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ABSTRACT

This paper investigates a polling system with a random
polling scheme, a 1-limited service discipline and determin-
istic service requirement modeling WLANs with QoS dif-
ferentation capability. The system contains high and low
priority queues that are distinguished via the probability of
being served next. We propose a new iteration algorithm
to approximate the waiting time of customers in the high
and low priority queues. As shown by simulation results,
our approximation is accurate for light to moderately loaded
networks.

Keywords: Polling model, QoS differentiation, WLAN,
IEEE 802.11e

AMS subject classification: 90B15, 90B18, 90B22,
68M20, 60K25

1. INTRODUCTION
Wireless Local Area Networks (WLANs) have become widely

available for internet access and there is currently a growing
demand for the support of other applications, in particular
speech and video. Specific mechanisms then need to be de-
ployed in order to provide appropriate QoS to the various
applications. A typical approach to provide such QoS dif-
ferentiation is for example by giving a larger share of the
available capacity to preferred users, or giving priority to
preferred classes. Introduction of such mechanisms requires
insight into their performance. This paper investigates the
influence of prioritization of the packet delay handling at the
Medium Access Control (MAC) layer in WLANs.

In IEEE 802.11 WLAN prioritization appears in the sup-
port of different QoS classes. These QoS classes are imple-
mented via different settings of MAC layer parameters, like
their access time, the maximum and minimum value for their
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back-off counter or the number of consecutive packets that
may be transmitted, see [10] for an overview of IEEE 802.11e
that incorporates these mechanisms. QoS provisioning for
IEEE 802.11 systems has been investigated mainly via dis-
crete event simulations. Analytical models yielding robust
insight into system behaviour are scarce. To a large extent,
such models are based on the pioneering work of Bianchi
[1], in which a basic 802.11 system with persistent sources,
i.e. sources that always have packets ready to be trans-
mitted, is modeled and analysed using a Markov chain ap-
proach and validated via simulation showing excellent agree-
ment with actual system behaviour. Extensions to include
physical layer details are given in e.g. [9],[16]. The exten-
sion to non-persistent sources is provided in [3],[14], where a
flow level model is introduced that is analysed using a Pro-
cessor Sharing queueing model. Comparison with discrete
event simulation shows that indeed the MAC layer can be
adequately modeled via the Processor Sharing mechanism.
Extensions to multiple traffic classes with different QoS re-
quirements, as e.g. in 802.11e, are among others presented
in [17],[18],[19].

Although the flow level modeling of [3],[14],[17],[18],[19]
captures the resource sharing behaviour of the MAC layer
of 802.11 protocols, the essential behaviour at the packet
level is not captured. At that level a flow consists of a series
of packets that are transmitted one by one, where trans-
missions of different flows are intertwined. Especially for
real time applications, such as speech/telephony, the packet
level is of high importance. In [4], a packet level analysis for
non-persistent sources is presented, extending the Markov
model of Bianchi to include the probability of the node go-
ing into an empty backoff state. We take a further step to
analyze the packet level by modeling the MAC layer as a
polling model where the server works off packets at differ-
ent queues. The essential characteristics of the QoS aware
MAC protocol are incorporated via the frequency at which
the server visits the different nodes. In particular, we give
the server a high probability of visiting a node with high
priority packets.

In our polling model, we consider two types of queues,
viz. high and low priority queues, each type with a different
probability of the server moving to it. Upon departure from
a queue, the server randomly selects a queue according to
these probabilities, which mimics the behaviour of the MAC
layer in 802.11 systems. Note that we do not claim to ac-
curately model the behaviour of the IEEE 802.11e protocol,
but analyse a mathematically interesting model that pro-
vides insight into the effect of prioritization such as used in

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4394 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4394 



the IEEE 802.11 MAC layer. In our model, we will take the
probability of moving to a high priority (HP) queue to be α
times as high as moving to a low priority (LP) queue. The
service time of a packet is considered to be deterministic as
the packet sizes in the system are equal for all queues and
the channel speed is assumed to be constant at all times. As
a queue is only allowed to transmit one packet when obtain-
ing the channel, the service discipline is 1-limited. This pa-
per analyzes the steady state waiting time for this 1-limited
polling system with random polling.

