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ABSTRACT

We investigate the existance of simple policies in finite dis-
counted cost Markov Decision Processes, when the discount
factor is not constant. We introduce a class called“exponen-
tially representable” discount functions. Within this class
we prove existence of optimal policies which are eventually
stationary—from some time N onward, and provide an al-
gorithm for their computation. Outside this class, optimal
policies with this structure in general do not exist.
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1. INTRODUCTION
In Markov decision models (MDPs), discounting is used

to model the fact that the further in the future something
happens, the less important it is. Simple discounting, where
the reward is multiplied by a constant discount factor at
each epoch, arises naturally from economic considerations,
when constant rates of interest (bonds) or constant inflation
are assumed. Such models are relatively easy to analyze. In
particular, in this case there exists an optimal policy which
is stationary, namely deterministic and independent of the
time and of past states [5]. Because it can be intuitively un-
derstood and handily analyzed, simple discounting has been
thoroughly researched and applied to countless models—
from machine learning, computer networks to game theory
and psychology.

However, in general the decrease in value of the future
need not be geometric. In models of “learning curves”, the
cost of “getting to know” the system is added to the orig-
inal criterion. The discounting in this criterion typically

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ValueTools 2008, October 21–23, 2008, Athens, GREECE.
Copyright c©2008 ICST ISBN # 978-963-9799-31-8 .

has a power-law form, though some models have geomet-
ric learning curves. Additional geometric decreases arise
from models such as “Moore’s law,” in which a cost (in this
case of a unit of computation power) decreases geometri-
cally fast. The addition of an exponentially-decreasing com-
ponent (with a rate different from the discount factor) to
a discounted Markov decision model results in a weighted
discounted criterion—that is, a criterion that is the sum
of several standard discounted criteria. A theory for finite
models with weighted discounted criteria was developed by
Feinberg and Shwartz [2]. The main results are that for such
criteria there are optimal policies that are stationary from
some finite time onwards, called N -stationary policies, and
an algorithm for the computation of these policies is given.

In models of human preferences, it makes sense to use dis-
counting with a decreasing rate. Intuitively, while tomorrow
may be less important than today, a year and a day from
now is just about the same as a year from now. “Hyperbolic

discount functions”, of the form (1 + αn)−γ/α with α, γ > 0,
feature a decreasing discounting rate, and are reported to
effectively model psychological preferences (see [3] for pre-
sentation, and [6] for critique). Even Moore’s Law seems to
be breaking down, leading to non-constant discounting.

Because of the difficulty of analyzing decision processes
with general discount functions, most theoretical results are
obtained with “toy functions”, for example
f =

[

1, δβ, δβ2, δβ3, . . .
]

, which in a sense has a decreas-
ing discounting rate for 0 < δ < 1, and often serves as
a replacement of the hyperbolic function mentioned above
(see, e.g. [4]). Following the lines of the weighted discounted
theory, we define the class of “exponentially representable”
functions, prove that when they are used as discount func-
tions there exist N -stationary optimal policies, and describe
a computation algorithm. These functions display the de-
creasing discount rate of the hyperbolic discount functions.
However, the hyperbolic discount functions are not expo-
nentially representable, and moreover—exponentially repre-
sentable discount functions cannot be used to model power-
law learning curves.

Below we define the model and the exponentially repre-
sentable functions, and state our main result. In section 2
we develop the algorithm for the computation of the optimal
policy and through it prove our result. In section 3 we fur-
ther discuss the meaning of exponential representability and
which functions belong in that class. Finally, in section 4 we
show that the N -stationary property is not always assured.
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1.1 Markov Decision Processes
Consider a discrete time process with a finite state space

X, where xn ∈ X denotes the state at time n = 0, 1, 2, ....
At each time, an action is chosen from a finite action set
A(x). Let A =

⋃

x∈X
A(x) be the (finite) action space—

the set of possible actions and an ∈ A(xn) the chosen action
at time n. The state and chosen action at time n determine
the probability distribution of the next state through the
transition probability p (xn+1|xn, an), assumed to be inde-
pendent of the time and of further information on the past.
Additionally, the state and action determine the immediate
reward r (xn, an) given at time n.

