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ABSTRACT

We investigate the existance of simple policies in finite dis-
counted cost Markov Decision Processes, when the discount
factor is not constant. We introduce a class called “exponen-
tially representable” discount functions. Within this class
we prove existence of optimal policies which are eventually
stationary—from some time N onward, and provide an al-
gorithm for their computation. Outside this class, optimal
policies with this structure in general do not exist.
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1. INTRODUCTION

In Markov decision models (MDPs), discounting is used
to model the fact that the further in the future something
happens, the less important it is. Simple discounting, where
the reward is multiplied by a constant discount factor at
each epoch, arises naturally from economic considerations,
when constant rates of interest (bonds) or constant inflation
are assumed. Such models are relatively easy to analyze. In
particular, in this case there exists an optimal policy which
is stationary, namely deterministic and independent of the
time and of past states [5]. Because it can be intuitively un-
derstood and handily analyzed, simple discounting has been
thoroughly researched and applied to countless models—
from machine learning, computer networks to game theory
and psychology.

However, in general the decrease in value of the future
need not be geometric. In models of “learning curves”, the
cost of “getting to know” the system is added to the orig-
inal criterion. The discounting in this criterion typically
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has a power-law form, though some models have geomet-
ric learning curves. Additional geometric decreases arise
from models such as “Moore’s law,” in which a cost (in this
case of a unit of computation power) decreases geometri-
cally fast. The addition of an exponentially-decreasing com-
ponent (with a rate different from the discount factor) to
a discounted Markov decision model results in a weighted
discounted criterion—that is, a criterion that is the sum
of several standard discounted criteria. A theory for finite
models with weighted discounted criteria was developed by
Feinberg and Shwartz [2]. The main results are that for such
criteria there are optimal policies that are stationary from
some finite time onwards, called N-stationary policies, and
an algorithm for the computation of these policies is given.

In models of human preferences, it makes sense to use dis-
counting with a decreasing rate. Intuitively, while tomorrow
may be less important than today, a year and a day from
now is just about the same as a year from now. “Hyperbolic
discount functions”, of the form (1 + cm)fﬂf/a with o,y > 0,
feature a decreasing discounting rate, and are reported to
effectively model psychological preferences (see [3] for pre-
sentation, and [6] for critique). Even Moore’s Law seems to
be breaking down, leading to non-constant discounting.

Because of the difficulty of analyzing decision processes
with general discount functions, most theoretical results are
obtained with “toy functions”, for example
f = [1,6,@, 5/82,6/83,.“}, which in a sense has a decreas-
ing discounting rate for 0 < § < 1, and often serves as
a replacement of the hyperbolic function mentioned above
(see, e.g. [4]). Following the lines of the weighted discounted
theory, we define the class of “exponentially representable”
functions, prove that when they are used as discount func-
tions there exist N-stationary optimal policies, and describe
a computation algorithm. These functions display the de-
creasing discount rate of the hyperbolic discount functions.
However, the hyperbolic discount functions are not expo-
nentially representable, and moreover—exponentially repre-
sentable discount functions cannot be used to model power-
law learning curves.

Below we define the model and the exponentially repre-
sentable functions, and state our main result. In section 2
we develop the algorithm for the computation of the optimal
policy and through it prove our result. In section 3 we fur-
ther discuss the meaning of exponential representability and
which functions belong in that class. Finally, in section 4 we
show that the N-stationary property is not always assured.



1.1 Markov Decision Processes

Consider a discrete time process with a finite state space
X, where z, € X denotes the state at time n = 0,1,2, ....
At each time, an action is chosen from a finite action set
A(z). Let A = |J,cx A(x) be the (finite) action space—
the set of possible actions and a, € A(zy) the chosen action
at time n. The state and chosen action at time n determine
the probability distribution of the next state through the
transition probability p (Zn+1|Zn,an), assumed to be inde-
pendent of the time and of further information on the past.
Additionally, the state and action determine the immediate
reward r (zn,an) given at time n.