For the 1-limited polling model, general results are avail-
able in literature. In [6] Fuhrmann and Cooper derive the
well known decomposition result for queues with server va-
cations, which is very useful for analyzing polling models.
For symmetric queues, so with identical arrival and service
rates at the queue, and a cyclic polling order, [7] extends this
result to give analytical results on the average waiting time
of packets in the queues. In [2], Boxma gives a pseudocon-
servation law for the mean waiting time in a polling system
with Markovian polling, that includes random polling. This
law provides an exact expression for a weighted sum of the
mean waiting times at all queues, which need not be sym-
metrical. However, results for individual queues cannot be
derived from this law when the network is not symmetric.

The main contribution of this paper is an analysis of the
steady state marginal distribution of the waiting time of
packets for different types of queues in a 1-limited asym-
metric polling model. We consider the different queues in
the system individually and model a particular queue as a
queue with server vacations, where these vacations depend
on the state of the other queues. To obtain the steady state
waiting time distribution, we propose an iteration algorithm.
The algorithm computes the marginal steady state distribu-
tion of the number of packets at a tagged queue, assuming
a steady state at all other queues. Iterating this approach
over the queues, for various settings, we obtain the steady
state waiting time distribution for packets at the different
queues.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the queueing networks under consideration
and the analytical approach for determining the distribu-
tion of the waiting time of customers per queue. Numerical
results of the proposed algorithm are compared with simu-
lation in Section 3, and Section 4 concludes the paper.

2. MODELDESCRIPTIONANDANALYSIS
Consider a polling model consisting of queues Q1, ..., Qn

with finite buffer B and a single server S visiting the queues.
Customers arrive at a queue Qi according to a Poisson pro-
cess with rate λi. The service process at the queues is deter-
ministic with service time τ and there is no switchover time
between the queues. The routing policy for the server is ran-
dom, meaning there is a probability pi that the server moves
to queue Qi upon departure from queue Qj , j = 1, ..., n. For
a high priority queue, this probability is α times as high as
for a low priority queue, that is pHP = αpLP . The service
policy is assumed to be 1-limited, meaning at most one cus-
tomer is served at each visit of the server, and customers
are served FCFS at each queue. When the server reaches
an empty queue, it will immediately proceed to the next.
When all queues are empty, the server waits at the last
queue to instantly move to the first queue that receives a
customer. To ensure stability of the system we assume that

ρ =
∑n

i=1 λiτ < 1.
In the following, we derive expressions for the average

waiting time of a packet for both types of queue. We start
by considering one high priority queue surrounded by n low
priority queues. At both queues, packets arrive according
to a Poisson process. The server will move to the HP queue
with probability α

n+α
and to a certain LP queue with prob-

ability 1
n+α

. We present an algorithm to approximate the
waiting time of a packet for both types of queue. This al-
gorithm considers queues separately as served by a server
with vacations. The length of the vacations depends on the
number of customers at the other queues. Starting with
an arbitrary distribution of the number of customers at the
other queues, the steady state of the number of customers in
the considered queue is determined, using the vacation time
distribution. This process is iterated over the different types
of queues repeatedly, until convergence occurs. For specific
cases, being that either the HP or LP queues are saturated,
meaning they always have packets ready to be transmitted,
exact results are presented. Exact results are also given for
the case where all queues have equal priority.

2.1 General case
To determine the average waiting time of a packet in the

queue, we consider the queues separately, as if they are in
isolation. From the point of view of a queue, the server is
either present and serving a packet, or away while serving an
other queue. We thus can consider a queue as an M/D/1/B
queue with vacations (c.f. [5],[11],[12]), where the absence of
the server while serving other queues are the vacations. The
length of these vacations, which depends on the number of
customers at the other queues, influences the waiting time
of the packets in the queue. For illustratory reasons, we
first give the analysis for the scenario where there are two
queues, one high priority and one low priority queue, which
as we show later can be extended to any number of queues.