The rule used to choose the action at each time is called
a policy. We call hn = x0a0 · · ·xn−1an−1xn the history at
time n. Since the choice of action is required to be causal,
hn contains all the information available for making it. The
most general policy is therefore a mapping of every history
hn to a probability measure π (·|hn) on A(xn). Policies in
which only one action is possible for each given history are
called deterministic, so that an = π(hn). Policies which
depend only on the current state and the time, i.e. π (·|hn) =
π (·|xn, n) are called Markov policies, and Markov policies
which do not depend on the time are called stationary.

The discounted criterion assigns to each policy and initial
state numerical value

V β (x;π) = E
π
x

∞
∑

n=0

βnr (xn, an)

where E
π
x is the expectation induced by policy π, given that

h0 = x, and 0 < β < 1 is the discount factor. Since r (x, a)
is bounded, the value is always finite.

We discuss a more general discounted criterion, in which
βn is replaced with f(n):

V gen (x;π) = E
π
x

∞
∑

n=0

f(n)r (xn, an) . (1)

A sufficient condition for the above summation to be well
defined is |f(n)| ≤ Kβn for some 0 < β < 1 or, equivalently,
f(n) = βng(n) for 0 < β < 1 and some bounded function
g(n). We call a function that satisfies this condition expo-
nentially bounded.

The weighted discounted criterion is a sum of a finite num-
ber of standard discounted criteria, each with a possibly dif-
ferent immediate reward function:

V wd (x;π)

= E
π
x

∞
∑

n=0

K
∑

k=1

βnk rk (xn, an) with β1 > β2 > · · · > βK . (2)

Let us define the maximal and minimal values of an MDP,
respectively:

V (x) ≡ sup
π
V (x;π) V −(x) ≡ inf

π
V (x;π) . (3)

An optimal policy is a policy for which V (x;π) = V (x), for
all x ∈ X.

Definition 1.1. A Markov policy π is called N-stationary
if

π(x, n) = π(x,N) ∀x ∈ X, n ≥ N .

Definition 1.2. A function f : {0, 1, . . .} → R is called
exponentially representable (ER) if there exist sequences
{ck}

∞
k=1 and {βk}

∞
k=1 such that:

• {βk}
∞
k=1 is positive, strictly decreasing and β1 < 1.

• f(n) =
∑∞
k=1 ckβ

n
k , the sum converges absolutely after

some N <∞.

Example 1.3. The function

f(n) =
1

e− 1

∞
∑

k=1

1

k!

(

βk0

)n

=
eβ

n
0 − 1

e− 1

is ER for 0 < β0 < 1 and logarithmically convex ((log f (x))
′′

> 0)—hence with a decreasing rate of discounting, since the
rate is inversely proportional to f (n+ 1) /f (n). This is the
required property in aforementioned the human preferences
models.

1.2 The main result
Our starting point will be the following result on the struc-

ture of optimal policies under criteria (2) and (1).

Theorem 1.4. In a weighted discounted MDP (2), there
exists an optimal policy which is Markov and deterministic.
This holds also in MDPs with general discounting (1) when
the discount function is exponentially bounded.

For a weighted discounted MDP, a proof (under more general
conditions) is given in [2], Thm. 2.2. The idea is to embed
the process in an ordinary discounted MDP with a countable
state space X̃ = (X × N+), where time is added so that the
new state is x̃n = (xn, n), and use the standard result that
discounted criteria have deterministic and stationary opti-
mal policies. The same embedding can be carried out in the
case of a single general discount function which is exponen-
tially bounded. This theorem also extends straightforwardly
to a criterion that is a sum of several criteria with general
discount functions, as long as those functions are exponen-
tially bounded. Since this is a straightforward extension, we
omit the details.