The rule used to choose the action at each time is called
a policy. We call h,, = zoao - Tn—1an-1T, the history at
time n. Since the choice of action is required to be causal,
hn contains all the information available for making it. The
most general policy is therefore a mapping of every history
hrn to a probability measure 7 (-|hy,) on A(zy). Policies in
which only one action is possible for each given history are
called deterministic, so that a, = m(hyn). Policies which
depend only on the current state and the time, i.e. 7 (:|hn) =
7 (+|zn,n) are called Markov policies, and Markov policies
which do not depend on the time are called stationary.

The discounted criterion assigns to each policy and initial
state numerical value

V(@) =E7 Y B"7 (xn, an)

n=0

where E7 is the expectation induced by policy 7, given that
ho =z, and 0 < B < 1 is the discount factor. Since r (z,a)
is bounded, the value is always finite.

We discuss a more general discounted criterion, in which
B"™ is replaced with f(n):

VE (2im) = EZ S ()7 (2nan) (1)

A sufficient condition for the above summation to be well
defined is | f(n)| < K" for some 0 < 8 < 1 or, equivalently,
f(n) = B"g(n) for 0 < B < 1 and some bounded function
g(n). We call a function that satisfies this condition expo-
nentially bounded.

The weighted discounted criterion is a sum of a finite num-
ber of standard discounted criteria, each with a possibly dif-
ferent immediate reward function:

Ve (25 )

co K
=E7 ) > Birk (zn,an) with fi > B2 >+ > . (2)

n=0 k=1
Let us define the maximal and minimal values of an MDP,

respectively:

Viz) = Sl;p V(x;m) Vo(z) = igf V(z;m). 3)

An optimal policy is a policy for which V (z;7) = V(z), for
all z € X.

DEeFINITION 1.1. A Markov policy m is called N-stationary
if
m(z,n) =n(z,N) VzeX,n>N.
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DEFINITION 1.2. A function f : {0,1,...} — R is called
exponentially representable (ER) if there exist sequences
{ck}re, and {Br}i—, such that:

o {8}, is positive, strictly decreasing and 31 < 1.

e f(n) =>" 72, cxfi, the sum converges absolutely after
some N < oco.

EXAMPLE 1.3. The function

efo — 1

f<”>ei1ki_lzi!<5§>ne_1

is ER for 0 < Bo < 1 and logarithmically convez ((log f (x))
> 0)—hence with a decreasing rate of discounting, since the
rate is inversely proportional to f (n+ 1) /f (n). This is the
required property in aforementioned the human preferences
models.

1.2 The main result

Our starting point will be the following result on the struc-
ture of optimal policies under criteria (2) and (1).

THEOREM 1.4. In a weighted discounted MDP (2), there
ezists an optimal policy which is Markov and deterministic.
This holds also in MDPs with general discounting (1) when
the discount function is exponentially bounded.

For a weighted discounted MDP, a proof (under more general
conditions) is given in [2], Thm. 2.2. The idea is to embed
the process in an ordinary discounted MDP with a countable
state space X = (X x N ), where time is added so that the
new state is Z, = (zn,n), and use the standard result that
discounted criteria have deterministic and stationary opti-
mal policies. The same embedding can be carried out in the
case of a single general discount function which is exponen-
tially bounded. This theorem also extends straightforwardly
to a criterion that is a sum of several criteria with general
discount functions, as long as those functions are exponen-
tially bounded. Since this is a straightforward extension, we
omit the details.

From now on we focus on ER discount functions. Since
they are exponentially bounded, using Theorem 1.4 we re-
strict our policies to be Markov and deterministic.

THEOREM 1.5. Consider a finite MDP with an ER dis-
count function. There exists an N -stationary optimal policy
for this problem, with N < oco. This policy can be found
using Algorithm 2.6.

2. OPTIMAL POLICIES

The generalized discounted criterion in (1), with f (n) ER,
is an infinite version of the weighted discounted criterion.
To see this, find {cx},., and decreasing {8}, , such that
f(n) =372, ckB, and rewrite the criterion as

VE (z;m) = Ef Z F(n)r (zn,an)

n=0
e YN Ber (@) (4)
n=0 k=1

which is an infinite weighted discounted criterion with
Tk (Tn, an) = kT (Tn, an).