2.1.1 Two queues

In the two queue scenario, each queue can be considered
separately as a queue with a server that goes on vacation.
The duration of a vacation now depends on the state of the
other queue. We approximate the distribution of the length
of the vacation Vx, given the number of customers Ny at the
other queue (HP or LP) using the following recursion:

P (Vx = kτ |Ny = i) = (1)

qy

B
∑

j=i−1

P (Vx = (k − 1)τ |Ny = j)P (Ay = j − i + 1), ∀k ≥ 1

P (Vx = 0|Ny = i) =

{

1, i = 0
(1 − qy), i = 1, ..., B

where Vx is the length of the vacation seen by the queue
x, Ny , qy and Ay are the number of customers at queue y,
the probability of the server polling queue y and the number
of arriving customers at queue y during the service time at
queue x, respectively. Note that length of a service period is
known to be τ due to the 1-limited service discipline, hence
we will denote this as a service time. The variable x can be
the HP or LP queue and y is the other type of queue. The
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vacation length distribution is then determined using

P (Vx = kτ ) =

B
∑

i=0

P (Vx = kτ |Ny = i)P (Ny = i), k ≥ 0

(2)
As the steady state distribution P (Ny = i), is not known,
we start with an arbitrary distribution, for example an al-
ways empty queue. Using this distribution, the vacation
distribution for the other queue is obtained.

We derive the steady state distribution of the number of
customers in the queue using the vacation time distribution,
so that by using Little’s law we acquire the expected waiting
time of a packet. The queue under consideration can be seen
as an M/D/1/B queue with vacations (c.f. [5],[11],[12]). To
analyze the steady state of this queue, we first focus on
the state of the system at embedded points, which are after
the departure of a customer or the end of a vacation. The
probability pn that an embedded point is the completion
of a service and the departing customer leaves n customers
behind, and the probability qn that an embedded point is
a vacation termination with n customers in the system are
related in the following manner

pn =

n+1
∑

k=1

gn−k+1qk, n = 0, 1, .., B − 2

pB−1 =
B

∑

k=1

g
C
B−kqk

qn =
n

∑

k=0

hn−kpk + hnq0, n = 0, 1, .., B − 1

qB =

B−1
∑

k=0

h
C
B−kpk + h

C
Bq0

B−1
∑

n=0

pn +
B

∑

n=0

qn = 1

where gj and hj denote the probability of j customers arriv-
ing during a service and vacation time, respectively, gC

j and

hC
j denote the probability of j or more customers arriving.

As these probabilities are known, this set of equations can
be solved, giving the steady state distribution at the end
of an interval (either a service or vacation). To determine
the continuous time steady state distribution, we note that
the number of times a departing customer leaves a certain
number of customers behind equals the number of times an
arriving customer finds this number of customers in the sys-
tem. We have to take into account, however, that an arriving
customer can find B customers in the system in which case
the customer is discarded and leaves. Let PB denote the
probability that an arriving customer finds the system full.
To evaluate this expression, observe that

PB =
ρ − ρ

ρ

′

where ρ = λτ , λ =
∑

i
λi is the offered load and ρ′ is the

carried load,

ρ
′ =

(1 − b)τ

bEV + (1 − b)τ

where EV denotes the expected vacation time and b denotes
the probability that an embedded point is a vacation termi-

nation point,

b =

B
∑

n=0

qn.

Let σ denote the multiplicative inverse of the average inter-
val between consecutive embedded points, that is

σ
−1 = bEV + (1 − b)τ

then

PB = 1 −
(1 − b)σ

λ
.

The queue length distribution at arrival epochs, πn, n =
0, ..., B is

πn = P (Arrival sees n packets|Arrival is accepted)(1 − PB)

+ P (Arrival sees n packets|Arrival not accepted)PB

= pn(1 − PB) + PB1(n = B)

where

1(n = B) =

{

1 if n = B
0 otherwise

Combining these results, we obtain

πn =
(1 − b)σ

λ
pn, n = 0, 1, ..., B − 1 (3)

πB = 1 −
(1 − b)σ

λ
.

