, we add the suffix 2 to a class name when
the class is meant to replace the existing class of same name.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



Multiple interfaces and
per-interface operation control

Interworking between routing/
forwarding protocols NetworkLayerUnit

FIB

NetworkInformationBaseEntry

NetworkInterface2

NetworkLayerManager

Node

/ modified objectsnew

Provisioning QoS guarantees
and QoS differentiation

Routing and forwarding in a
multi-* environment

Assigning channels to interfaces

Exploiting multiple paths for
load balancing and resilience

Providing connectivity to external
networks through multiple gateways

Maximizing the capacity

References on all the layers
forming the interface

A generic network interface object
and a per-interface address

A generic interface to routing/
forwarding protocols

A generic protocol and interface
independent node model

Decoupling next-hop, channel and
interface

A manager for all the interfaces
attached on a node

Attaching interfaces to routing/
forwarding protocols

forwarding protocols on a node
A manager for all routing

A forwarding table per node

Updating per-route and/or per-inter-
face information on packet reception

Cross-layer interactions

Multiple channels

Multiple routing/forwarding protocols

Multiple routes / destinations

features need extensions influence the design ofopen research issues

Quality/load measures

require

Figure 4: Illustration of the relations between the open research issues, the required features, the needed
extensions, and the proposed objects

5.2.1 Network layer manager

The purpose of the NetworkLayerManager is twofold. First,
it maintains a list of interfaces and a list of network layer
units attached to the node. Second, it handles all the data
packets generated locally and received from neighbor nodes.
If a packet is not at destination, its purpose is to decide on
a per-packet or per-flow basis by which forwarding protocol,
i.e. by which NetworkLayerUnit, the packet should be for-
warded. This decision is primarily based on the information
stored in the FIB of the node. Additional criteria such as
user-defined preferences and/or policies may also be used.

The NetworkLayerManager to be attached to a node is
specified using the network-layer-manager option of the
node-config command. It is created at the creation of the
node.

5.2.2 Network layer units

A NetworkLayerUnit is an instance of a routing and for-
warding protocol operating on a node and running over one
or more interfaces. It contains a ForwardingUnit and possi-
bly a RoutingUnit. A NetworkLayerUnit receives both in-
coming and outgoing on any interface attached to it. Packets
are then dispatched internally. The ForwardingUnit handles
data packets, the RoutingUnit, if any, routing packets. A
queue may be used to enable simulation of processing time.
Details of the structure of the NetworkLayerUnit are shown
in Figure 5.

A ForwardingUnit implements a forwarding protocol. In
the simplest case, this amounts to handing the incoming
packets to the NetworkLayerManager and the outgoing pack-
ets to the correct interface when a route to the destination
exists in the FIB. Other strategies, e.g. stochastic forward-
ing, may also be implemented. In the case of a reactive

recv()

NetworkLayerUnit

send()

queue

ForwardingUnit

processPacket()

NetworkLayerManager

NetworkInterface2 NetworkInterface2

RoutingPacket

Generator
down

up

RoutingUnit

Figure 5: Detailed structure of a NetworkLayerUnit

routing protocol, if no route to the destination exists in the
FIB, the ForwardingUnit may need to buffer data packets
and to trigger a route discovery procedure.

A RoutingUnit implements the route logic of a detailed
dynamic routing protocol, that is it handles routing packets
sent and received by the NetworkLayerUnit and performs
the route computation. Routing packets are not generated
by the RoutingUnit, but by one or more RoutingPacket-

Generators attached to the NetworkLayerUnit. Computed
routes are stored internally to the NetworkLayerUnit in a
routing information base (RIB). Which information is con-
tained in the RIB highly depends on the protocol. The
RoutingUnit is responsible for populating the FIB with sta-
ble routes and removing routes when they become stale or
unavailable.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



Link Link

Stack of low layers or Link

depending on the type of interface

NetworkLayerManager

PointToPoint

NetworkInterface

NetworkInterface2

NetworkLayerUnit

FIB

Agent

Classifier

Address

Classifier

Port

Figure 6: Proposed Node layout

5.2.3 Forwarding information database

The FIB is used to store routes that can be used to send
packets and may contain more than one route to a desti-
nation. A route entry (NetworkInformationBaseEntry) in
the FIB contains information about the interface, the next-
hop and the channel to use, if relevant. Those routes may
have been discovered by any detailed dynamic routing pro-
tocol running on the node, computed by a centralized rout-
ing protocol or manually added. Support for the two later
types of routing is provided by extended add-route and
delete-route OTcl procedures of Node. Centralized rout-
ing protocols such as Static or Session as well as detailed
dynamic routing protocols installing/removing routes using
add-route and delete-route or their C++ counterparts
can be used unmodified. On the other hand, routing proto-
col agents for wireless networks need to be adapted.