From now on we focus on ER discount functions. Since
they are exponentially bounded, using Theorem 1.4 we re-
strict our policies to be Markov and deterministic.

Theorem 1.5. Consider a finite MDP with an ER dis-
count function. There exists an N-stationary optimal policy
for this problem, with N < ∞. This policy can be found
using Algorithm 2.6.

2. OPTIMAL POLICIES
The generalized discounted criterion in (1), with f (n) ER,

is an infinite version of the weighted discounted criterion.
To see this, find {ck}

∞
k=1 and decreasing {βk}

∞
k=1 such that

f(n) =
∑∞
k=1 ckβ

n
k , and rewrite the criterion as

V gen (x;π) = E
π
x

∞
∑

n=0

f(n)r (xn, an)

= E
π
x

∞
∑

n=0

∞
∑

k=1

βnk ckr (xn, an) (4)

which is an infinite weighted discounted criterion with
rk (xn, an) = ckr (xn, an).
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We now adapt the algorithm from part 3 of [2] to infi-
nite weighted discounted criteria induced by an ER discount
function. We will also prove that this algorithm halts after
a finite number of iterations, and provide a bound on that
number. Let

Vk (x;π) = E
π
x

∞
∑

n=0

βnk ckr (xn, an) (5)

denote the value of the kth summand in (4), and let Vk (x)
and V −

k (x) be the maximal and minimal value for initial
state x. Define a “conserving set”:

Γ1(x) ≡
{

a ∈ A(x) | V1(x) = c1r(x, a) + β1

∑

y∈X

p (y|x, a)V1(y)

}

.

(6)

It is easy to see that a policy is optimal for this criterion
if and only if it chooses actions from the (conserving) set
Γ1 (x) when in state x: see Lemma 3.1 in [2].

Let X1 = {x ∈ X | Γ1(x) 6= A(x)} be the set of states for
which suboptimal actions for criterion V1 exist. If X1 6= ∅,
define:

ε1 ≡ min
x∈X1,a∈A(x)\Γ1(x)
(

V1(x) − c1r(x, a) − β1

∑

y∈X

p (y|x, a)V1(y)

)

. (7)

ε1 is the value of the smallest “mistake” one can make in
the choice of a single action, with regard to criterion V1. If
X1 = ∅ define N1 ≡ 0. Otherwise define:

N1 = min

{

n ≥ 0 | ε1 >
∞
∑

k=2

(

βk
β1

)n

max
x∈X

(

Vk(x) − V −
k (x)

)

}

.

(8)

Lemma 2.1. If f(n) is ER, N1 is well defined and finite.

Proof. Define S(n) =
∑∞
k=2 (βk/β1)

n maxx∈X (Vk(x)

−V −
k (x)

)

. Denote the span semi-norm of r (x, a) by M =
maxx∈X,a∈A(x) r (x, a) − minx∈X,a∈A(x) r (x, a). Then

∀k : max
x∈X

(

Vk(x) − V −
k (x)

)

≤ |ck|
M

1 − βk
≤ |ck|

M

1 − β1

(9)

S(n) ≤
β−n

1 M

1 − β1

∞
∑

k=2

βnk |ck| . (10)

This proves N1 is finite—see [1].

Remark 2.2. Let X = {x0} and A = {a1, a2} with r (x, a1)
= 1 and r (x, a2) = 0. Then, maxx∈X

(

Vk(x) − V −
k (x)

)

=

|ck| /1 − βk for any k, so S(n) = β−n
1

∑∞
k=2 β

n
k |ck|. Here

S(n) −→
n→∞

0 only if
∑∞
k=2 β

n
k ck converges absolutely for

some N < ∞, i.e. only if f(n) is ER. Thus for a given
discount function f , the bound N1 is well-defined for any
model if and only if the discount function is ER.