From PASTA we obtain that the continuous time steady
state queue length distribution is given by πn, n = 0, ..., B.
Note that (3) requires the average vacation time EV , and (2)
the distribution of the other queue to determine the vacation
time distribution. We may iterate (2) and (3) to obtain an
approximation of the steady state queue length distribution.

Algorithm 1. Iteration

1. Initialize
It := 1, x := 1, y := 2
P (Ny = i) = γi, ENi(0) = 0 for i = 0, ..., B
where ENi(j) denotes the average queue length of queue
i in iteration j

2. Determine the vacation time distribution at queue x
from (2), and EV := EVx

3. Determine the queue length distribution P (Nx = n) =
πn, n = 0, ..., B, from (3) and determine the average
queue length ENx(It)

4. Set y := x, x := 3−y and repeat steps 2 and 3 for this
setting

5. If ENx(It)−ENx(It−1)
ENx(It)

< 0.01 for both x = 1, 2, then

STOP
Else y := x, x := 3 − y, It := It + 1 Go to Step 2

The algorithm approximates in each iteration the num-
ber of customers found at the other queue to determine
the vacation time for the tagged queue. When this vaca-
tion time is underestimated, the server switches back early
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to the queue and starts servicing a packet at the consid-
ered queue (when available), thus leaving the server busy.
When however the vacation time is overestimated, the ap-
proach leaves the server at the other queue for too long a
period, where this queue might actually have become empty,
thus leaving the server idle while it could process jobs in the
tagged (non-empty) queue. The presented approach hence
underestimates the capacity of the server, but equally for
both queues. The average queue length of all customers in
the total system, which for larger values of B approximately
can be seen as an M/D/1 queue as it is work conserving, is
known and given by

ENtotal =
ρ(2 − ρ)

2(1 − ρ)

where ρ = (λLP + λHP )τ , the load of the total system. The
results obtained by the iteration give a higher average queue
length due to underestimation of the server capacity. The
queue length of each type of customer should hence be scaled
down, so that the average queue length of all customers in
the system is correct. This leads to an improved estimation
of the average queue length of a customer per type of queue.
Using Little’s law, we obtain the average waiting time for
each type of queue.

The algorithm can start with an arbitrarily chosen steady
state distribution for the queue length of the HP queue.
From this, a new steady state is computed for the same
queue. Starting from each initial distribution for the HP
queue, Algorithm 1 converges to the steady state distribu-
tion. Theorem 1 below states that this convergence is mono-
tone starting from either an empty or full HP queue. We
need stochastic ordering. Let X and Y be random variables
with distribution FX(.) and FY (.), respectively. We say that
X ≤st Y iff FX(x) ≥ FY (x) for all x ≥ 0 (c.f. [15], p.410).

Theorem 1. For each initial distribution, Algorithm 1

converges monotonically.

Proof. Let XHP
i and XLP

i denote random variables for
the queue length distributions of the HP and LP queue after
the ith iteration and let Y LP

i and Y HP
i denote the random

variables for the corresponding vacation length distributions.
From (2) it follows that if XHP

0 ≤st XHP
1 also Y LP

0 ≤st Y LP
1

as a higher queue length for the HP queue leads to a longer
vacation length for the LP queue. From (3) it follows that
if Y LP

0 ≤st Y LP
1 also XLP

0 ≤st XLP
1 as a longer vacation for

the server of the LP queue leads to a higher number of pack-
ets in the LP queue. Following the same reasoning for the LP
node, we have that XLP

0 ≤st XLP
1 leads to Y HP

0 ≤st Y HP
1

and Y HP
0 ≤st Y HP

1 leads to XHP
1 ≤st XHP

2 . It thus follows
that XHP

0 ≤st XHP
i for any i ≥ 1 as long as XHP

0 ≤st XHP
1 .

Similarly we have that XHP
0 ≥st XHP

i for any i ≥ 1 as long
as XHP

0 ≥st XHP
1 .