5.3 Node layout
All the objects described previously are integrated in the

standard ns-2 Node, see Figure 2. A unique object and lay-
out is used regardless of the type of interfaces attached to
the node and of the routing and forwarding protocols run-
ning, instead of using different node models depending on
the types of interfaces attached to the node and on the rout-
ing and forwarding protocols operating on the node.

The new layout is shown in Figure 6. Dashed lines indi-
cate objects and paths existing in the standard ns-2 Node.
For sake of clarity, only one NetworkLayerUnit is shown and
only one NetworkInterface2 is attached to this Network-

LayerUnit. However, there is no restriction either on the
number of NetworkLayerUnits on a node, or on the num-
ber or type of interfaces attached to such unit. Depending
on its type, a NetworkInterface2 is attached to a stack of
low layers or directly to a Link. Figure 6 also shows how
the address classifier, and by extension any legacy chain of
classifiers, is integrated in the new structure, thus enabling
using existing protocols for wired networks.

6. SAMPLE SIMULATION SCENARIO
The purpose of this section is to illustrate the functional-

ity provided by our implementation of the architecture de-
scribed in Section 5 with a simple example.

We consider the simple multi-* wireless mesh network

IGW1 IGW2

Internet

MR1

interface on channel 1

interface on channel 0

MR2

Figure 7: Example multi-* wireless mesh network

Channel
used by MR1

IGW1
operational state

Constant bit rate
flow from MR1
to the Internet

Route
advertisement

up

down

0

1

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

t (s)

t (s)

t (s)

Figure 8: Sample multi-channel and gateway trace

shown in Figure 7. This network is composed of four nodes;
two mesh routers (MR1 and MR2) and two gateways (IGW1
and IGW2) providing connectivity to the Internet. Each
mesh router is equipped with two wireless interfaces on two
different channels (0 and 1). The gateways only have one in-
terface on channel 0. Each gateway broadcasts periodically
connectivity advertisements which are relayed by its one-hop
neighbors. This way every node no farther than two hops
from a gateway has at least a route to the Internet. Each
route is valid for an inter-advertisement interval. If more
than one route to any gateway are available on a node, the
route with the minimal number of hops is chosen. For two
routes with equal number of hops, the route with the higher
channel diversity is preferred.

In this example, IGW1 is down from t = 10 s to 15 s.
To show how this down-time affects the routes for MR1, we
consider a constant bit rate flow from MR1 to the Internet
starting at t = 5 s and finishing a t = 18 s. Figure 8 shows
which of the channels are used by MR1 to send packets dur-
ing the simulation period. IGWs broadcast advertisements
every second. When IGW1 is available, MR1 sends data
packet directly to IGW1 on channel 0 and relays broadcast
advertisement received from IGW1 on both channels. When
IGW1 is unavailable, MR1 still has two routes to the Inter-
net and prefers the route through MR2 with the highest
channel diversity, i.e. using channel 1 to reach MR2. MR1
continues to use channel 0 after IGW1 is down until the
route becomes stale, and it then starts sending packets via
MR2 on channel 1.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



7. RELATED WORK
In [20], we presented the module-based wireless node for

ns-2 (MW-Node). We introduced the concept of a unique
multi-purpose node with added functionalities, e.g. posi-
tion and mobility, by means of modules and proposed a bet-
ter integration of wireless networking in ns-2. Support for
multiple wireless interfaces was provided by using a wireless
routing module and a chain of classifiers attached to wire-
less interfaces. However, the implementation was limited to
either a single protocol running over several interfaces, or
several protocols running over a single interface each and
sharing information within the wireless routing module. In
addition, different objects were used for implementing either
type of protocols. No particular support was provided for
sharing information between routing protocols running on
different types of interfaces.

To the best of our knowledge, the only recent work con-
cerned with adding more flexibility to ns-2 and supporting
multiple interfaces is the ns2-MIRACLE framework [7]. For
earlier work on multiple interface support in ns-2, the reader
is referred to [20] and the references therein.

The purpose of ns2-MIRACLE4 is to provide support for
a flexible multi-layer node architecture and cross-layer inter-
actions. To this end, the authors have developed a generic
wrapper for ns-2 objects referred to as Module. Modules are
generalized ns-2 BiConnector objects with any number of
up- and down-targets. Modules are linked together in OTcl
to build up M_Nodes. In addition, Module, more precisely
PlugIn from which Module inherits, provides methods for
sending and receiving cross-layer messages. Any Module is
attached to the NodeCore thus providing a generic support
for cross-layer interactions.

