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ABSTRACT

We consider a multi-class queueing system with customer
abandonment. For class i, the holding cost per unit time,
the service rate and the abandonment rate are denoted by ci,
µi and θi, respectively. Our results show that under a many-
server fluid scaling and heavy traffic conditions, a routing
policy that assigns non-preemptive priority to classes ac-
cording to their index ciµi/θi, is asymptotically optimal for
minimizing the overall long run average holding cost.
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1. INTRODUCTION
The usefulness of the well known cµ rule of routing control

stems from its simplicity and its robustness. This routing
policy and its generalizations have been proved to be optimal
(in a precise [8] or an asymptotic sense [5], [6], [7]) for delay
and queue-length costs, in a variety of settings. Although
these settings are quite general, they do not include ones
where customers may abandon while waiting to be served.
Abandonment phenomena has been widely discussed in the
recent literature, as it is a significant modeling aspect in
applications, and particularly in call centers (for recent de-
velopments on these applications and related models see [1]
and [4]). In this paper, we introduce a routing rule for mod-
els which include abandonment, to which we refer as the
cµ/θ rule. Like the cµ rule, the cµ/θ rule is simple on one
hand, and performs well on the other hand. In particular,
our results show that it asymptotically minimizes the long
run average holding cost for many-server models with aban-
donment, in fluid regime. Our aim here is only to report
and discuss this result; the proof will appear in [2].

The model considered here consists of a fixed number
of customer classes and a server pool with homogeneous
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servers. Arrivals occur according to Poisson processes, ser-
vices are exponential and so are the abandonment times.
The arrival, service and abandonment rates are class depen-
dent, and denoted by λi, µi and θi, respectively, for class
i. The individual holding cost per unit time for class i is
denoted by ci. We study this model in a many-server fluid
regime. The formal scaling limit leads to a deterministic
ordinary differential equation, and the solution to the corre-
sponding control problem is a lower bound on the limiting
cost of the stochastic queueing problem, under any policy.
The solution to the deterministic problem turns out to be
particularly simple and explicitly solvable. When translated
back to the queueing model, this solution formally corre-
sponds to assigning preemptive priority to the classes in
agreement with the order of the indices ciµi/θi. This pri-
ority rule indeed achieves in the limit the lower bound al-
luded to above, hence it is asymptotically optimal for the
queueing system. Since an often more realistic model is one
where service to customers cannot be interrupted, we are
mainly interested in a nonpreemptive version of this rule.
The scaling is taken in such a way that the service times are
not accelerated, and therefore it is not obvious that the non-
preemptive policy should behave similarly. Our results show
that a non-preemptive version of the priority rule alluded to
above is, in fact, asymptotically optimal in the scaling limit.

Other recent contributions to queueing models in fluid
regimes, motivated by applications to call centers, include
Bassamboo et. al. [3], introducing a two-scale parameter
regime and developing a linear program based approach to
dynamic routing, and Whitt [9] in an approach that empha-
sizes the role played by abandonment. See also references
cited in [1] for related queueing models in diffusion regime.

In the next section we describe the model and state the
main result. We discuss the result in Section 3, and give a
rough sketch of the proof in Section 4.

2. MODEL AND MAIN RESULT
The model consists of I customer classes and a pool with

n identical servers. Customers of class i arrive according to
a Poisson process with rate λi, for i = 1, . . . , I. Customers
who cannot be served immediately upon arrival, are kept in
an infinite-capacity queue that is dedicated to their specific
class. A customer who has been held in queue may lose her
patience and abandon the system. Customer “impatience”
is assumed to be exponentially distributed with mean 1/θi

for class-i customers. Once admitted to service, a customer
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Figure 1: A model with three classes

of class i is served with exponentially distributed time du-
ration, with mean 1/µi. The control involves choosing the
customer class to be served next when a server becomes free.

The stochastic processes involved in the model will be
defined on a probability space (Ω, F, P). The parameter n,
denoting the number of servers in the pool, will appear in
the notation of the stochastic processes.

For i ∈ I := {1, . . . , I}, denote by Xn
i (t) the total head-

count of class i customers in the system, by Qn
i (t) the queue

length of class-i customers, and by Zn
i (t) the number of

servers occupied by customers of class i at time t. Clearly,
for every t ≥ 0,

∑

i∈I

Zn
i (t) ≤ n (1)

Xn
i (t) − Zn

i (t) = Qn
i (t) ≥ 0, i ∈ I. (2)

The arrival processes An
i are modeled as Poisson with rate

λn
i . We use Dn

i (t) and Rn
i (t) to denote the number of class-i

service completions and number of class-i abandonments, by
time t, respectively. By the exponential assumption, these
are given as

Dn
i = D̃n

i

(

∫ ·

0

Zn
i (s)ds

)

, Rn
i = R̃n

i

(

∫ ·

0

Qn
i (s)ds

)

, (3)

for some Poisson processes D̃n
i and R̃n

i with rates µn
i and θn

i ,
respectively. The 3I processes An

i , D̃n
i , R̃n

i , refereed to as
the primitive processes, are further assumed to be mutually
independent (for each n). Finally, we have

Xn
i (t) = Xn

i (0) + An
i (t) − Dn

i (t) − Rn
i (t), i ∈ I, t ≥ 0.