From Theorem 1, an obvious approach is to start with

P (XHP
0 = n) =

{

1 for n = 0
0 for n > 0

(4)

since it then holds that XHP
0 ≤st X for any X with a non-

negative distribution. Let X∗
i denote the random variable

following an equilibrium distribution, that is X∗
i = X∗

i+1.
We then have that as XHP

0 ≤st X∗
i , also XHP

i ≤st X∗
i , so

the iteration process cannot jump past an equilibrium. In

every iteration, the distribution may change, moving closer
towards the equilibrium distribution. Similarly, we can start
with the distribution

P (XHP
0 = n) =

{

1 for n = B
0 for n < B

(5)

where B is the maximum number of customers in the queue.
It then follows that XHP

0 ≥st X for any X, so that after
every step we have that XHP

i ≥st X∗
i as XHP

0 ≥st X∗
i . In

this case every iteration takes a step closer to the equilibrium
from above. Using Algorithm 1 starting from both (4) and
(5), we find our approximation.

2.1.2 Multiple queues

The approach for two queues can easily be extended to
multiple queues of any priority class. The vacation length
of a considered queue then depends on the state of all the
other queues, and can be computed by analogy to (2). The
vacation length distribution in this case is given by

P (Vx = kτ |Ny = iy , y �= x) = (6)

∑

y �=x

qy

B
∑

az=iz,z �=x,y
ay=iy−1

P (Vx = (k − 1)τ |Nz = az, z �= x)·

∏

z �=x,y

P (Az = az − iz) · P (Ay = ay − iy + 1)

P (Vx = 0|Ny = iy, y �= x) =
qx

qx +
∑

y,iy>0 qy

Here qx denotes the probability of the server jumping to
queue x. The vacation length distribution is found using

P (Vx = kτ ) = (7)

B
∑

iy=0,y �=x

P (Vx = kτ |Ny = iy , y �= x)P (Ny = iy , y �= x)

where again the steady state queue length distribution of
the other queues is needed. Starting again with a random
distribution for all but one queue we find the vacation time
for this tagged queue and hence the corresponding steady
state queue length distribution of this queue. This distribu-
tion can now be used for all queues of the same class and
the other class can be analyzed using the steps of the al-
gorithm. Note that the proof of convergence remains the
same, as the analysis is done for each type of queue. In
the case of multiple queues with balanced load, that is with
identical arrival rates at the queues, the random variables
XHP

i , XLP
i , Y HP

i and Y LP
i can be used for all queues of the

same type as they are indentical. When arrival rates at the
queues are different, the same reasoning can be used for all

separate variables X
HPj

i , X
LPj

i , Y
HPj

i and Y
LPj

i , where the
subscript j denotes a specific queue of the type HP or LP.

2.2 Special cases
For a high priority queue, it may be needed that a cer-

tain average waiting time can be guaranteed. To obtain the
maximal average waiting time in a network with one HP
queue and n LP queues, we give results for the situation
with saturated LP queues. To analyze the impact of priori-
tizing the high priority queue on the low priority queues, we
compare the average waiting time at the LP queues without
an HP queue in the system, with the case where the HP
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queue is saturated. For these special cases, exact results are
available, which are given in this section.

2.2.1 Saturated LP queues

Consider one high priority queue with Poisson(λHP ) packet
arrivals and n saturated low priority queues, i.e. λLP → ∞.
Let the probability q of visiting the high priority queue be

q =
α

n + α

where α denotes the factor of importance given to the high
priority queue, meaning the probability of visiting the HP
queue compared to the LP queue is α times as high. For the
HP queue, the vacation length distribution is then given by
the geometric distribution

P (V = kτ ) = (1 − q)k
q

as any time the server does not jump to the HP queue, it will
service exactly one packet at an LP queue. As the average
time between arrivals of the server is τ

q
and the server only

serves one customer at each visit, the HP queue is stable
when q > λτ . With the exact distribution of the vacation
length known, we can use the pgf of the number of customers
in the queue as given by 3 to determine the average number
of customers in the HP queue. The average waiting time
then easily follows from Little’s law.