Modules of interest with regard to the work presented
in this paper are network layer modules. Ns2-MIRACLE
provides a generic Module/Ip with an address and a sub-
net attribute. Derived objects are Module/Ip/Interface

and Module/Ip/Routing. Module/Ip/Interface does noth-
ing but forwarding up- or downwards packets and discarding
packets which are not destined to this node or which can-
not be sent on this interface. Module/Ip/Routing is to be
used above one or more Module/Ip/Interfaces and pro-
vides support for manual routing, i.e. user-defined packet
forwarding.

The ns2-MIRACLE framework has been developed within
the European project Ambient Networks [1] and has thus
been used to simulate typical Always-Best-Connected [12]
scenarios. In these scenarios, mobile user devices, equipped
with several interfaces using different access technologies,
are in the 1-hop range of a base station and should decide
which interface to use based for instance on QoS require-
ments for a given application and quality reported by dif-
ferent layers. Examples of such reports are signal to inter-
ference plus noise ratio (SINR) reports from the physical
layer, frame loss rate at the MAC layer, delay at the appli-
cation layer. See for instance the example given in [7]. No
routing protocol is needed in such scenarios and, to the best
of our knowledge, no routing protocol has been ported to
the ns2-MIRACLE framework. In addition, with several de-
tailed dynamic routing protocols operating on a single node,
a manager module would also be needed above all the proto-
cols. In conclusion, in comparison with ns-2, ns2-MIRACLE

4At the time of writing, the latest version is 1.2.1.

provides more flexibility and support for cross-layer interac-
tions, but the need for a network layer architecture sup-
porting multiple routing and forwarding protocols and in-
terworking between them is similar.

Another parallel and major recent and ongoing effort is
the development of ns-3 [4]. Contrary to our approach,
where extensions result from the analysis of what is needed
to support new scenarios, network classes and paradigms,
the rationale behind the development of ns-3 has been is-
sues and limitations of the ns-2 software itself and its run-
ning. The project goals [15] include improved software de-
sign, scalability, memory efficiency, support for parallel and
distributed simulation, support for emulation and integra-
tion of external open-source softwares. This has lead to a
node architecture that mirrors real-world IP stacks and will5

provide support for multiple interfaces (network devices in
the ns-3 terminology) and multiple (detailed dynamic) rout-
ing protocols. More precisely, we note that the purpose of
ns-3 NetDevice is similar to that of our NetworkInterface2
and the purpose of Ipv4L3Protocol similar to that of our
NetworkLayerManager. Therefore, we believe that new net-
work layer objects developed using our framework will be
easily portable to ns-3 when it becomes ready for use in
network studies.

8. CONCLUSION
This paper motivated the design of a network layer archi-

tecture extending ns-2 to support the simulation of multi-*
networks (multi-technology, multi-homed, multi-hop, multi-
interface, multi-channel, multi-destination, multi-route etc.).
Using wireless mesh networks as an example, we derive a
list of required features to enable the simulation of such net-
works. Collating this list with the current design and imple-
mentation of ns-2, we then identified the needed extensions.
We finally presented our implementation of a network layer
architecture which incorporates these extensions and illus-
trate its functionality with a simple example. In particular,
this architecture provides support for multiple interfaces,
potentially of different types, and multiple routing and for-
warding protocols running on a single node. Our use so
far has indicated that this architecture meets our needs in
simulating multi-* networks.

9. REFERENCES

[1] The ambient networks project.
http://www.ambient-networks.org/.

[2] dei80211mr library.
http://www.dei.unipd.it/wdyn/?IDsezione=5091.

[3] The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[4] ns-3 project. http://www.nsnam.org/.

[5] IEEE Std. 802.11-2007, Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) specifications. IEEE Std. 802.11, 2007.

[6] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40(8):102–114, Aug. 2002.

[7] N. Baldo, F. Maguolo, M. Miozzo, M. Rossi, and
M. Zorzi. ns2-MIRACLE: A modular framework for

5At the time of writing, ns-3 (ns-3.0.12) is still in a pre-alpha
state and the core API is not yet frozen.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 



multi-technology and cross-layer support in network
simulator 2. In Proceedings of the First International
Workshop on Network Simulation Tools (NSTools),
Nantes, France, Oct. 2007.