Using the definitions (6) and (8) of Γ1(x) and N1 respec-
tively,

Lemma 2.3. Consider a finite MDP with an ER discount
function. If σ is an optimal Markov policy then n ≥ N1 and
P
σ
x {xn = z} > 0 imply σ(z, n) ∈ Γ1(z).

Proof. The proof extends that of Lemma 3.3 in [2], using
the same basic ideas. It is simple to show (see [2]) that the
optimality of σ implies that for any stationary policy φ, time
m and state z ∈ X such that P

σ
x {xm = z} > 0:

E
σ
x

{

∞
∑

n=m

f(n)r (xn, an) |xm = z

}

≥ E
φ
x

{

∞
∑

n=m

f(n)r (xn, an) |xm = z

}

.

By substituting f(n) =
∑∞
k=1 ckβ

n
k in the above equation,

denoting the time-shifted optimal policy by σm (x, n) =
σ (x, n+m), and using Vk as defined in (5), the above in-
equality can be rewritten ask

∞
∑

k=1

βmk Vk (z;σm) ≥
∞
∑

k=1

βmk Vk (z;φ)

and therefore
∞
∑

k=2

βmk (Vk (z;σm) − Vk (z;φ)) ≥ βm1 (V1 (z;φ) − V1 (z;σm)) .

(11)
We now suppose by contradiction that for some time m ≥
N1 and for some state z ∈ X such that P

σ
x {xm = z} > 0,

σ (z,m) /∈ Γ1(z). Let φ be the optimal stationary policy for
criterion V1, so that V1(x, φ) = V1(x) for all x ∈ X. Since
m ≥ N1, and by the definition of N1 (which is meaningful
due to the fact that f is ER) we have:

ε1 >
∞
∑

k=2

(

βk
β1

)m

[Vk(z) − V −
k (z)]

≥
∞
∑

k=2

(

βk
β1

)m

[Vk(z;σ
m) − V −

k (z;φ)]

≥ V1 (z;φ) − V1 (z;σm) (12)

where the second inequality comes from the definitions and
the last from (11). On the other hand, since σ (z,m) /∈ Γ1(z)
and from the definition of ε1:

V1(z) − V1 (z;σm) ≥ V1(z)

−

(

r (z, σ (z,m)) + β1

∑

y∈X

p (y|z, σ (z,m))V1(y)

)

≥ ε1

(13)

Inequalities (12) and (13) contradict each other, thus prov-
ing this lemma.

If Γ1(x) is a singleton for all x ∈ X, then the lemma requires
any optimal policy to be N1-stationary, and determines the
stationary part of the policy. If it is not a singleton, we know
that after time N1 our action sets reduce to Γ1(x) and for ev-
ery admissible policy, V1 will attain its maximum value and
therefore be irrelevant. Our task therefore becomes finding
the optimal policy for the weighted sum starting from the
second discount factor, with the action sets restricted to Γ1.
To iterate the above process, define recursively for k > 1, the
restricted action sets in iteration k — Ak (x) = Γk−1 (x),
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the mth value function restricted to the kth action set —
V

Ak
m (x), and similarly the minimal value function V

−,Ak
m (x).

Additionally:

Γk(x) ≡
{

a ∈ Ak(x) | V
Ak

k (x) = ckr(x, a) + βk

∑

y∈X

p (y|x, a)V Ak

k (y)

}

(14)

Xk = {x ∈ X | Γk(x) 6= Ak(x)} (15)

εk ≡ min
x∈Xk,a∈Ak(x)\Γk(x)

(

V
Ak

k (x) − ckr(x, a) − βk
∑

y∈X

p (y|x, a)V Ak

k (y)

)

(16)

Nk = min

{

n ≥ Nk−1 | εk >
∞
∑

m=k+1

(

βm
βk

)n

max
x∈X

(

V Ak
m (x) − V −,Ak

m (x)
)

}

(17)

where εk is set to ∞ in the case that Xk = ∅. Again, Nk
is well defined when f (n) is ER. With these definitions, the
following is evident:

Lemma 2.4. Consider a finite MDP with ER discount func-
tion. If σ is an optimal Markov policy, then for every k ≥ 1,
n ≥ Nk and state z ∈ X such that P

σ
x {xn = z} > 0, we have

σ(z, n) ∈ Γk(z).