2.2.2 Empty and saturated HP queue

We now consider the case where the low priority queues
are no longer saturated, but each have an arrival process of
rate λLP and a deterministic service time of value τ . Let
queue n+1 be the HP queue, the conservation law (c.f. [8])
then states that

n+1
∑

i=1

ρiEW
q
i = ρ

∑n+1
i=1 λiβ

(2)
i

2(1 − ρ)

where EW
q
i denotes the average waiting time in the queue

(not including service) and ρi = λLP τ for i = 1...n and
ρn+1 = λHP τ , so that and ρ = nρLP + ρHP . As the service
time distribution is deterministic for any queue, we have

that β
(2)
i = τ 2 and the total waiting time of a customer is

EWi = EW
q
i + τ .

Consider the case where there are only n LP queues, so
the arrival rate at the HP queue is set equal to zero. The
stability condition is that ρ = nλLP τ < 1 and it immediately
follows that

n
∑

i=1

ρLP EW
q
LP = ρ

∑n

i=1 λLP τ 2

2(1 − ρ)

EW
q
LP =

ρτ

2(1 − ρ)

EWLP =
(2 − ρ)τ

2(1 − ρ)

Now consider the case where the HP queue is saturated.
We have n identical LP queues, and from the perspective of
the LP queues the server incurs a switchover time when it
visits the HP queue. The stability condition for this system
is that nλσ

(1−ρ)
< 1, where σ denotes the mean switchover

time, as this is the number of arriving customers during the
average cycle time of a queue. Let pi denote the probability
of jumping to queue i and si the average time it takes to

switch to queue i. We have a pseudo-conservation law stating
that (c.f. [2])

n
∑

i=1

ρi[1 −
λi

pi

σ

1 − ρ
]EWi =

ρ

∑n

i=1 λiβ
(2)
i

2(1 − ρ)
+

σ

1 − ρ

n
∑

i=1

ρi

pi

−
n

∑

i=1

ρisi +
ρ

2σ

n
∑

i=1

pis
(2)
i ,

where for our model we have that λi = λLP = λ, ρi = λτ ,

ρ = nλτ , β
(2)
i = τ 2, pi = 1

n
, si = qτ

1−q
, s

(2)
i = q(q+1)τ

(1−q)2
and

σ = si as all switchover times are equal. Here q denotes the
probability of the server polling the HP queue. As the LP
queues are statistically identical, the expression simplifies to

EWLP =

nλτ2

2(1−nλτ)
+ qτn

(1−q)(1−nλτ)
+ q+1−2qτ

2(1−q)

[1 − nλqτ

(1−q)(1−nλτ)
]

and applying Little’s law the average total number of cus-
tomers in the queue is obtained. Note that this approach
can easily be extended to a case with multiple high priority
queues, as only the probability of the server being on vaca-

tion changes, so only the values of si and s
(2)
i need to be

adjusted.

3. VALIDATION
In the following we validate our approximation approach

by comparison with simulation results. For a wide variety
of settings, varying the load of the system and the grade of
prioritization, the average waiting times of packets at the
individual queues are determined. Note that the approach
presented calculates the distribution of the waiting time,
but only the averages are used in the following for compari-
son with simulation. Results for the scenario with one high
priority and one or two low priority queues are considered,
together with the special cases.

3.1 General case

3.1.1 Two queues

Table 1 shows the average waiting time of packets in a
queue computed by the algorithm compared with simulation
results for different loads of the system in the case of two
queues, one HP and one LP queue. The table shows the
impact of varying α, the relative importance of the HP queue
compared to a LP queue. The load at the queues is balanced,
i.e. each queue has the same arrival rate of packets. The
probability of moving to the HP queue is q = α

n+α
, which

is α times as high as for the LP queue and the buffer size
is set to 15 for all cases. The impact of the differentiation
appears to be higher when the load of the system increases.
For a low load, the queues are often empty, thus making it
possible for the server to attend to packets directly upon
arrival. As the load increases, the queues will be fuller and
the waiting time depends more on the frequency at which the
server visits the queues. We observe that the accuracy of the
algorithm deteriorates as the load of the system increases.
For a highly loaded system, the queues will at times be fully
loaded, causing arriving packets to be lost. This effect is not
taken into account when using the pseudoconservation law
to scale the obtained results. Simulation however shows that
the impact of this approximation is limited, as the average
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Table 1: Average waiting time in a two node network with balanced load
Rates Simulation Algorithm Error