[8] J. Blum, A. Eskandarian, and L. Hoffman. Challenges
of intervehicle ad hoc networks. IEEE Transactions on
Intelligent Transportation Systems, 5(4):347–351, Dec.
2004.

[9] Q. Chen, F. Schmidt-Eisenlohr, D. Jiang,
M. Torrent-Moreno, L. Delgrossi, and H. Hartenstein.
Overhaul of IEEE 802.11 modeling and simulation in
ns-2. In Proceedings of the 10th ACM Symposium on
Modeling, analysis, and simulation of wireless and
mobile systems (MSWiM), Chania, Crete Island,
Greece, Oct. 2007.

[10] E. W. Dijkstra. A note on two problems in connection
with graphs. Numerical Mathematics, 1:269–271, 1959.

[11] V. Gungor, E. Natalizio, P. Pace, and S. Avollone.
Wireless Mesh Networks: Architectures, Protocols, and
Applications, chapter Challenges and Issues in
Designing Architectures and Protocols for Wireless
Mesh Networks, pages 1–27. Springer-Verlag, 2007.

[12] E. Gustafsson and A. Jonsson. Always best connected.
IEEE Wireless Communications Magazine,
10(1):49–55, Feb. 2003.

[13] A. Hamidian, U. Körner, and A. Nilsson. Performance
of internet access solutions in mobile ad hoc networks.
In G. Kotsis and O. Spaniol, editors,
Dagstuhl-Workshop “Mobility and Wireless in
Euro-NGI”, LNCS 3427, pages 189–201, 2005.

[14] P. E. Heegaard and O. J. Wittner. Self-tuned refresh
rate in a swarm intelligence path management system.
In Proceedings of the EuroNGI International
Workshop on Self-Organizing Systems (IWSOS 2006),
LNCS, University of Passau, Germany, Sept. 2006.
Springer.

[15] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley.
ns-3 project goals. In Proceedings of the 2006
workshop on ns-2: the IP network simulator (WNS2),
Pisa, Italy, Oct. 2006.

[16] D. Johnson, Y. Hu, and D. Maltz. The Dynamic
Source Routing protocol (DSR) for mobile ad hoc
networks for IPv4. RFC 4728, 2007.

[17] N. Nandiraju, D. Nandiraju, L. Santhanam, B. He,
J. Wang, and D. Agrawal. Wireless mesh networks:
Current challenges and future directions of
web-in-the-sky. IEEE Wireless Communications
Magazine, 14(4):79–89, Aug. 2007.

[18] E. Nordström. AODV-UU.
http://sourceforge.net/projects/aodvuu/.

[19] E. Nordström, R. Gold, and P. Gunningberg.
Mythbusters: Whatever you thought about MANET
routing, think again... Technical report, Uppsala
University, Sweden, 2005.

[20] L. Paquereau and B. E. Helvik. A module-based
wireless node for NS-2. In Proceedings of the 2006
workshop on ns-2: the IP network simulator (WNS2),
Pisa, Italy, Oct. 2006.

[21] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
On-Demand Distance Vector (AODV) routing. RFC
3561, 2003.

[22] C. E. Perkins and P. Bhagwat. Highly dynamic
Destination-Sequenced Distance-Vector routing
(DSDV) for mobile computers. ACM SIGCOMM
Computer Communication Review, 24(4):234–244,
1994.

[23] I. Purushothaman and S. Roy. Infrastructure mode
support for IEEE 802.11 implementation in NS-2.
Technical report, Fundamentals of Networking Lab,
University of Washington, USA, 2007.

[24] T. Razafindralambo. ASR - Adhoc Static Routing.
http://www2.lifl.fr/˜razafind/asr.html.

[25] The VINT Project, UC Berkeley, LBL, USC/ISI, and
Xerox PARC. “The ns Manual”, Kevin Fall and
Kannan Varadhan edition, 2008.

[26] J. Widmer. NO Ad-Hoc routing agent (NOAH).
http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/.

[27] S. Wiethölter, M. Emmelmann, C. Hoene, and
A. Wolisz. TKN EDCA model for ns-2. Technical
Report TKN-06-003, Telecommunication Networks
Group, Technical University of Berlin, Germany, June
2006.

[28] O. Wittner and B. E. Helvik. Simulating mobile agent
based network management using network simulator.
Poster in Forth International Symposium on Mobile
Agent System (ASA/MA 2000), Sept. 2000.

[29] Q. Zhang and Y.-Q. Zhang. Cross-layer design for qos
support in multihop wireless networks. Proceedings of
the IEEE, 96(1):64–76, Jan. 2008.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4398 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4398 