(4)
We will use bold font for vector notation, as in Xn for the

vector whose i-th element is Xn
i .

Equations (1)–(4) do not fully describe the model, since
the routing mechanism has not been specified. We will use a
very elaborate definition of the term ‘policy’, that will only
rely on the above equations and the primitive processes. Any
process

πn = (Dn,Rn,Xn,Qn,Zn)

will be referred to as a policy, provided that equations (1)–
(4) hold, and that the primitive processes satisfy our prob-
abilistic assumptions mentioned earlier. The collection of

all policies πn will be denoted by Πn. Note that we do not
require a policy to satisfy any work-conservation condition.

Let constants ci ≥ 0 be given, denoting holding cost per
unit time for class-i customers. For any policy πn define the
cost as

Cn,T (πn) =
1

nT
E

πn

[

∫ T

0

c · Qn(t)dt
]

. (5)

Let the corresponding value be defined by

Vn,T = inf
πn∈Πn

Cn,T (πn). (6)

We consider a sequence of queueing systems as above where
now the number of servers n ∈ N is used as an index to
the sequence. The parameters are assumed to satisfy the
following. There are positive constants λi, µi, θi, such that,
as n → ∞,

λn
i

n
→ λi, µn

i → µi, θn
i → θi. (7)

Note that the system may be overloaded in the sense that
the workload exceeds the service capacity. However, since
the abandonment rates are non zero stability holds automat-
ically.

To motivate the proposed policy via a heuristic discussion,
consider quantities x, q and z, that formally represent the
steady state values of Xn, Qn and Zn respectively, for large
values of n and T . These quantities must satisfy x = q + z,
and in addition



















zi, qi ≥ 0

λi = µizi + θiqi

∑

i∈I
zi ≤ 1.

(8)

Consider the problem

minimize c · q such that (q, z) satisfies (8). (9)

We denote by (x,q, z) the solution to this linear program,
and by V the corresponding minimum value. The solution to
this problem (that we do not provide here) has the property
that qi = 0 for all i whose indices ciµi/θi are the largest
(provided that qi = 0 for at least one i). This suggests that
priority should be given according to this index.

Motivated by the foregoing discussion, we define π∗
n to

be the routing policy that assigns nonpreemptive priority
according to this index. More precisely, under this policy,
after each service completion the next customer to be ad-
mitted to service is chosen according to its class’s index,
(where the higher the index is, the higher is the priority).
By assumption, this policy is non-preemptive, and work-
conserving. We refer to it as the cµ/θ non-preemptive

priority rule, or simply the cµ/θ rule.
Our result shows that in the many-server fluid regime, the

cµ/θ rule achieve asymptotic optimality with respect to the
cost criterion alluded to above, among all policies.

Theorem 2.1. Assume n−1Xn(0) → x, as n → ∞. Then

lim inf
T→∞

lim inf
n→∞

Vn,T = lim sup
T→∞

lim sup
n→∞

Cn,T (π∗
n). (10)

The proof of this result will appear in [2]. The main idea
is provided below in Section 4.
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3. DISCUSSION
The result presented in the previous section addresses a

long run average cost. The following example discusses infor-
mally the short term performance of this policy. It indicates
that one should not expect the cµ/θ rule to be optimal on a
short time horizon.

Example 3.1. Consider a queueing system with I = {1, 2}
and let the model parameters take the values: µ1 = µ2 = 1,
λ1 = λ2 = 3/4 and θ1 = ε, θ2 = 1 where 0 < ε ¿ 1 such
that

c1

θ1

>
c2

θ2

,

but c2 > c1. The initial state is x1(0) = z1(0) = 1/2,
x2(0) = z2(0) = 1/2. Consider the cumulative holding cost
till time T ¿ 1. Applying the cµ/θ priority rule, we prior-
itize the first class, and, a simple calculation yields that the
holding cost is given by

CT (pr. 1) =
c2

2
· T −

c2

2
(1 − exp{−T}) ≈

1

4
c2T

2,

for small T . On the other hand, if we prioritize the second
class then

CT (pr. 2) =
c1

2ε
· T −

c1

2ε2
(1 − exp{−εT}) ≈

1

4
c1T

2.

Hence, CT (pr. 2) < CT (pr. 1) for T small enough.
Next, note that even if we start with initial state having

positive queues at time t = 0, the phenomenon may repeat
itself. Choose x1(0) = x2(0) = 3/4. According to cµ/θ rule,
we set z1(0) = 3/4, q1(0) = 0, z2(0) = 1/4 and q2(0) = 1/2.
Since this is the desirable steady state, there is no initial
change in either of the processes, and therefore,

CT (pr. 1) =
c2

2
· T.