α λLP λHP LP HP LP HP LP HP
2 0.1 0.1 0.1129 0.1120 0.1125 0.1125 0.3455 0.4437
3 0.1 0.1 0.1132 0.1118 0.1166 0.1084 3.0128 2.9663
4 0.1 0.1 0.1133 0.1117 0.1174 0.1076 3.6018 3.6286
2 0.2 0.2 0.2723 0.2609 0.2829 0.2504 3.9085 4.0431
3 0.2 0.2 0.2753 0.2580 0.2911 0.2422 5.7375 6.1312
4 0.2 0.2 0.2771 0.2569 0.2961 0.2373 6.8574 7.6399
2 0.3 0.3 0.5623 0.4888 0.5918 0.4582 5.2475 6.2384
3 0.3 0.3 0.5792 0.4714 0.6253 0.4247 7.9612 9.9101
4 0.3 0.3 0.5881 0.4624 0.6454 0.4046 9.7323 12.5021

number of packets in the system remains close to a system
with infinite queues.

In a similar fashion Table 2 shows results for unbalanced
arrival rates, with the probability q = 2

3
(α = 2) of visiting

the HP queue kept constant. For more unbalanced situ-
ations, the results deteriorate, especially for higher loads.
For the node with the lower arrival rate, the error made
by the algorithm is bigger, as the average queue length is
smaller. Comparing the impact of increasing the load of the
LP queue on the HP and vice versa shows that the increase
in load of the HP queue has a bigger impact on the average
waiting time at the LP queue than increasing the load of the
LP queue has on the HP queue. As an increase of the load
will cause the queue to be non-empty for a larger fraction of
the time, the impact it has on the other queue by causing
the server to go on a vacation becomes larger. As a HP has
a higher probability of being visited, increasing the load of
this queue has a bigger impact than increasing the load at
the LP queue.

3.1.2 Three queues

In Table 3 we consider the scenario with three queues,
one HP queue and two LP queues. The table shows the
average waiting time of packets computed by the algorithm
compared with simulation results for the situation with bal-
anced load. As for the situation with two nodes, we observe
that for higher loads, the impact of the prioritization in-
creases. Again, the results deteriorate as the load of the
system increases. Comparison with the results of Table
1 furhter shows that the impact of prioritization is higher
when more nodes are active in the network. The decrease in
the average waiting time of customers for the HP queue is
stronger relative to the decrease for the two node situation.
With more queues present, the relative increase in probabil-
ity of being visited is higher when the value of α is increased.
For example, increasing the value of α from 2 to 3 for both
situations gives the following relative increase (r.i.):

α = 2 α = 3 r.i.

2 nodes q =
2

3
q =

3

4
12.5%

3 nodes q =
1

2
q =

3

5
20%

For all settings, no more than 15 iterations were needed
by the algorithm with the accuracy set in such a way that
the last step gave an improvement less that 1%. Longer
runs with higher accuracy did not improve the results signif-
icantly. To run the iterations, the values of P (Vx = kτ |Ny =
i) for the two node case and P (Vx = kτ |Ny = iy , y �= x) for

the three node case had to be computed once using the itera-
tions given in (1) and (6), which is time consuming for large
values of the buffer sizes. For highly filled buffers however,
the geometric distribution can be used, as the probability of
the vacation having a duration of kτ is then very close to
the probability of first visiting k other queues before visiting
the considered queue, as the other queues will not become
empty during the process. The time needed for the iteration
itself is very limited, as (2) (or (7)) only encompasses the
addition over all possible values of queue lenghts and (3)
is a small enough system of equations to be solved within
seconds.

3.2 Special cases

3.2.1 Saturated low priority queues

For a user with important traffic, the QoS differentiation
is of high importance. To get an idea of the impact of the
settings for the differentiation, a worst case scenario can be
analysed to see the minimal prioritization that is needed to
obtain a certain average waiting time for the high priority
packets. The worst case scenario is when all other (low pri-
ority) queues always have traffic to transmit. Figure 1 shows
the average waiting time of a packet in the HP queue, for
different values of n, the number of saturated low priority
queues in the system. The arrival rate at the HP queue is
set to λHP = 0.01. The three lines represent the results of
the model for α = 2...4, the grade of prioritization. It clearly
follows from the figure that where for a sparce network (low
number of LP queues) the differentiation has a limited effect
and that for a dense network (high number of LP queues)
giving more priority has a much bigger impact.