We now adapt the algorithm from part 3 of [2] to infi-
nite weighted discounted criteria induced by an ER discount
function. We will also prove that this algorithm halts after
a finite number of iterations, and provide a bound on that
number. Let

Vi (z;7) = E3 Z Brckr (%, an) (5)

n=0

denote the value of the k" summand in (4), and let V; (z)
and V, (z) be the maximal and minimal value for initial
state x. Define a “conserving set”:

F1({E)

{a € A(x) | Vi(e) = crr(z,a) + 51 ) p(ylz,a) Vl(y)} :
yex
(6)

It is easy to see that a policy is optimal for this criterion
if and only if it chooses actions from the (conserving) set
T'1 (z) when in state z: see Lemma 3.1 in [2].

Let X; = {z € X |T'1(z) # A(x)} be the set of states for
which suboptimal actions for criterion Vi exist. If X; # 0,
define:

g1 = min
zeXy,acA(z)\I'1 (z)

(Vl(ﬂﬁ) —ar(z,a) =1y pyle,a)Vi (y)> - (M

€1 is the value of the smallest “mistake” one can make in
the choice of a single action, with regard to criterion Vi. If
X1 = 0 define N; = 0. Otherwise define:

Ny :min{n >0|e1 > kz_z (%)”glga%(vk(g;) — Vk(ac))}
B )

LEMMA 2.1. If f(n) is ER, N1 is well defined and finite.

PROOF. Define S(n) = >"72, (Bk/01)" maxzex (Vi(x)
—V,~(z)). Denote the span semi-norm of r (z,a) by M =
maxméX,aEA(z) T (xv a‘) - mianX,aeA(m) T (iL’, a)' Then

_ M M
vk ggg(vk(ﬂi) — Vi (@) < ekl 5 = lex] 7 e

S < P> Gl . (10)

This proves N is finite—see [1]. [

REMARK 2.2. Let X = {zo} and A = {a1, a2} withr (z,a1)
=1 and r(z,a2) = 0. Then, maxgex (Vk(x) — ka(z)) =
lcx| /1 — Bk for any k, so S(n) = 7" Y ro, Bk |ck|. Here
S(n) — 0 only if Y7o, Brck converges absolutely for

some N < oo, i.e. only if f(n) is ER. Thus for a given
discount function f, the bound Ny is well-defined for any
model if and only if the discount function is ER.

Using the definitions (6) and (8) of T'1(x) and N1 respec-
tively,
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LEMMA 2.3. Consider a finite MDP with an ER discount
function. If o is an optimal Markov policy then n > N1 and
P {xn = 2z} > 0 imply o(z,n) € T'1(2).

PROOF. The proof extends that of Lemma 3.3 in [2], using
the same basic ideas. It is simple to show (see [2]) that the
optimality of o implies that for any stationary policy ¢, time
m and state z € X such that P {zm = 2z} > 0:

EZ { Z F)r (T, an) |zm = z}
> Ef { Z f)r (Tn, an) |xm = z} .

n=m

By substituting f(n) = Y r-, cx0y in the above equation,
denoting the time-shifted optimal policy by ™ (z,n) =
o (z,n+m), and using Vi as defined in (5), the above in-
equality can be rewritten ask

D O BVi(z0™) =Y B Vi (20)
k=1 k=1
and therefore

DB (Vi (z:0™) = Vi (59)) 2 B (Vi (25¢) = Vi (z30™)) .

k=2

()
We now suppose by contradiction that for some time m >
N and for some state z € X such that P {z.,, =2} > 0,
o (z,m) ¢ T'1(z). Let ¢ be the optimal stationary policy for
criterion Vi, so that Vi(z,¢) = Vi(z) for all z € X. Since
m > N1, and by the definition of N1 (which is meaningful
due to the fact that f is ER) we have:

. i_oj (%) V(=) — Vi (2)]