Proof. By induction using Lemma 2.3 and the above
definitions.

We will now prove that iterating this procedure does indeed
provide us with an N -stationary policy after a finite and
bounded number of computations.

Lemma 2.5. Consider a finite MDP with an ER discount
function. Let S = |X|. Then for all k ≥ 2S − 1 and every
x ∈ X, Γk (x) = Γ2S−1 (x).

Proof. If Γ2S−1 (x) is a singleton for all x ∈ X, then the
lemma is immediate. Otherwise, let Φ = {φ1, φ2, ..., φL} be
the set of stationary policies such that φi (x) ∈ Γ2S−1 (x) for
all x ∈ X, i = 1, 2, ..., L. For φ ∈ Φ, define fφ : [0, 1) → R

S

as

[fφ (β)]s = E
φ
xs

∞
∑

n=0

βnr (xn, an) ,

so that Vk (xs;φ) = ck (fφ (βk))s. Let [Pφ]m,n ≡ p(xn|xm, φ
(xs)) and [rφ]s = r (xs, φ (xs)) be the state transition matrix
and reward vector induced by φi. Then

fφ (β) = rφ + βPφfφ (β) ⇒ fφ (β) = (I − βPφ)
−1 rφ . (18)

Since Pφ is stochastic, by the Perron–Frobenius theorem I−
βPφ is invertible for β ∈ [0, 1) and singular for β = 1. Since
M−1 = adj (M) /det (M), by (18) every entry (coordinate)
of fφ is a rational function of β, with numerator degree S−1
and denominator degree S, with a pole at β = 1, which
possibly cancels with a zero in some of the entries. Since
φ ∈ Φ if and only if it is optimal for all criteria Vk for
k = 1, 2, ..., 2S−1 (under different action sets for each k), all

policies in Φ must have the same values for β1, β2, ..., β2S−1.
Consequently, for every i, j ≤ L:

fφi
(βk) = fφj

(βk) , ∀k = 1, 2, ..., 2S − 1 . (19)

Fix i and j and consider each entry of fφi
(β)− fφj

(β) = 0.
It is a polynomial equation of degree 2S− 2 (since the com-
mon poles at β = 1 cancel). However, according to (19),
this polynomial has 2S − 1 distinct roots—and is therefore
identically zero. We conclude that fφi

(β) = fφj
(β) for all

β ∈ [0, 1) and every two policies φi, φj ∈ Φ, and accordingly
Vk(x;φ) is the same over all φ ∈ Φ, for each x ∈ X and
k ≥ 2S − 1. This means that for k ≥ 2S − 1, all possible
policies have identical values, and will therefore all be opti-
mal. Since the set of optimal policies remains constant, so
do the conserving sets.

The proof of Theorem 1.5 now follows—see [1] for details.

The computation of {Nk}
2S−1
k=1 involves evaluations of in-

finite sums, which are usually not feasible. To avoid this, we
can instead find upper bounds N̂k ≥ Nk for each k, and com-
pute an N̂2S−1-stationary optimal policy with a stationary
part determined by the conserving sets. One way to find N̂k
is to use the semi-norm bounds in (10). In each iteration, the
semi-norm of the reward function should be computed with
respect to the restricted action set, and therefore decrease.

Algorithm 2.6.

1. Find {βk}
∞
k=1 and {ck}

∞
k=1 of Definition 1.2, set S =

|X| and k = 1.