3.2.2 Empty and saturated high priority queue

The differentiation between users is primarily done to pro-
vide better performance for more important traffic. How-
ever, it also has to be taken into account what the impact is
on performance of the less important traffic. If the prioriti-
zation of the high priority queue is too high, the low priority
queues might be starved. To analyse the impact on the low
priority queues, we compare the situation without the HP
queue (or an empty HP queue) with the situation that the
HP queue always has packets to transmit. In the latter case,
we vary the grade of prioritization. Figure 2 shows the av-
erage waiting time of a packet in an LP queue, for different
values of n, for different settings of the HP queue. The ar-
rival rate λLP is set to 0.01 for each of the n LP queues. In
this case the HP queue is either absent (or empty) in which
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Table 2: Average waiting time in a two node network with unbalanced load

Rates Simulation Algorithm Error
λLP λHP LP HP LP HP LP HP
0.2 0.5 0.4724 1.0469 0.5068 1.0098 7.2785 3.5384
0.5 0.2 1.1693 0.3475 1.2053 0.3113 3.0780 10.4126
0.1 0.01 0.1061 0.0107 0.1061 0.0106 0.0416 0.5174
0.01 0.1 0.0106 0.1062 0.0111 0.1057 3.9743 0.4905
0.4 0.1 0.6120 0.1384 0.6176 0.1324 0.9038 4.3436
0.1 0.4 0.1554 0.5934 0.1712 0.5788 10.1452 2.4608
0.1 0.3 0.1373 0.3966 0.1475 0.3858 7.3913 2.7269
0.3 0.1 0.4081 0.1286 0.4093 0.1240 0.3084 3.5340

Table 3: Average waiting time in a three node network with balanced load
Rates Simulation Algorithm Error

α λLP λHP LP HP LP HP LP HP
2 0.1 0.1 0.1217 0.1205 0.1245 0.1151 2.386 4.465
3 0.1 0.1 0.1228 0.1188 0.1261 0.1122 2.639 5.556
4 0.1 0.1 0.1229 0.1185 0.1269 0.1104 3.323 6.868
2 0.2 0.2 0.3654 0.3202 0.3766 0.2928 3.054 7.300
3 0.2 0.2 0.3711 0.3072 0.3882 0.2736 4.602 10.949
4 0.2 0.2 0.3749 0.2986 0.3946 0.2608 5.250 12.678
2 0.3 0.3 1.9029 0.9133 2.0479 0.8543 7.621 6.461
3 0.3 0.3 2.0098 0.7526 2.1639 0.6221 7.669 17.337
4 0.3 0.3 2.0653 0.6844 2.2162 0.5177 7.304 24.356

Figure 1: Average waiting time for the scenario with

saturated LP queues

case the complete network behaves as a standard M/D/1
queue where each separate queue has the same average be-
haviour or the HP is saturated, with different values for α,
the grade of prioritization. For higher values of α the server
will more often be processing HP packets, leaving less ca-
pacity for the LP queues. This shows from the figure as the
waiting time reaches high values already for lower values of
n. When the network is sparce, we see there is already a
substantial impact of the differentiation on the waiting time
of the low priority packets.

4. CONCLUSION
In this paper we analyzed the impact of QoS differentia-

tion on the delay of packets for different classes of queues

Figure 2: Average waiting times for the scenario

with an empty or saturated HP node

using a 1-limited polling model with a random scheduling
policy and deterministic service times, capturing the ran-
dom nature of the MAC layer protocol. The model gives
insight in the effect of the parameter settings on the QoS in
a WLAN for the individual classes of queues. We developed
an approximation approach for the packet delay in a net-
work with high and low priority queues. Comparison with
simulation results shows that for low to moderately loaded
systems, the approach works well.
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