— (B \" m -
> = [Vk(z0™) = Vg (2 90)]
> (%) :
>Vi(z;¢) — Vi (z;0™) (12)

where the second inequality comes from the definitions and
the last from (11). On the other hand, since o (z,m) ¢ I'1(2)
and from the definition of &1:

Vi(z) = Vi(z;0™) > Vi(2)

- <T (2,0 (2,m)) + B Z p(ylz, 0 (z,m)) Vl(:’/)) 2> €1

yex
(13)

Inequalities (12) and (13) contradict each other, thus prov-
ing this lemma. [

If T'1 () is a singleton for all € X, then the lemma requires
any optimal policy to be Nj-stationary, and determines the
stationary part of the policy. If it is not a singleton, we know
that after time Ny our action sets reduce to I'y (z) and for ev-
ery admissible policy, V7 will attain its maximum value and
therefore be irrelevant. Our task therefore becomes finding
the optimal policy for the weighted sum starting from the
second discount factor, with the action sets restricted to I';.
To iterate the above process, define recursively for k > 1, the
restricted action sets in iteration k — Ay (z) = T'r_1 (2),



the m'" value function restricted to the k™ action set —
V&% (), and similarly the minimal value function Vi, ™ (z).
Additionally:

Iu(e) = {a € Aw(@) | V2 (@) = cur(e,a) + By

> plylz,a) VkAk(y)} (14)

yex

Xy ={z € X | T(x) # Ax(z)} (15)

cr = min
z€X},a€A (z)\T) (z)

(v,:*k (z) — ckr(z,a) — B Y p(ylw, a) VA (y)) (16)

yeX

N min{n> Ni—1|er > Z (ﬁﬁ—m)n
k

m=k+1

zeX

max (V,f?’C (z) — V,,?Ak(x))} (17)

where € is set to oo in the case that X, = (. Again, Ng
is well defined when f (n) is ER. With these definitions, the
following is evident:

LEMMA 2.4. Consider a finite MDP with ER discount func-

tion. If o is an optimal Markov policy, then for every k > 1,
n > Nj and state z € X such that P {x,, = z} > 0, we have
o(z,n) € T'k(z).

ProOOF. By induction using Lemma 2.3 and the above
definitions. [

We will now prove that iterating this procedure does indeed
provide us with an N-stationary policy after a finite and
bounded number of computations.

LEMMA 2.5. Consider a finite MDP with an ER discount
function. Let S = |X|. Then for all k > 2S5 — 1 and every
z €X, I'y (z) =Tag-1 ().

PROOF. If T'25-1 (z) is a singleton for all z € X, then the
lemma is immediate. Otherwise, let ® = {¢1, ¢2, ..., 41} be
the set of stationary policies such that ¢; (x) € I'2g5—1 () for
allz € X,i=1,2,...,L. For ¢ € ®, define f; :[0,1) — R
as

[fo (B), =E2. > B"r (xn,an) ,

so that Vi (2°5¢) = cx (fo (Br)),- Let [Pylmn = p(a”[z™, ¢
(2°)) and [rg], = 7 (2°, ¢ (z°)) be the state transition matrix
and reward vector induced by ¢;. Then

fo (B) =16+ BPsfs (B) = fo (B) = (I — BPs) " ry. (18)

Since Py is stochastic, by the Perron—Frobenius theorem I —
BPy is invertible for 3 € [0,1) and singular for 3 = 1. Since
M~! = adj (M) / det (M), by (18) every entry (coordinate)
of fs is a rational function of 3, with numerator degree S —1
and denominator degree S, with a pole at 8 = 1, which
possibly cancels with a zero in some of the entries. Since
¢ € & if and only if it is optimal for all criteria V; for
k=1,2,...,25—1 (under different action sets for each k), all
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policies in ® must have the same values for 31, B2, ..., B25—1.
Consequently, for every 4,7 < L:

Fix i and j and consider each entry of fs, (8) — fe, (8) = 0.
It is a polynomial equation of degree 2S5 — 2 (since the com-
mon poles at § = 1 cancel). However, according to (19),
this polynomial has 25 — 1 distinct roots—and is therefore
identically zero. We conclude that fs, (8) = fs, (8) for all
B € [0,1) and every two policies ¢;, ¢; € ®, and accordingly
Vi(z; ¢) is the same over all ¢ € ®, for each z € X and
k > 25 — 1. This means that for k¥ > 25 — 1, all possible
policies have identical values, and will therefore all be opti-
mal. Since the set of optimal policies remains constant, so
do the conserving sets. [

The proof of Theorem 1.5 now follows—see [1] for details.
The computation of {N; k}ii 7" involves evaluations of in-
finite sums, which are usually not feasible. To avoid this, we
can instead find upper bounds Ny, > Ny, for each k, and com-
pute an Nas_i-stationary optimal policy with a stationary
part determined by the conserving sets. One way to find N
is to use the semi-norm bounds in (10). In each iteration, the
semi-norm of the reward function should be computed with
respect to the restricted action set, and therefore decrease.

ALGORITHM 2.6.

1. Find {8k}, and {cx},=, of Definition 1.2, set S =
|X| and k = 1.

2. Compute I'y; (z) for all z € X, e and N}, or an appro-
priate upper bound.

3. If Ty, (z) is a singleton for every z € X, or k =25 +1,
set N = Nj and continue. Else set Apt1 (1) =Tk (+),
increment k by 1 and go back to step 2.

4. Fix a stationary policy 1, such that ¢ (z) € 'y, (z) for
all z € X.

5. Compute an optimal Markov policy o for the N-step
MDP with immediate rewards r, (z,a) = f (n) r (z,a),
forn=20,1,...N — 1 and terminal reward

n=0 =

ESy > f (4 N1 (@ntn, anin) = > Be Vi (285 9) -
k=1

6. The N-stationary optimal policy is defined by 7 (z,n) =
o(z,n) forn < N and 7 (x,n) =1 (x) for n > N.

Step 5 is standard—see [5].

REMARK 2.7. QOur results can be extended to criteria of
the form:

oo K oo
Vi(x;m) =E7 Y Y fu )k (@n,an) , fr(n) = Zci,kﬂZk

n=0k=1

where for each k, fi (n) is ER and the additional condition
Bik > Bik+1 5 Vi, k. (20)

Lemmas 2.3 and 2.4 can be extended by changing the defi-
nitions of the Ny ’s to include the rest of the discount func-
tions, with condition (20) making sure they remain well de-
fined. The N -stationary optimal policy can then be obtained



by finding T'as—1,1 (z) for the first discount function. In the
case it is not a singleton, the action space will be restricted
appropriately, and the procedure will be applied to fa. This
may continue until Tog_1,k (x) is computed, from which we
may choose the stationary part of the optimal policy arbi-
trarily. Finally, we remark that if vy (-) = brr (-) for some
function r (x,a), the procedure will end in the computation
of Tas—1,1 (), since afterwards all permissible policies for
the stationary part will have the same value.

3. STRUCTURE OF ER FUNCTIONS

ER functions behave asymptotically as exponential func-
tions:

LEMMA 3.1. Let f(n) be an ER function. Then there
exist 0 < B < 1 such that

lim 87 "f(n)=c#0 and c < co .

PROOF. Write f (n) = >_72, cxfy. Without loss of gen-
erality, we may assume that ¢; # 0. Since f is ER, we have
absolute convergence from some time N < oo. Therefore,
for n > N and some C < cc:

B DB < BT lexl BE
k=2 k=2
B S el —c(2) -0
gr 2l =Cgr) 20
Consequently, lim gG; " Z ciBr =0 and choosing 3 =
k=2
we have,

lim 577 f () = lim c1+ 87" enfi =1 #0

n—oo
k=2
and ¢ < c0. [

Functions with power-law form, like (1 4+ n?)~! or the hy-
perbolic discount function do not satisfy the conclusion of
Lemma 3.1, and are therefore not ER. The same holds for
sub-exponential functions, like 1/n! and e’ Moreover,
functions of the form g (n) 8", where g (n) — O or g (n) — oo
non-exponentially, are also not ER for the same reason. Ex-
amples are nS" and "/ (1 4+ n) for some 0 < 8 < 1.