2. Compute Γk (x) for all x ∈ X, εk and Nk or an appro-
priate upper bound.

3. If Γk (x) is a singleton for every x ∈ X, or k = 2S + 1,
set N = Nk and continue. Else set Ak+1 (·) = Γk (·),
increment k by 1 and go back to step 2.

4. Fix a stationary policy ψ, such that ψ (x) ∈ Γk (x) for
all x ∈ X.

5. Compute an optimal Markov policy σ for the N -step
MDP with immediate rewards rn (x, a) = f (n) r (x, a),
for n = 0, 1, ...N − 1 and terminal reward

E
ψ
xN

∞
∑

n=0

f (n+N) r (xn+N , an+N ) =
∞
∑

k=1

βNk Vk (xN ;ψ) .

6. TheN -stationary optimal policy is defined by π (x, n) =
σ (x, n) for n < N and π (x, n) = ψ (x) for n ≥ N .

Step 5 is standard—see [5].

Remark 2.7. Our results can be extended to criteria of
the form:

V (x;π) = E
π
x

∞
∑

n=0

K
∑

k=1

fk (n) rk (xn, an) , fk (n) =
∞
∑

i=1

ci,kβ
n
i,k

where for each k, fk (n) is ER and the additional condition

βi,k > β1,k+1 , ∀i, k. (20)

Lemmas 2.3 and 2.4 can be extended by changing the defi-
nitions of the Nk’s to include the rest of the discount func-
tions, with condition (20) making sure they remain well de-
fined. The N-stationary optimal policy can then be obtained
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by finding Γ2S−1,1 (x) for the first discount function. In the
case it is not a singleton, the action space will be restricted
appropriately, and the procedure will be applied to f2. This
may continue until Γ2S−1,K (x) is computed, from which we
may choose the stationary part of the optimal policy arbi-
trarily. Finally, we remark that if rk (·) = bkr (·) for some
function r (x, a), the procedure will end in the computation
of Γ2S−1,1 (x), since afterwards all permissible policies for
the stationary part will have the same value.

3. STRUCTURE OF ER FUNCTIONS
ER functions behave asymptotically as exponential func-

tions:

Lemma 3.1. Let f (n) be an ER function. Then there
exist 0 < β < 1 such that

lim
n→∞

β−nf (n) = c 6= 0 and c <∞ .

Proof. Write f (n) =
∑∞
k=1 ckβ

n
k . Without loss of gen-

erality, we may assume that c1 6= 0. Since f is ER, we have
absolute convergence from some time N < ∞. Therefore,
for n > N and some C <∞:

β−n
1

∣

∣

∣

∣

∣

∞
∑

k=2

ckβ
n
k

∣

∣

∣

∣

∣

≤ β−n
1

∞
∑

k=2

|ck|β
n
k

<
βn−N2

βn1

∞
∑

k=2

|ck|β
N
k = C

(

β2

β1

)n

→
n→∞

0 .

Consequently, lim
n→∞

β−n
1

∞
∑

k=2

ckβ
n
k = 0 and choosing β ≡ β1

we have,

lim
n→∞

β−nf (n) = lim
n→∞

c1 + β−n
1

∞
∑

k=2

ckβ
n
k = c1 6= 0

and c1 <∞.

Functions with power-law form, like (1 + n2)−1 or the hy-
perbolic discount function do not satisfy the conclusion of
Lemma 3.1, and are therefore not ER. The same holds for

sub-exponential functions, like 1/n! and e−n
2

. Moreover,
functions of the form g (n)βn, where g (n) → 0 or g (n) → ∞
non-exponentially, are also not ER for the same reason. Ex-
amples are nβn and βn/ (1 + n) for some 0 < β < 1.

4. A DISCOUNT FUNCTION WITH NO N-

STATIONARY OPTIMAL POLICY
When a discount function decreases monotonically it seems

natural that it should produce a behavior that is monotonic,
or stationary. However, this is not true: we provide an ex-
ample of a discount function and a model for which there is
no N -stationary optimal policy. By our results, the discount
function is not ER.