If we apply the opposite priority rule, in which we prioritize
the second class right from the beginning, we set z1(0) = 1/4,
q1(0) = 1/2, z2(0) = 3/4 and q2(0) = 0. Then, q1(t) =
1/2ε − (1 − ε)/2ε · exp{−εt} and we obtain

CT (pr. 2) =
c1

2ε
· T −

c1(1 − ε)

2ε2
(1 − exp{−εT})

≈
c1

2
T −

c1

4
(1 − ε)T 2.

Since c1 < c2, we again conclude CT (pr. 2) < CT (pr. 1).
A heuristic explanation of the first example (with empty

initial queues) is that when the queues are nearly zero, there
is no abandonment, and then it is the cµ rule that should
count.

We can conclude from this example that the optimality of
the cµ/θ rule is sensitive to the form of the cost (particularly,
to the time horizon). However, it is possible that this pol-
icy features other modes of robustness. In particular, note
that no information on the arrival processes enters the defi-
nition of the policy. It is plausible that this policy has good
performance, with respect to long run average holding cost,
under far more general assumptions on the arrivals, and it
will be interesting to address, in future work, this and other
robustness aspects.

We would like to point out that one can incorporate into
the model an abandonment-count cost, a performance mea-
sure that is important in applications. Indeed, the expected

Figure 2: The random times σ̄n and σn

rate at which customers abandon from queue i is θiE[Qi]
(where we remove n from the notation). Letting bi ≥ 0
denote penalty per class-i customer abandonment, we ob-
tain that the total customer abandonment cost is given by
∑

i
biθiE[Qi]. It is reasonable to take into account both

holding cost and abandonment cost, and thus to consider in
place of (5) the cost

1

nT
E

πn

[

∫ T

0

∑

i

(biθi + ci)Q
n(t)dt

]

. (11)

It is clear that with c̃i = biθi + ci, the above can be repre-
sented in the form (5), and thus this wider apparatus is, in
fact, covered by our analysis. Interestingly, in case we are
interested only in abandonment count, namely when ci = 0,
the index c̃iµi/θi is equal to biµi, and the policy obtained is
a version of the cµ rule (with bi replacing ci).

4. PROOF SKETCH
We give here a rough sketch of how Theorem 2.1 is proved

in [2].
Recall that V denotes the minimum value for the linear

program associated with the fluid model. The first part of
the argument is that V is a lower bound on the large n,
large T limit of Vn,T (i.e., on the l.h.s. of (10)). Taking
expectation in equations (1)–(4), dividing by T and sending
T to infinity results in a deterministic model of the form (8).
It follows that the l.h.s. of (10) is bounded below by V .

In the second part of the proof we analyze the policy π∗
n.

Recall that s := (x,q, z) denotes the solution to the linear
program, and that by assumption, n−1Xn(0) is close to x.
Denote Sn = (Xn,Qn,Zn), and S̄n = n−1Sn, and, given
T > 0 and ε > 0 let

τn = τn(T, ε) = inf{t ≥ 0 : ‖S̄n(t) − s‖ ≥ ε} ∧ T.

In what follows, write ‖x‖∗u for supt≤u ‖x(t)‖. Uniform
integrability (in n) of the random variables ‖Qn‖∗T is not
hard to obtain by straightforward estimates on the arrival
processes. As a result, to prove that the r.h.s. of (10) is
equal to V , it suffices to show that

P(τn < T ) → 0 as n → ∞, (12)

for every T and ε, because this will show, in particular, that
Q̄n := n−1Qn is uniformly close to q.

Since the state of one class influences that of the other
classes, the proof of (12) proceeds in several steps, starting
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with the class of highest priority, in which we show that
‖S̄n

i − si‖
∗
τn

→ 0 in probability, as n → ∞. We demonstrate
here only the part involving Q̄n

1 , since the other parts are
based on similar considerations. To this end, consider the
event En = {‖Q̄n

1 − q1‖
∗
τn

> δ}, for some δ < ε. Define

σn = inf{t ∈ [0, T ] : Q̄n
1 (t) > δ},

σn = sup{t ∈ [0, σn] : Q̄n
1 (t) ≤ δ/2}.

(13)

Then on the event En, we have 0 ≤ σn ≤ σn ≤ τn, and
for every t in the interval In := [σn, σn], Q̄n

1 (t) > 0. The
policy we analyze gives highest priority to class 1. As a
result, within In, every server that becomes available imme-
diately starts to serve a class-1 customer. The total service
rate available to serve class-1 customers quickly rises to a
quantity that is significantly larger than the rate of arrivals
of customers from this class. This makes it very unlikely
for the queue length Qn

1 to increase over the interval In by
a large quantity. However, due to the way σn and σn are
defined, the queue does grow by δn/2 over this interval. We
conclude that En is unlikely for large values of n.
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