4. A DISCOUNT FUNCTION WITH NO n-
STATIONARY OPTIMAL POLICY

When a discount function decreases monotonically it seems
natural that it should produce a behavior that is monotonic,
or stationary. However, this is not true: we provide an ex-
ample of a discount function and a model for which there is
no N-stationary optimal policy. By our results, the discount
function is not ER.

Consider the function f(n) = f"h(n), with some 0 < 8 <
1 and

2 d6=0
h(n) = 1 moan =[2,1,1,1,1,1,2,1,1,1,.. ]
1 otherwise

which is periodic with period 6. The condition of Lemma
3.1 does not hold for f(n), and it is therefore not ER.
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Now consider the following (deterministic) model:
X ={1,2,3,4,5} , A(1) = {a1, a2} ,
A(2)=AQB)=AM4) = A() = {a} (21)
p (2|17 al) =P (3|17 az) =P (4|37 a)
=p(54,a) =p(1[5,a) = p(1]2,0) =1

with the immediate reward function

r(l,a1) =3, r(l,a2) =4,
r(2,a) =7(3,a) =r4,a) =r(5,a) =0.

Let o be a hypothetical N-stationary, optimal and possi-
bly randomized policy for this process. Since state 1 is recur-
rent, there exists a time Mo > N such that P{ (za, = 1) >
0. Consequently, P (xary4+4 = 1) > 0 and PY (zay4s8 = 1) >
0, since at those times there must be a positive probability
that a single action is used repeatedly. We know M is even
because every return to state 1 takes either 2 or 4 steps, and
therefore, either My, Moy 4+ 4 or My + 8 divides by 6. We
may thus choose M > N such that M is a multiple of 6, and
]P(f (xM = 1) > 0.

Define the shifted value criterion:

vM(1;7) =E” { Z B "h(n)r (Tn,an) |TMm = 1} .

n=M

Criterion V™ (1;7) comprises the part of V (1;7) that
involves times M and onwards. If an optimal Markov pol-
icy for criterion V (1;7) has any chance of reaching state 1
in time M, it must also optimize criterion V™ (1;7), when
taken from times M onwards — this is a form of the prin-
ciple of optimality. Therefore, and considering that o is an
optimal Markov policy for V' (1;7), and P (xa = 1) > 0 by
our choice of M, the stationary policy o™ (-) = o(-,n + M)

must be of optimal for criterion V. However,

VM (15m) =BT Y 8" M h(n + M)r (zn,a0) = BV (1;7)

n=0

where the last equality follows from the periodicity of
h (n) and our choice of M. Since V™ (1;-) is proportional
to V (1;-), o™ is optimal for the original criterion as well,
when starting from state 1. Moreover, if o is randomized,
a stationary and deterministic policy 6™ with V' (1; JM) =
\% (1; &M) = V(1) can be obtained. This is done by using,
for every state, an action that has positive probability un-
der ™. In conclusion, if this problem has an N-stationary
optimal policy, a stationary and deterministic policy must
maximize V (1;).

Let 01(1) = a1,02(1) = a2 be the two stationary policies
in this model, and consider the periodic Markov policy:

(1,n) az nmod6 =0
w(l,n) =
’ air nmod6 =14

Let 8 = 0.45. The values of the 3 policies will then be:

8 + 343
V(lim) = T ~ 810 (22)
2 4
V(lion) = % ~ 6.79 (23)
4 8
V(100) = % ~ 817 (24)



Evidently, both stationary policies are suboptimal when
xo = 1. Therefore, there cannot be an N-stationary op-
timal policy, since our considerations have shown that it
will result in an optimal, stationary and deterministic pol-
icy when starting from state 1. Since we chose f < 1/2,
h(n) > Bh(n+ 1) for every n, making the discount function
monotonically decreasing, as required.
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