Consider the function f(n) = βnh(n), with some 0 < β <
1 and

h(n) =

{

2 nmod6 = 0

1 otherwise
= [2, 1, 1, 1, 1, 1, 2, 1, 1, 1, . . .]

which is periodic with period 6. The condition of Lemma
3.1 does not hold for f(n), and it is therefore not ER.

Now consider the following (deterministic) model:

X = {1, 2, 3, 4, 5} , A(1) = {a1, a2} ,

A(2) = A(3) = A(4) = A(5) = {a} (21)

p (2|1, a1) = p (3|1, a2) = p (4|3, a)

= p (5|4, a) = p (1|5, a) = p (1|2, a) = 1

with the immediate reward function

r (1, a1) = 3 , r (1, a2) = 4 ,

r (2, a) = r (3, a) = r (4, a) = r (5, a) = 0 .

Let σ be a hypothetical N -stationary, optimal and possi-
bly randomized policy for this process. Since state 1 is recur-
rent, there exists a time M0 ≥ N such that P

σ
1 (xM0

= 1) >
0. Consequently, P

σ
1 (xM0+4 = 1) > 0 and P

σ
1 (xM0+8 = 1) >

0, since at those times there must be a positive probability
that a single action is used repeatedly. We know M0 is even
because every return to state 1 takes either 2 or 4 steps, and
therefore, either M0, M0 + 4 or M0 + 8 divides by 6. We
may thus choose M ≥ N such that M is a multiple of 6, and
P
σ
1 (xM = 1) > 0.
Define the shifted value criterion:

VM (1;π) ≡ E
π

{

∞
∑

n=M

βnh(n)r (xn, an) |xM = 1

}

.

Criterion VM (1;π) comprises the part of V (1;π) that
involves times M and onwards. If an optimal Markov pol-
icy for criterion V (1;π) has any chance of reaching state 1
in time M , it must also optimize criterion VM (1;π), when
taken from times M onwards — this is a form of the prin-
ciple of optimality. Therefore, and considering that σ is an
optimal Markov policy for V (1;π), and P

σ
1 (xM = 1) > 0 by

our choice of M , the stationary policy σM (·) = σ(·, n+M)
must be of optimal for criterion VM . However,

VM (1;π) = E
π
1

∞
∑

n=0

βn+Mh(n+M)r (xn, an) = βMV (1;π)

where the last equality follows from the periodicity of
h (n) and our choice of M . Since VM (1; ·) is proportional
to V (1; ·), σM is optimal for the original criterion as well,
when starting from state 1. Moreover, if σM is randomized,
a stationary and deterministic policy σ̂M with V

(

1;σM
)

=

V
(

1; σ̂M
)

= V (1) can be obtained. This is done by using,
for every state, an action that has positive probability un-
der σM . In conclusion, if this problem has an N -stationary
optimal policy, a stationary and deterministic policy must
maximize V (1; ·).

Let σ1(1) = a1, σ2(1) = a2 be the two stationary policies
in this model, and consider the periodic Markov policy:

π(1, n) =

{

a2 nmod6 = 0

a1 nmod6 = 4

Let β = 0.45. The values of the 3 policies will then be:

V (1;π) =
8 + 3β4

1 − β6
≈ 8.19 (22)

V (1;σ1) =
6 + 3β2 + 3β4

1 − β6
≈ 6.79 (23)

V (1;σ2) =
8 + 4β4 + 4β8

1 − β12
≈ 8.17 . (24)
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Evidently, both stationary policies are suboptimal when
x0 = 1. Therefore, there cannot be an N -stationary op-
timal policy, since our considerations have shown that it
will result in an optimal, stationary and deterministic pol-
icy when starting from state 1. Since we chose β < 1/2,
h(n) > βh(n+ 1) for every n, making the discount function
monotonically decreasing, as required.
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